
Design Strategies to Improve Performance of GIS Web Services

Shengru Tu, Maik Flanagin, Ying Wu, Mahdi Abdelguerfi, Eric Normand, Venkata Mahadevan
Computer Science Department

University of New Orleans, New Orleans, LA 70148
[shengru, ywu, mahdi, enormand, venkata]@cs.uno.edu; Maik.C.Flanagin@mvn02.usace.army.mil

Jay Ratcliff

U.S. Army Corps of Engineers
New Orleans, LA 70118

Jay.Ratcliff@mvn02.usace.army.mil

Abstract
GIS systems are ubiquitous distributed systems,

since geo-spatial information adheres to almost
everything. Considering the characteristics of GIS,
the following four design-decision issues are
particularly crucial: transactional mode (synchronous
versus asynchronous), service granularity (fine-
grained versus coarse-grained), delivery manner
(chunk versus stream), and transmission formats
(GML versus binary). In this paper, we have shared
our experience in making choices in these four
dimensions.
Key words: web service, GIS, performance, Internet
map service, SOAP.

1. Introduction

Traditional IT infrastructures in which systems and
applications were managed and owned by one
enterprise are giving way to networks of applications
owned and managed by many business partners. Web
services have been gaining strong momentum as a
platform upon which to develop applications that take
advantage of the Internet infrastructure. By web
services, we mean the self-contained, web-enabled
applications capable not only of performing business
activities on their own but also possessing the ability
to engage other web services in order to complete
higher-order business transactions. Technically, web
services refer to the web applications based on three
specifications, namely SOAP (Simple Object Access
Protocol), WSDL (the Web Service Definition
Language), and UDDI (the Universal Description,
Discovery and Integration standard). These efforts are
critical because service-oriented computing inherently
requires wide acceptance. However, standards
themselves do not deliver working systems.
Constructing successful working systems requires
smart design.

Kevin Shaw
Naval Research Laboratory

Stennis Space Center, Mississippi
shaw@nrlssc.navy.mil

In this paper, we consider design strategies for

heavy-duty web services that have a large number of
concurrent requests, are involved with complex
computation, and require large-quantity data
transmission. An eminent example of such is the web
service that connects to Geographic Information
System (GIS) back-end servers. There are at least
three characteristics of GIS services that make it
difficult to design GIS web services with satisfactory
performance. First, services provided by a GIS
typically requires heavy CPU usage due to the
complex computation involved in the underlying
computational geometry. Second, GIS services often
transmit large resulting data sets such as images.
Third, the “clients” of GIS web services are often
some complex software tools such as the CAD desktop
applications. For scalable GIS, simply establishing
communications between components is not sufficient.
Performance should always be a central consideration
in the design of GIS web service systems.

In this paper, we are to highlight the crucial design-
decision issues for GIS web service systems by
establishing a 4-dimensional decision-making
framework. The four dimensions are transactional
mode, service granularity, delivery manner, and
transmission formats. We hope that our paper can
garner sufficient attention from the web services
designers to take note of the design principles and
build effective solutions.

2. Related Works

The World Wide Web Consortium (W3C) has been
successfully steering SOAP’s evolution from an
HTTP-based RPC mechanism in XML to a leading
interoperable technology with replaceable bindings.
The web service technology is a practical engineering
outcome in the software industry. Design of web

services systems have received attention from both
industry [1, 2, 5] and academia [3, 10, 11].

Parallel to the evolution of the web service
technology, the Open GIS Consortium (OGC) has
been pursuing web map services with interoperability
of map servers and clients. The first specification on
simple web map services was released in 2000. The
current web mapping services standards include the
Web Map Service (WMS) and the Web Feature
Service Implementation Specifications (WFS) [6].
Since OGC’s WMS was formalized before SOAP
emerged, WMS and WFS do not refer to SOAP.

3. Background

Most of the work reported in this paper is based on
the needs of the U.S. Army Corps of Engineers New
Orleans District (USACE – New Orleans). The district
plans, designs, constructs, operates and maintains
federally sponsored navigation, flood control,
hurricane protection and water resources development
projects in south central and coastal Louisiana. At
USACE – New Orleans, engineers and analysts have
been using a myriad disparate commercial software
packages to manage their GIS and CAD projects,
including products from companies such as
Intergraph, ESRI, and Bentley. A team of IT workers
have been working on integration of all the software
programs through a centralized means of data access.
The efforts of data consolidation in the early stages
was reported in [9].

