
Integrating Web Services into Map Image Applications

 Shengru Tu Jay Ratcliff
 Eric Normand U.S. Army Corps of Engineer
 Sriram Kuchimanchi New Orleans, LA 70118
 Vianney Bizot Jay.Ratcliff@ mvn02.usace.army.mil
 Shujing Shu
 Mahdi Abdelguerfi Kevin Shaw*
 Computer Science Department Naval Research Laboratory
 University of New Orleans Stennis Space Center, Mississippi
 New Orleans, LA 70148 shaw@nrlssc.navy.mil
[shengru, enormand, skuchima, bizot, sshu, mahdi]@cs.uno.edu

* The work of Kevin Shaw was partially funded by the National Guard Bureau with program manager Major Mike Thomas.

Abstract

Web services have been opening a wide avenue for
software integration. In this paper, we have reported
our experiments with three applications that are built
by utilizing and providing web services for
Geographic Information Systems (GIS). The services
are designed to handle a large number of concurrent
requests. It is clear that performance has to be the
central consideration in design of GIS web services.
The lessons learned from these experiments include
the application of the rich metadata message
approach, choosing large size of unstructured data
but limiting the structured message’s sizes, and
minimizing COTS software customization.

1. Introduction

Web services have been gaining a strong
momentum as a platform upon which to develop
applications that take advantage of the Internet
infrastructure. Web services are the self-contained,
web-enabled applications capable not only of
performing business activities on their own but also
engaging other web services in order to complete
higher-order business transactions. Web services are
based on three specifications, namely SOAP [9],
WSDL [2], and UDDI [1], which provide an XML-
based basic framework for application interoperability,
service description, and service discovery. These
standards have helped web services to evolve into a
means to integrate processes and applications at an
inter-enterprise level.

In this paper, we report our experiments with three
applications that are built with Web services and at the
same time provide Web services for Geographic
Information Systems (GISs). There are at least three
characteristics of GIS services that make it difficult to
design GIS web services with satisfactory
performance. First, services provided by a GIS
typically require heavy CPU usage due to the complex
computation involved in the underlying computational
geometry. Second, GIS services often transmit large
resulting data sets such as images. Third, the “clients”
of GIS web services are often complex software tools
such as the CAD desktop applications. The services
are designed for a large number of concurrent
requests. It is clear that simply establishing
communications between components is not sufficient
for scalable GIS web services; performance has to be
the central consideration in design of GIS systems. In
addition, the design should not only consider the
server side but also the client side. As an eminent
example of heavy-duty web services, the lessons we
learned from the GIS applications (as well as a human
resource management system) are valid to general
enterprise software integration using web services.

The remaining part of this paper is organized as
the following. Sections 2 briefly provides the
background about GIS and the web service technology.
Section 3 surveys the related works. Section 4 presents
three GIS related web applications that utilize web
services. The lessons learned from these three projects
are summarized in Sections 5. Finally, Section 6
concludes.

2. Background

2.1 Web services

The XML-based Web services have become one of
the most popular technologies in the computing
industry. Its underlying protocol is SOAP, a
lightweight XML protocol for structured information
exchange across a distributed environment. The
World Wide Web Consortium (W3C) has been
successfully steering SOAP’s evolution from an
HTTP-based RPC mechanism in XML to a leading
interoperable technology with replaceable bindings
[9]. Design of web services systems have received
attention from industry [3], academia [4] and
government [8, 10].

2.2 Geographic Information Systems (GIS)

GIS refers to computer systems capable of
assembling, storing, manipulating, and displaying
geographically referenced information, the data
identified according to their locations. By storing all
kinds of correlation data into a GIS database
according to layers and locations, we can easily query,
update and insert information from many different
sources in many different forms according to the
different applications.

2.3 Web map services and Web feature services

Parallel to the evolution of the web service
technology, the Open GIS Consortium (OGC) has
been pursuing web map services. The current Web
mapping standards including, the Web Map Service
(WMS) and the Web Feature Service (WFS)
Implementation Specifications [5]. These
specifications have considered not only access to
simple features but also data with temporal
information, as well as transactions of feature
manipulation. Leading GIS software vendors such as
ESRI and Intergraph quickly implemented WMS and
WFS services in their products. Since OGC’s WMS
was formalized before SOAP emerged, WMS and
WFS do not refer to SOAP.

