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Abstract 

Distinct notions of message integrity (authenticity) for block-oriented symmetric encryption are de-
fned by i n tegrity goals to be achieved in the face of diferent t ypes of attacks. These notions are partially 

ordered by a �dominance" relation. When chosen-plaintext attacks are considered, most integrity goals 

form a lattice. The lattice is extended when known-plaintext and ciphertext-only attacks are also in-
cluded. The practical use of the dominance relation and lattice in defning the relative strength of 

diferent integrity notions is illustrated with common modes of encryption, such as the �infnite gar-
ble extension" modes, and simple, non-cryptographic, manipulation detection code functions, such as 

bitwise exclusive-or and constant functions. 

Introduction 

The fact that encryption does not provide message integrity (authenticity) is generally well-understood 

[19], and so is the fact that often "encryption without integrity-checking is all but useless" [8]. Less well-
understood is the fact that message integrity depends intimately on the protection goals of the application 

environment and the operational threats posed by that environment. Ignoring this fact may lead to 

performance and usability mismatches. For example, many e m bedded, low-power, systems and applications 

can hardly aford to use any of the traditional hash functions or message authentication codes proposed 

to date to maintain the integrity of encrypted messages, particularly in environments exposed only to 

limited-scope attacks (e.g., ciphertext-only attacks). 

We explore diferent notions of message integrity for block-oriented symmetric encryption and their relation-
ships. These notions are expressed as a combination of integrity goals to be achieved in the face of diferent 

types of attacks, as originally suggested by Naor (viz., attribution [4]). The set of all integrity goals include 

both goals known to date, such as protection against existential forgery and assurance of plaintext integrity 

and of non-malleability, and new ones, such as maintenance of plaintext uncertainty, and protection against 

known- and chosen-plaintext forgery. Attack models include chosen-plaintext, known-plaintext, ciphertext-
only, and chosen-ciphertext attacks. The integrity notions defned are partially ordered by a "dominance" 

*This work was performed in part while this author was on sabbatical leave from the University of Maryland, Department 

of Electrical and Computer Engineering, College Park, Maryland 20742. 
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relation. When chosen-plaintext attacks (CPAs) are considered, most integrity goals form a lattice. This 

lattice is extended by the inclusion of ciphertext-only attacks (CoAs). Although we do not explicitly show 

it, the lattice can also b e extended by the inclusion of known-plaintext attacks (KPAs). The resulting 

lattice shows that the strongest notion of integrity is provided by existential forgeries in CPAs and the 

weakest by c hosen-plaintext forgeries in CoAs. 

Defning notions of integrity in terms of a "dominance" relation enables us to characterize the relative 

strength of various symmetric encryption modes precisely. The utility of such characterization extends 

b e y ond theory; e.g., it enables us to explore the space of encryption schemes (modes) that can be composed 

with a variety of Manipulation Detection Code (MDC) functions (e.g., non-cryptographic MDCs such 

as bitwise exclusive-or, cyclic redundancy code, and even constant, functions), and used in a variety of 

application environments exposed to well-defned threats. As an example of schemes whose relative strength 

can b e precisely evaluated, we analyze Campbell's "infnite garble extension" (IGE) mode of encryption 

[9]. 

The balance of this paper is organized as follows. Section 2 contains some preliminary defnitions and 

notation, Section 3 contains the defnition of the integrity notions addressed in this paper. Section 4 

contains the relations among integrity notions (i.e., dominance, incomparability, separation) based on the 

defnition of goals and attacks, and the integrity lattice and its extensions. Section 5 contains the lemmas 

that help characterize the integrity properties of IGE modes when used with very simple manipulation 

detection code (MDC) functions, and examples of other modes that are vulnerable with respect to diferent 

integrity notions when composed with specifc MDC functions. 

Background 

In defning the relationships b e t ween diferent notion of integrity for symmetric encryption, we will use 

encryption modes by the triple I = (E;D;K G ), where E is the message encryption function, D is the 

message decryption function, and KG is the probabilistic key-generation algorithm. These encryption 

modes are implemented with block ciphers, which can b e modeled with fnite families of pseudorandom 

functions (PRFs). A detailed account for the use of such functions in symmetric encryption modes intended 

to satisfy secrecy goals is provided by Bellare et al. [2]. Since most practical encryption schemes use both 

the encryption and decryption functions of block ciphers, a natural way to model such ciphers is with 

fnite families of super-pseudorandom permutations (SPRPs) [18]. We denote both PRFs and SPRPs by 

F below and distinguish which w e mean in context. 