4. Design Strategies for GIS Web Services

For nontrivial web services systems, behind each
web service is a backend system that fulfills the task.
In front of each web service client is typically an
application that consumes the service. This application
can be as simple as a web browser or as complex as a
GIS or CAD application suite. Fig. 4.1 depicts a
conceptual structure of such a web services system.
The “service consumer” and the “web services client
agent” components are in the same local area network
(LAN) or even in the same computer (In our
experiments, we used Java RMI). Similarly, the
backend system and the web services interaction
component are typically located in the same LAN.
However, between the web services provider and the
web services client, we can only assume the
SOAP/HTTP protocol because different departments
and external clients may be involved in the system.

Many design principles for distributed software are
not only applicable to the design of web services, but
also are more crucial to apply to the GIS web services.

In this section, we will discuss the design decisions
regarding the transactional mode, the service
granularity, the communication manners, and the
transmission formats.

Fig. 4.1 The web service model with backend

4.1 Synchronous services versus asynchronous
services

When we push GIS systems to the Internet, the
success of a GIS web service will usually be measured
by the number of hits to it. Ironically, increasing the
number of concurrent hits inevitably will overwhelm
the server’s capacity because GIS services typically
require intensive computation and enormous data,
straining CPU and bandwidth respectively. A general
strategy to deal with the performance issue is to
minimize synchronous transactions. A classic method
to turn a client’s synchronous service call into an
asynchronous request is by using the callback design
pattern. When the results are ready, the caller is
informed.

A GIS web services client is often another
application or a cascading map server. As described by
the OGC WMS specification, a cascading map server
is a WMS that behaves like a client of other WMSes
and also behaves like a WMS to yet other clients. In
an example given by the same specification, a
cascading map server can aggregate the contents of
several distinct map servers into one service.
Furthermore, a cascading map server can perform
additional functions such as output format conversion
or coordinate transformation on behalf of other
servers. In the latter scenario, the cascading map
server obviously would prefer to make fetching data
and format conversion in parallel. This requires
asynchronous services from the map services
providers. Applying the callback design pattern is a
straightforward way to achieve asynchronous services

backend
system

web services
interaction
component

service
consumer

web services
client agent

soap request/response

request

request

response

response

(HTTP over the Internet)

web services provider

web services client

for the cascading map server or the applications that
also provide other web services. Because they already
have their web services server instances, all it needs is
to include a URL of the client (the cascading map
server or the application) that will inform the client to
fetch the result. The cost of the implementation of
callback is the creation of a web services server.

By providing asynchronous services, the server can
not only conceal its computation time from the users’
perspective by overlapping server’s computation with
the clients’ other operations, but can also optimize job
scheduling by prioritizing the requests.
4.2 Fine-grained versus coarse-grained services

For GIS web services, the communication through
the Internet is the weakest among distributed systems,
and the amount of data to transmit is often large. To
avoid excessive communication overhead, granularity
of services deserves particular attention.

For web services systems, coarse-grained services
should be preferred to fine-grained services, even
though the conventional object-oriented design tends
to be in favor of fine-grained services for flexibility.
For instance, a GIS database provides users with
accesses to every geometric element. However, if a
GIS web feature service provider allows remote users
with the same accessing power as that to a local
database, assembling a map with thousands of features
at the user side would cause thousands of web services
requests, the communication overhead of which would
severely hinder the performance. Rather, we prefer to
provide services that deliver a collection of features
(with certain chosen attributes in a bounding box).

Using the GIS services as resources for analysis, the
users’ typical usage pattern is query-select-fetch. For
example, a GIS expert will first query all the available
feature classes in an area. Then the useful feature
classes are selected manually from the query result.
Finally the chosen feature classes are fetched from the
resources and added to the current workspace. To
efficiently implement such kind of service, we highly
recommend a design pattern called “secondary object
identities”, which has been used by the CORBA
software community [7] for years. The
GetCapabilities operation defined in the WMS
specification is another good example, which fetches a
rich set of service-level metadata of each web map
service. Realizing the reason of the “secondary object
identities” design pattern can help us actively apply it
in our own design. We will explain this design pattern
using an example of a query-select-fetch process.