3. Related Works

Leading vendors have also been implementing
SOAP-based GIS web services. For example, ESRI’s
ArcWeb Services have demonstrated a commercially
hosted web service site that sells spatial data and GIS
functionality. It has illustrated the possibility for users
to avoid hosting GIS data sets but to rely on
commercial GIS web services.

Microsoft TerraServer Web Service, also called
TerraService (terraserver.microsoft.com), is an
example of map imagery Web services. TerraService
has been demonstrating a programmable interface to
an on-line database of high resolution USGS aerial
imagery and topographical maps. It is well-
documented and free. TerraService’s underlying
storage scheme is a database approach with a
hierarchical tiling technique [7]. TerraService created
200 by 200 pixel, compressed image “tiles” that are
aligned to specific coordinates on the globe. Then, an
image pyramid is pre-computed at predictable image
resolutions. This approach makes it possible for the
users to navigate and browse the vast amount of
imagery (3.0 Terabytes of compressed image tiles
created from 12 Terabytes of uncompressed image
data files) over slow speed lines with a standard web
browser without special software. TerraService’s
services can be broken down into three categories: the
search methods for finding geographic and image
coordinates by place name, the projection methods for
converting coordinates from one projection system to
another, and the tile methods for fetching tile meta-
data and image-data.

4. Applications Based on Integration of
Web Services

In this section, we report three projects that utilize
web services for GIS applications. Even though the
requirements from the three clients are vastly
different, they all involve map images. Our design
strategies for them are similar.

4.1 Overlay insect trap tapes location on aerial
images

There has been substantial research on the
behavior of insects that are harmful to agriculture,
which theoretically can help farmers to spray
insecticide intelligently. To realize the benefit, farmers
need to monitor the density of certain insects in the
fields. An effective and affordable way to do so is to
place bug-trap tapes and count the bugs that are stuck
to it. A company specializing in bug-trap tapes also
wants to provide intelligent insect control service
based on a number of prediction models. At the very
beginning, they need to overlay the insect distribution
over the field images. This helps farmers visualize the
distribution of insects from the viewpoint of the
infected area.

The company has developed software on PDA for
farmers to collect tape readings and send the data to a

small database. However, after we imported the data
as features into their GIS database (an ArcSDE
installation), we found that the company was not ready
to acquire all the map images covering the customers’
fields nationwide. A legitimate concern was about the
necessary investment for upgrading hardware. As a
temporary means, we decided to use the DOQ (Digital
Orthophoto Quadrangles) map images from
Microsoft’s TerraService as described in Section 3.
The architecture for the insect distribution Internet
service is shown in Figure 1.

Fig. 1 The Insect Distribution Visualization Server

The Insect Distribution Visualization Server
(IDVS) resides in the same computer that runs the
web server. IDVS is a client of both the TerraServer
and the local ArcSDE server. Upon a user’s request,
IDVS obtains the feature data (the bug-trap tapes’
readings and their locations) from the ArcSDE server.
According to the bounding box of the selected tapes’
locations, IDVS determines the geographic bounding
box of the background map image as well as the
desired map resolution. With this information, IDVS
queries TerraService to find out which image tiles are
needed to cover the background because TerraService
delivers images as fixed-sized tiles. This is done by
calling TerraService GetAreaFromPt.

public AreaBoundingBox GetAreaFromPt
 (LonLatPt center, Theme theme, Scale scale,

int displayPixWidth, int displayPixHeight)

The LonLatPt point parameter identifies the
Geographic center of the rectangle of interest. The
Theme and Scale parameters identify the type of
imagery and resolution of interest. The
displayPixWidth and displayPixHeight parameters
identify the needed image size.

The GetAreaFromPt service returns an object of
AreaBoundingBox that contains the identifiers

(TileId) of the four titles that cover the four corners
(NorthWest, NorthEast, SouthWest, SouthEast) of the
bounding box, as well as the pixel locations of a
specific longitude and latitude value
(LonLatPtOffset) within each of the four corner tiles.
By choosing the values of Scale, displayPixWidth
and displayPixHeight properly, we can ensure that
the number of required tiles never exceeds nine. Once
IDVS determines the set of tiles to fetch, it calls the
GetTile service repeatedly to get all the images.
GetTile is the only service provided by TerraService
that actually delivers map images.

public Byte[] GetTile(TileId id)

The GetTile service returns a Byte array containing
the compressed image data for the requested tile. Note,
GetTile returns only one tile upon each call.