Perhaps the most common method used to detect modifcations of encrypted messages applies a MDC 

function g to a plaintext message and concatenates the result with the plaintext before encryption with 

E. The choice of MDC function g is entirely that of the designer; e.g., g could be a non-keyed hash, cyclic 

redundancy code (CRC), bitwise exclusive-or, or even a constant, function [19]. A message thus encrypted 

can b e decrypted and accepted as valid only after the integrity check passes; i.e., after decryption with 

D, the concatenated value of function g is removed from the plaintext, and the check passes only if this 

value matches that obtained by applying the MDC function to the remaining plaintext [22, 21, 19]. If 

the integrity check does not pass, a special failure indicator, denoted by N ull herein, is returned.1 The 

encryption scheme obtained by using this method is denoted by I o g = ( E o g;D o g;K G ), where I is said 

to be composed with the MDC function g. In this mode, we denote the use of the key K in the encryption 

1 This method has been used in commercial systems such as Kerberos V5 [22, 23] and DCE [21, 23], among many others. 

Note that other methods for protecting the integrity of encrypted messages exist; e.g., encrypting the message with a secret 

key and then taking the keyed MAC of the ciphertext with a separate key [19, 7]. 
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of a plaintext string x by ( EFK o g )(x), and in the decryption of ciphertext string y by ( DFK o g )(y). The 

DFKpassing of the integrity c heck at decryption is denoted b ( o g )(y) 6 N ull .y = 

For any key K, a forgery is any ciphertext message that is not the output of EFK o g. A "valid" forgery 

is a forgery that passes the integrity check. Forgeries can b e created in many ways, for example (1) by 

modifying the ciphertexts of legitimate messages whose plaintext may b e known by the forgerer, (2) by 

including arbitrary, never-seen-before, strings into existing ciphertexts, or (3) by combinations of the two. 

Ciphertexts of legitimate message encryptions can b e obtained as a result of diferent attack scenarios, 

such a s c hosen-plaintext attacks (CPA) or ciphertext-only attacks (CoA). 

All attacks considered in this paper are characterized by qe 

message encryptions by (EFK o g), whose 

plaintext input may m a y not be chosen by, o r k n o wn, to an adversary, and qv 

forgery verifcations; i.e., 

DFKdecryptions by ( o g ) performed by a n a d v ersary. The encryptions and decryption total Me 

+ Mv 

bits, 

and take time te 

+ tv. Note that parameters qe; M e; t e 

can be bound by the parameters defning the chosen-
plaintext security of I = (E,D,KG) mode in some well-defned sense. (One, but not the only, w ay to defne 

these bounds is to use the notion of security in the left-or-right sense for adaptive c hosen-plaintext attacks 

[2]). In contrast, parameters qe; M e; t e; q v; M v 

; t v 

are bound by the parameters of the function family F and 

by the desired probability o f adversary's success. Note that qv 

> 0 since the adversary must b e allowed 

verifcation queries. Otherwise, the adversary cannot test whether his forgeries are correct, since he does 

not know key K. For the purposes of this paper, it is sufcient that qv 

= 1 ; for other purposes, such as 

determining the attack complexity and general bounds, qv 

may take on other values. 

3 Message Integrity Notions 

3.1 Goals 

We defne new integrity goals and interpret extant ones, in the context of I o g modes of encryption. 

However, it should be clear that the same goals can be defned in the context of other modes that aim at 

protecting the integrity (authenticity) of encrypted message, such as those that compute the keyed MAC 

of a message using a secret key and encrypting the message with a separate secret key [19, 7]. 