Assuming that the bounding box is a parameter, a
simple object-oriented design for the query-select-fetch

process would consist of four services: (1) getMaps --
a service that returns all the maps that overlaps with a
bounding box; (2) getFeatureClasses -- a service
that returns all the names of the available feature
classes in a map; (3) getDesc -- a service that returns
the description of a feature class; (4)
getFeatureContent -- a service that returns the
content of a feature class. Using these fine-grained
services, a query-select-fetch process can be carried
out as described in the following pseudo code (The
variable declarations and other details are omitted).
map_list = getMaps(bounding_box);
for each map in map_list {
 feature_class_list = getFeatureClasses(map);
 for each feature_class in feature_class_list {
 display(getDesc(feature_class));
 }
}
… // the user selects feature classes
for each selected feature_class in its residing map {
 getFeatureContent(map, feature_class);
 …
}

Suppose there are m maps that overlap with the
given bounding box; each map has f features; and the
user chooses c feature classes. Then the process will
make (1 + m * f + c) service calls. The essential idea
of the “secondary object identifier” design pattern is to
use a data structure that contains a combination of an
object identifier along with adequate information to
support the user’s selection. Correspondingly, the
above task can be served with the following two
services: (1) getFeatureClassInfo -- a service that
returns all the necessary information of the available
feature classes in the maps that overlaps with a
bounding box; (2) getFeatureClassContent -- a
service that returns the content of a feature’s
identifier. Using these coarse-grained services, a
query-select-fetch process can be simplified into the
following pseudo code.
feature_class_Info_list=getFeatureClassInfo(bounding_box);
for each feature_class_Info in feature_class_Info_list {
 display(feature_class_Info);
}
… // the user selects features
for each selected feature_class in its residing map {
 getFeatureClassContent(feature_id);
 // feature_id is from in feature_class_Info
 …
}

The feature_id is contained in feature_class_Info.
Thus, the number of service calls are reduced to (1 +

c). A little hidden complexity of this approach is that
the structure featureClassInfo has to contain feature
name, description, and identifying information such as
the residing map name and the feature name that
composes feature_id. The client side must be able to
extract the value of feature_id. In SOAP, such kind of
data structures can be easily represented and parsed.

In Fig. 4.1, the “response” from the “backend
system” seems to be simply forwarded by the “web
services interaction component” to the web service
client as a SOAP response. However, their difference
can be more than formatting but significantly different
granularity because the communications in these two
sections are greatly different. For flexibility, we have
defined a set of fine-grained services for the
interaction between the “backend system” and the
“web services interaction component”. These two
components are in the same LAN. On the other hand,
the services provided by the web services provider are
mostly coarse-grained ones because the “web services
interaction component” and the “web services client
agent” communicate through the Internet.
4.3 Transmitting in streaming versus single chunk

The streaming technique is commonly used in
transmitting multimedia contents. For web browsing
images, streaming is not very crucial; the required
number of pixels will be limited by the web browser’s
screen size. However, for browsing large vector data
sets or for powerful web service clients such as the
MicroStation user, large vector data sets or high-
resolution TIFF images are commonly needed.

The specification of SOAP 1.2 considers streaming
in the bindings of the Request-Response message
exchange pattern (MEP). It is said: “In the web
services systems, responding SOAP nodes may begin
transmission of a SOAP response while a SOAP
request is still being received and processed web
services.”. However, that is not what we need. The
SOAP Request-Response MEP does not mandate any
correlation between multiple requests nor specific
timing for multiple requests. To support iterating over
a large dataset in fix-size chunks, the iterator design
pattern can be applied. Considering that transmitting
large datasets is a common need for GIS analysts, the
iterator pattern is included in our web services design.

Having the separation between the “web services
client agent” and “service consumer”, the final
streaming delivery to the service consumer component
requires another streaming between the “web services
client agent” and a destination object in the “service
consumer” components. This separation has at least
two benefits for the consumer components. First, the

consumer component needs to know nothing about the
web services. Second, a streaming delivery can be
emulated even if the web services transmit in a whole
chunk. In our experimental implementation, we used
the Java ObjectStream objects. While the
ObjectInputStream object constantly attempts to read,
the ObjectOutputStream object sends geometric
elements for vector datasets or byte arrays for images
whenever a chunk arrives to the “web services client
agent”.
4.4 Transmitting in binary versus GML

The specification of the GML has been growing
rapidly with the efforts of the OGC, to pursue the
ultimate interoperability among geometric data. WFS
mandates GML to express features within the
interface. (The datastore used to store geographic
features is opaque to client applications.) Leading GIS
software vendor such as ESRI and Intergraph have
implemented WFS. Intergraph also provides their
GeoMedia users with a GML exporter [3]. In our
design, we have chosen to transmit data in binary
between our web services providers and MicroStation
clients. This choice was made mainly due to
performance concerns. MicroStation uses the DGN
file as their optimized operational data representation.
For the same geometric information, GML documents’
sizes are often tens of times larger than DGN files.
Many MicroStation installations run on relatively old
computers. Converting GML to DGN takes tangible
delays. Many of USACE’s partners such as the local
governments’ users communicate with our web
services without high-speed connections.