IDVS then draws the feature points onto the
background image. Finally, the entire image is sent to
the end user. By maintaining a high-speed Internet
connection for IDVS, IDVS could always complete a
resulting image within four seconds in our tests. The
surprisingly good result has made us change our mind
about hosting the company’s own image services. The
cost of using a paid map image service will be offset
by the saved hardware/software investment as well as
the maintenance cost.

The TerraService provided by Microsoft’s
TerraServer (www.terraserver-usa.com) has
exemplified excellent design. The rich (coarse-
grained) metadata approach helps clients reduce the
number of requests effectively. For instance, the
AreaBoundingBox object returned by the
GetAreaFromPt service virtually satisfies all the
conceivable needs for information of image maps
including possible image cropping. By assigning each
data object (tile) a unique identifier (TileId) with
application-level meaning (row and column), the data
requests based on the metadata provided by the
metadata services (such as GetAreaFromPt) are
completely independent from the previous metadata
request. With such an arrangement, the server
(TerraServer) only needs to handle stateless requests,
which is a key to scalability.

4.2 A fly-through simulation using images from
web services

As good as it is, the TerraService is suitable for
web browsing in which few tiles will be needed at a
time. However, when a GIS application requires many
image tiles at the same time, the large number of calls
to GetTile will cause linearly increasing
communication time cost when a high power user

TerraServer

Insect distribution
visualization server

Local ArcSDE
server

Web server

Internet

End user End user …

Internet

wants many tiles, since GetTile delivers data one tile
at a time. This was confirmed by a simple test on
accessing time to fetch tiles from TerraService. The
test results have been summarized the table in Figure
2. We propose an additional service that returns an
assembled image with multiple tiles.

0

1 0

2 0

3 0

4 0

5 0

6 0

0 2 0 4 0 6 0 8 0 1 0 0

Figure 2 Accessing time to TerraService

public Byte[] GetImageFromPt (LonLatPt center,
Theme theme, Scale scale, int displayPixWidth,

 int displayPixHeight)
The parameter list of this suggested service is the

same as that of the GetAreaFromPt service. The
difference lies in the returning value. Rather than
returning the rich metadata of the boundingbox, the
GetImageFromPt service returns a large byte array
that holds the image assembled from all the tiles
surrounded by the four corner tiles returned by the
GetAreaFromPt service. In this way, the delivery will
cost one connection time only. If the client needs to
accurately crop the image, a call to the
GetAreaFromPt service will provide all the needed
information. This suggestion should improve the
transmission time for users who request large images.

To realize our suggestion regarding performance
improvement, we implemented a set of web services
that provide map images in multiple-tile groups using
a local ArcSDE map server. Figure 3 illustrates the
GUI of experimental client, a fly-through simulation.
The flying speed, map resolution (plane’s height),
flying direction, and the display size can all be set by
the user. Setting to high resolution with a large
display size will require many tiles per row. To
achieve a smooth flying view, we programmed a
buffer on the client side. Choosing a high speed will
further require fetching as many titles as possible.
Using our home-made web services, the simulator

fetches tiles row by row by calling GetImageFromPt
and achieves satisfactory results. A nearly identical
simulator could not be carried out when the chosen
display size and the resolution required five tiles per
row. To make our comparison between our image
server and the remote TerraService, we used a network
simulation package that mimicked the Internet delay
in the communication channel between the local
server and the client. Still, the GetImageFromPt
service of our server supported a satisfactory
simulation on the client side.

Figure 3 The GUI of the Fly-Through Simulator

4.3 Marking addresses from HR software on
maps

The geographic information adheres to nearly
every physical object. As the software systems are
integrated into more and more inclusive cycles,
geophysical information naturally becomes the pivot
point of integration. In recent years, homeland
security tasks have urgently needed comprehensive
and real-time information resources. Building new
systems for these tasks would be costly. Integrating
existing systems can deliver economical solutions. For
example, to effectively stop spreading a disease from a
known location, the public health agents need to
immediately identify the potentially contaminated
areas. Because each individual system contains its own
information separately, the fragmented information
cannot be utilized without integration. Considering
that the municipal business bureau’s database has the
names of the companies around the contaminated

of
tiles secs

2 1.2

3 1.5

4 2.0

5 2.3

10 3.6

20 8.2

30 14.3

40 18.3

50 24.3

60 28.4

100 50.4

area; the personnel information system of each of the
companies has the address of every employee; and the
general public GIS has the map to mark the
potentially contaminated houses. In principle, web
services should fit into this kind of integration well.