The strongest known goal for message integrity is that of protection against existential forgery {EF}. This 

goal has also been known as existential unforgeability [15] and integrity of ciphertext [7]. To defeat this 

goal, an adversary only needs to fnd a "valid" forgery. Knowledge or choice of the plaintext outcome of 

the forgery is unnecessary to achieve this goal. Formally, an encryption scheme or mode I o g is secure 

against existential-forgeries if, for any forgery y, 

Pr [(DFK o g )(y) 6= N ull ] � E; 

where E is a negligible quantity. Throughout this paper, negligibility is used in the traditional sense [2, 20]. 

In addition to protection against EF goal, two other goals have been defned that have direct applicability 

to message integrity, namely maintenance of plaintext integrity {PI} [7] and assurance non-malleability 

{NM} [10, 4, 15, 7]. 

The goal of plaintext integrity (PI) requires it b e infeasible for an adversary to create a "valid" forgery 

whose decryption is a plaintext not seen before. Formally, an encryption scheme or mode I o g is secure 

in the sense of PI if: 

Pr [(DFK o g )(y) = N ull and (DFK o g )(y) = x 6 ; 8i; 1 � i � qe] � E;6 = x 

i
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where xi; 1 i qe, are plaintext strings used in encryption and E is a negligible quantity. 

The goal of non-malleability (NM) formalizes the adversary's inability t o create "valid" forgeries that are 

"meaningfully related" to the unknown plaintext strings corresponding to challenge ciphertext messages. 

Our interpretation of non-malleability is as follows. Let q2 

be the numb e r o f c hallenge ciphertexts of equal 

length intercepted by a n a d v ersary (i.e., the q2 

plaintexts of the intercepted ciphertexts remain unknown to 

the adversary). Formally, w e s a y that an encryption scheme I o g is non-malleable (NM) if, for any message 

1 q2 

1 q2length m and challenge ciphertexts y ;   ; y  of unknown plaintext messages x ;   ; x  2 f 0; 1gm, and 

for any forgery y 6 i i q2 

and any relationship R,= y ; 1 

Pr [(DFK o g )(y) =6 N ull and R(x 

1;   ; x  

q2 ; (DFK o g )(y))] E; 

where E is a negligible quantity. 

We defne two additional integrity goals for valid forgeries, namely protection against chosen-plaintext 

forgery (CPF), and assurance of plaintext-uncertainty {PU}. The rationale for these goals can be summa-
rized as follows. Since diferent plaintext outcomes of a valid forgery can restrict an adversary's ability t o 

take advantage of forgery to diferent degrees, it is sensible to examine a variety of constraints placed on 

these outcomes [12]. Such constraints, which w ere used to defne the NM and PI goals above, can lead to 

new integrity goals and notions, further refning the integrity design space. 

The goal of chosen-plaintext forgery (CPF) formalizes the adversary's inability to create a "valid" forgery 

whose plaintext outcome is an a priori "chosen" challenge for the adversary. In our model, the challenge 

plaintext string is considered to b e "chosen," if every block of the string has a specifc value determined 

prior to the attack. Hence, a plaintext string x is not chosen if there is at least a block xi 

such that given a 

specifc constant a, Pr [xi 

= a] E, where E is a negligible quantity. Formally, an encryption scheme I o g 

is secure against chosen-plaintext forgeries if, for an a priori chosen challenge x and any forgery y, 

Pr [(DFK o g )(y) = N ull and (DFK o g )(y) = x 6 i; 8i; 1 i qe; is chosen ] E;6 = x 

where xi; 1 i qe, are plaintext strings used in encryption and E is a negligible quantity. 

The goal of plaintext uncertainty (PU) formalizes the adversary's inability t o create a "valid" forgery for 

which the adversary "knows" the underlying plaintext. In our model, a plaintext string x is unknown if 

there is at least a block xi 

such that for any chosen constant a, Pr [xi 

= a] E, where E is a negligible 

quantity. A plaintext string x is "known" if every block of the string is known. Formally, 

(DFK 

iPr [(DFK o g )(y) = N ull � o g )(y) = x 6 ; 8i; 1 i qe; is unknown ] � ,;6 = x 

where xi; 1 i qe, are plaintext strings used in encryption and 1 , , is a negligible quantity. 