5. Challenges: Web Services for Simulation

Our services anticipate more hydrologic analysts
and civil engineers to request access to the Enterprise
GIS from their software tools. Therefore, we have
been extending our efforts to general web services for
highly computational clients. Our strategy is to
properly pipeline the existing WMS and WFS
capacities of the GIS systems – ESRI’s ArcGIS and
ArcSDE software family and Intergraph’s GeoMedia
software family. Fortunately, both vendors have made
the WMS and WFS available without extra cost.

For some of these analysis-oriented clients, the
GML mandatory requirement of WFS can be overkill
for the non-GIS clients’ software. For example, a
number of critical hydrologic simulations require huge
amounts of data. The analysis programs are in Fortran
90 and running on supercomputers for days. In such
cases, performance is a serious concern. We plan to
provide web services to meet the needs for data

collection and transmit data efficiently. Often such
web services are long-duration jobs. Therefore, our
system model will include persistent queues between
the

� � � � � � � � � 	 � � �
and the clients’ applications

as shown in Fig. 5.1.

Fig. 5.1 Web Services for other applications

Recently, a more interesting challenge comes from
requirements of simulation that supports walk-through
for training and emergency response exercises. In
contrast to typical fly-through simulations that are
based on datasets from GISs, the walk-through
simulations require datasets across GISs (for voyaging
streets and landscapes) and ACE systems (for walking
into buildings and constructions) as well as human
resource systems (for reviewing affected people). For
large-scale simulation, a significant part of the costs
will be data collection. For real-world-scenarios
simulations, static data preparation will not be
adequate. Having the simulation access each system
through the corresponding web services would make
the whole system very flexible and reusable. A specific
desirable requirement from simulation is streaming.
Especially for large map imagery data sets, streaming
can allow the simulation software to consume
(display) the map long before it completely finishes
loading. Furthermore, streaming will be a necessity for
running simulations in small devices such as PDAs
that have limited storage space.

6. Conclusion

SOAP-based web services have made
communications between varied software components
flexible and easy. It is ready to extend our daily use of

the Internet from merely browsing web pages to
carrying out distributed computing and transactions.
However, we have to realize that simply enabling
communications between computers and software
components does not mean that we can construct
efficient systems. Many principles of design for
distributed software have never been so important as
they are today because there have never before been so
many large-scale distributed software systems that
need to be built. One type of the most ubiquitous
distributed systems is the GIS system, since geo-
spatial information adheres to almost everything.

By no means have we covered all the important
principles, but we hope that our paper can garner
sufficient attention from the GIS web services
designers and providers to take note of the design
principles, so that the GIS society can meet the future
challenges effectively.

7. References
[1] A. Arsanjani, et al, “Web Services: Promises and
Compromises”, Queue, pp 49-58, March 2003.
[2] P. Fremantle, S. Weerawarana, and R. Khalaf,
“Enterprise Services”, CACM, 45:10, 77-82, Oct. 2002.
[3] N. Gibbins, S. Harris and N. shadbolt, “Agent-based
Semantic Web Services”, Proceedings of the 12th WWW,
Budapest, Hungary, pp 710-717, May 2003.
[4] Intergraph: GeoMedia GML Exporter,
http://imgs.intergraph.com/interop/extensions.asp
[5] S. Kleijnen and S. Raju, “An Open Web Service
Architecture”, Queue, pp 39-46, March 2003.
[6] Open GIS Implementation Specifications,
http://www.opengis.org/techno/implementation.htm
[7] D. Slama, J. Garbis, and P. Russell, Enterprise
CORBA, Prentice Hall, Upper Saddle River, NJ, 1999.
[8] S. Tu, et al, “A Systematic Approach to Reduction of
User-Perceived Response Time for GIS Web Services”,
Proceedings ACM GIS 2001, Atlanta, GA, pp 47-52.
[9] S. Tu, et al, “Achieving Interoperability for
Integration of Heterogeneous COTS Geographic
Information Systems”, Proceedings of ACM GIS 2002,
McLean, VA, pp 162-167.
[10] J. Yin, et al, “Engineering Server-Driven
Consistency for Large Scale Dynamic Web Services”,
Proceedings of the 10th international conference on
World Wide Web, Hong Kong, pp 45-57, May 2001.
[11] L. Zeng, B. Benatallah and M. Dumas,
“Quality Driven Web Services Composition”,
 Proceedings of the 12th international conference on
World Wide Web, Budapest, Hungary, pp 411-421,
May 2003.

Arc
SDE
server

WS Client

soap

request

request
queue

response
queue

response

HTTP over the Internet

web services provider

web services client

S
D

E

co
n

n
e

ct
o

r

WS Server
(Java WSDP
& Java 1.4)

 applications