As a feasibility study of a project that requires the
inter-enterprise integration as described above, we
carried out an experiment on integrating the GIS map
imagery web services (TerraService) into the
PeopleSoft Human Resource (HR) system. Our goal
was to integrate the map imagery capability into the
PeopleSoft HR system. By clicking on a PeopleSoft
HR page showing an employee’s information, we want
the PeopleSoft page to trigger the display of an image
map showing the employee’s residence. This function
is needed during an emergency situation for the
homeland security agent. To achieve this, we need to
do two things: (1) get the address information out
from PeopleSoft and find its geocode; (2) fetch images
from a map image service such as TerraService and
display them. In Sections 4.1, we have shown how to
fetch and display map image tiles surrounding a
specific location identified by its longitude and
latitude. Thus, we will focus on Step (1).

To describe this process, we need a little
knowledge about PeopleSoft HR, the most popular
Commercial Off-The-Shelf (COTS) Human Resource
management software in governmental organizations
in the U.S. PeopleSoft uses a large database to store
data and a set of comprehensive web-based interfaces
to access the data. A user can access much of the
information about employees through web forms.
Developers can add or modify functionality to
customize the system for their needs using the
Application Designer.

One of our design principles was to minimize the
modification to the PeopleSoft applications. This is a
way to make our integration sustainable through
PeopleSoft software upgrades. For instance, we
decided to send the whole Rowset XML document
(rowset) generated by PeopleSoft with no
modifications. The consequences of this decision are
explained below.

As a first attempt, we decided to send a message to
an Address Storage web service we created which
stores name and address information. We configured
the PeopleSoft applications to send NAME_AND_
ADDRESS_MESSAGE (a message type we created)
to the Address Storage web service. Next, we had to
actually send the message. To do that, we added code
to a standard PeopleSoft event called
SavePostChange. This event is called whenever a

user clicks the Save button on a PeopleSoft screen
with new data. To achieve this, we found a built-in
page in PeopleSoft HR that contained address
information (it is called PERSONAL_DATA). We
added the event handling code (event handler) to this
page. This event handler received the rowset for
PERSONAL_DATA, then converted it into XML and
inserted it into a SOAP message destined for the
SOAP service we set up. It was a simple operation
that took 15 lines of PeopleCode. The advantage of
this method is the additional code of the event handler
could have been inserted into any SavePostChange
event for any PeopleSoft component; it would have
worked the same way. A severe drawback of this
method was the XML message generated for the
generic Rowset was excessively verbose. The XML
message was almost two megabytes in length for each
person’s address. Most of the XML document was
unneeded.

Another solution was to add People code to the
PeopleSoft event handler and let it extract the data
from the rowset. Fortunately, PeopleCode had XPath
capabilities (XPath is a way to represent a path to an
XML node in an XML document), so with a few more
lines of code we reduced the size of the message
dramatically while still retaining the needed data.
This eliminated most of the unused portion of the
XML message, and dramatically reduced the size of
the message. The drawback to this working solution
was that we lost code reusability. We had to write
different event handler for different data sets. Such a
case-by-case customization would make the
integration code less and less manageable.

Our final solution has regained high code
reusability. We let the event handler query the whole
rowset as it is generated by the built-in PeopleSoft
page, PERSONAL_DATA. Instead of sending the
rowset to the Address Storage web service, the event
handler code writes the rowset to a file that is
accessible by the web server. Then, the event handler
sends the URL of the file to the Address Storage
service. The Address Storage service correspondingly
does an HTTP GET on the URL, and obtains the
complete XML file. It extracts the name and address
information from the XML file, and converts the
address into a latitude and longitude by looking it up
from the TerraService. Then the Address Storage
service stores the name and coordinates in an XML
file. The main advantage of this approach is that we
can always use a uniform event handler for any
rowset; no message specific code is needed.

