

USGS Earthquake Hazards Program

Earthquakes 101 (EQ101)

Lisa Wald USGS Pasadena

U.S. Department of the Interior U.S. Geological Survey

Global Distribution of Earthquakes

Plate Tectonics

Plate Boundaries

Three Types of Faults

Thrust

≊USGS

Normal

Strike-slip Fault Example

Strike-slip Fault Example

1906 San Francisco Earthquake

Normal Fault Example

Dixie Valley-Fairview Peaks, Nevada earthquake December 16, 1954

Thrust Fault Example

Thrust Fault Example

Rupture on a Fault

Total Slip in the M7.3 Landers Earthquake

Slip on an earthquake fault Second 2.0

Slip on an earthquake fault Second 4.0

Slip on an earthquake fault Second 6.0

Slip on an earthquake fault Second 8.0

Slip on an earthquake fault Second 10.0

Slip on an earthquake fault Second 12.0

Slip on an earthquake fault Second 14.0

Slip on an earthquake fault Second 16.0

Slip on an earthquake fault Second 18.0

Slip on an earthquake fault Second 20.0

Slip on an earthquake fault Second 22.0

Slip on an earthquake fault Second 24.0

Bigger Faults Make Bigger Earthquakes

Bigger Earthquakes Last a Longer Time

What Controls the Level of Shaking?

• Magnitude

- More energy released

• Distance

- Shaking decays with distance

• Local soils

amplify the shaking

Is there such a thing as "Earthquake Weather"???

Northridge, CA 1994

P

Loma Prieta, CA 1989

KGO-TV News ABC-7

Kobe, Japan 1995

Kobe, Japan 1995

Earthquake Effects - Surface Faulting

Landers, CA 1992

Earthquake Effects - Liquefaction

Source: National Geophysical Data Center

Niigata, Japan 1964

Earthquake Effects - Landslides

≊USGS

Turnagain Heights, Alaska, 1964 (upper left inset); Santa Cruz Mtns, California, 1989

Earthquake Effects - Fires

Loma Prieta, CA 1989

KGO-TV News ABC-7

Earthquake Effects - Tsunamis

1957 Aleutian Tsunami

Photograph Credit: Henry Helbush. Source: National Geophysical Data Center

Seismic Waves

(a) Undisturbed material

Earthquake Magnitude

Earthquake Location

The San Andreas Fault

Will California eventually fall into the ocean???

Faults of Southern California

Shaking Hazard in Southern California

Faults in Our Local Area - Arcadia

Sierra Madre Fault Zone

THRUST fault 55 KM long Last ruptured in last 10,000 YEARS SLIP RATE: between 0.36 and 4 mm/yr

PROBABLE MAGNITUDES: MW6.0 - 7.0 (?) Dips to the north

Faults in Our Local Area - Arcadia

Source: SCEC Data Center

SLIP RATE: between 0.10 and 0.22 mm/yr

PROBABLE MAGNITUDES: MW6.0 - 7.0 Dips to the north

At least **eight** surface-rupturing events have occurred along this fault in the last 36,000 years

Faults in Our Local Area - Arcadia

Clamshell-Sawpit Canyon fault

THRUST fault 18 KM long Last ruptured in last 1.6 million YEARS SLIP RATE: ???

PROBABLE MAGNITUDES: ??? Dips to the north

Real-time Earthquake Information

Index Map of Recent Earthquakes in California-Nevada

ShakeMaps

PROCESSED: Tue Jul 25 02:35:57 PM PDT, Produced by ShakeMap V2

PERCEIVED	Not tell	Weak	Light	Moderate	Strong	Very strong	Severe	Viokand	Extreme
POTENTIAL DAMAGE	none	none	попе	Very ight	Light	Moderate	Moderate/Heavy	Heavy	Very Heavy
PEAK ACC.(%g)	<.17	.17-1.4	1.4-3.9	3.9-9.2	9.2-18	18-34	34-65	65-124	>124
PEAK VEL (cm/s)	<0.1	0.1-1.1	1.1-3.4	3.4-8.1	8.1-16	16-31	31-60	60-116	>116
INSTRUMENTAL INTENSITY	Т	IHII	IV	V	VI	VII	VIII	IX	X+

Did You Feel It?

Community Internet Intensity Maps

Community Internet Intensity Map (10 miles NNE of Lacey, Washington) ID:2281854 10:54:33 PST FEB 28 2001 Mag=6.8 Latitude=N47.15 Longitude=W122.73

INTENSITY	I	-	١V	V	٧I	VII	VIII	IX	X+
SHAKING	Noriei	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Externe
DAMAGE	none	none	none	Verylight	Light (Moderate	Moderate/Heavy	Невну	Very Невну

USGS Earthquake Hazards Program

U.S. Department of the Interior U.S. Geological Survey

Where to go for more information:

http://pasadena.wr.usgs.gov/ http://earthquake.usgs.gov/

The End

Faults in Our Local Area - La Canada

TYPE OF FAULTING: reverse

LENGTH: the zone is about 55 km long; total length of main fault segments is about 75 km, with each segment measuring roughly 15 km long

MOST RECENT SURFACE RUPTURE: Holocene, 10,000 years to present

SLIP RATE: between 0.36 and 4 mm/yr

INTERVAL BETWEEN SURFACE RUPTURES: several thousand years (?)

PROBABLE MAGNITUDES: MW6.0 - 7.0 (?)

OTHER NOTES: This fault zone dips to the north.