5. Lessons Learned

In this section, we summarize the lessons that we
have learned from the above three projects. In the first
project, we particularly appreciate the rich metadata
operation approach, represented by the
GetAreaFromPt operation that returns an object
AreaBoundingBox. This is a reflection of the well-
known CORBA design pattern called “secondary
object identities” [6]. The essential idea of this design
pattern is to use a data structure to enclose a
combination of the object identifiers along with
adequate information to support the user’s common
queries. Applying this pattern to web services turns
out to be very effective in reducing remote requests. It
is also convenient because the underlying XML is
ideal for packing structured data.

A lesson learned in the fly-through simulation
project regards the coarseness of messages. For
unstructured data such as compressed images, the
larger message size usually leads to more efficient
transmission. On the other hand, a design choice has
to be made carefully if a larger message will require
the server to carry out more computation.

For structured data, the message size is subject to
more constraints. This is because the size of the XML
documents will have impact on the parsers in the
message channel. For instance, in the PeopleSoft-GIS
integration project, we encountered multiple-megabyte
SOAP messages. Many systems use the DOM model
to reconstruct the object in the memory, which lead to
very heavy memory usage. When many concurrent
requests involving large messages hit the SOAP
messaging channel, the server can be overwhelmed.

A very important consideration regarding
integration with COTS software is to assure the
manageability of COTS software upgrades for long
term. The COTS vendors upgrade their COTS
products regularly, to enhance features and
performance. Facilitating clients’ data into a new
version is typically an obligation of COTS vendors.
However, vendors do not support the transformation of
clients’ customization code. Thus, massive or complex
code customization in COTS deployment will hinder
future COTS upgrades. Our strategy was to rely on the
most fundamental functions (SavePostChange) and
stable generic data structure (rowset) as explained in
Section 4.3. In order to enable integration, adding
code to the COTS software is inevitable. By using a
uniformed add-on piece for creating any outbound
message from PeopleSoft, we greatly reduced the

complexity of integration. This way will help us
achieve better manageability.

6. Conclusion

The SOAP-based web services have been opening a
wide avenue for software integration, especially for
COTS software integration. Through reporting three
GIS related web applications, we have shared our
experiences regarding the rich metadata message
approach, as well as the choice of message size. In
determining message sizes, we should differentiate the
structured from unstructured messages. Following the
principle of minimizing customization inside COTS,
we found a uniform add-on piece for creating any
outbound message from the COTS. We hope that our
paper can garner sufficient attention from web service
designers to take note of the design for web services
that are involved in intensive computation or
enormous data transmission.

7. References

[1] T. Bellwood, et al., “UDDI Spec Technical Committee

Specification”, http://uddi.org/pubs/uddi-v3.00-
published-20020719.htm, July 2002.

[2] R. Chinnici, et al., “Web Services Description
Language (WSDL) Version 1.2”,
http://www.w3.org/TR/wsdl12/

[3] P. Fremantle, S. Weerawarana, and R. Khalaf,
“Enterprise Services”, CACM, 45:10, 77-82, Oct.
2002.

[4] K. Larsen and P. Bloniarz, “A Cost and Performance
Model for Web Service Investment”, CACM, 43:2,
109-116, Feb. 2002.

[5] Open GIS Implementation Specifications,
http://www.opengis.org/techno/implementation.htm

[6] D. Slama, J. Garbis, and P. Russell, Enterprise
CORBA, Prentice Hall, Upper Saddle River, NJ, 1999.

[7] S. Tu, X. Li, X. He, and J. Ratcliff, “A Systematic
Approach to Reduction of User-Perceived Response
Time for GIS Web Services”, Proceedings ACM GIS
2001, Atlanta, GA, pp 47-52.

[8] R. Wilson, M. Cobb, F. McCreedy, R. Ladner, D.
Olivier, T. Lovitt, K. Shaw, F. Petry, M. Abdelquerfi,
“Geographical Data Interchange Using XML-Enabled
Technology within the GIDB(TM) System”, invited in
edited manuscript: A B. Chaudhri (ed), XML Data
Management, John Wiley & Sons, 2003.

[9] World Wide Web Consortium, “SOAP Version 1.2
Part 1: Messaging Framework”,
http://www.w3.org/TR/2003/PR-soap12-part1-
20030507/

[10] Digital Mapping, Charting and Geodesy Analysis
Program (DMAP) Team, http://dmap.nrlssc.navy.mil.