However, if one takes the view that any constraint placed on valid forgeries can be a legitimate integrity goal 

then, among the additional distinct goals made possible, some may b e counterintuitive from an integrity 

point of view. For example, the goal of known-plaintext forgery (KPF) formalizes the adversary's inability 

to create a " v alid" forgery without "knowing" the underlying plaintext.2 Formally, an encryption scheme 

I o g is secure against know-plaintext forgeries if, for any forgery y, 

Pr [(DFK o g )(y) =6 N ull � (DFK o g )(y) = x is known ] � ,; 

where 1,, is a negligible quantity. Security notions using this goal can be related to other integrity notions 

(e.g., PI-CPA "dominates" KPF-CPA and KPF-CPA is incomparable or separated from other notions, as 

2 This goal is somewhat similar to the goal of "plaintext awareness" [1, 4], except that it is independent of the random-oracle 

model. 
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shown in Section 4.4 below). Yet, this goal seems to lack an intuitive justifcation for possible integrity 

relevance. 

Note that if other constraints of "known unknown" and "chosen not chosen" plaintext outcomes for valid 

forgeries that difer from the ones above are defned, other integrity goals may b e obtained. Regard-
less of the defnition chosen, the implication (x = is chosen ) (x = is known ), and equivalently, 

(x = is unknown ) (x = is not chosen), must hold. 

3.2 Goal - Attack Combinations 

The frst attack model considered here is the chosen-plaintext attack {CPA}. I n a C P A, an adversary can 

obtain samples of valid encryptions for plaintext messages of his choice even though the secret encryption 

key remains unknown to the adversary. In this paper, we assume that the adversary obtains the ciphertext 

for all his chosen plaintext before submitting any of his forgeries for verifcation (decryption).3 . This does 

not represent a restriction of the adversary's p o wer, since it can be shown that the advantage of such a n 

adversary in breaking the integrity o f a s c heme is at least as high as that of an adversary that is allowed to 

intersperse encryptions of chosen plaintext with forgery verifcations [13, 15]. Although CPAs might appear 

to b e mostly of theoretical interest, they are actually quite practical [23, 24]. In fact, these are some of 

the oldest known attacks in modern cryptography (viz., the "gardening" attacks of British cryptographers 

during WWII [14]). 

In addition to CPA models, we consider ciphertext-only attack {CoA} models; i.e., attacks in which the 

adversary knows the ciphertext corresponding to plaintext strings encrypted with an unknown key, but 

does not know the plaintexts strings; i.e., the plaintext strings are random, uniformly distributed and 

independent of each other. (More general defnition for CoA whereby the distribution of the plaintext 

strings is known is also possible.) In this type of attacks, the adversary can make up his forgeries based 

on ciphertext of valid but unknown plaintext. These attacks can be mounted very easily in practice since 

they imply that the adversary only needs to eavesdrop on communication b e t ween legitimate parties to 

obtain the desired ciphertext, which i s i n tuitively easier than obtaining encryptions of chosen plaintext. A 

stronger attack than CoA but weaker than CPA i s t h e known-plaintext attack {KPA}. In this attack model, 

the adversary is assumed to "know" the entire message plaintext not just its corresponding ciphertext, but 

cannot choose the plaintext. 

Other types of attack models may b e used for specifc problems that include both secrecy and integrity 

goals; e.g., chosen-ciphertext attacks (CCAs), which often appear in entity authentication and key ex-
change protocols. Bellare et al. [4] use these attack models in establishing relationships among diferent 

security notions in asymmetric encryption, and suggest that these relationships among their goal-attack 

combinations also hold for the symmetric case. Katz and Yung [15] illustrate conditions under which such 

relationships hold in symmetric encryption. In this paper, we do not address these types of goal-attack 

combinations. However, we suggest that most goals that are combined with CCAs can b e represented 

within the integrity lattice defned in this paper. From an integrity point of view, such attacks are not 

stronger than CPAs. 

For most goals and attacks, the combination an integrity goal with an attack is straight forward. However, 

some combinations require care to ensure that specifc goals and attacks can b e paired. For instance, a 

question may arise as to whether a goal is or is not satisfed at the end of an attack. More specifcally, 

3 In this attack, the adversary can be given an oracle that performs all the qe 

encryption queries before all the qv 

forgery 

verifcation queries. Alternatively, the adversary can be given an encryption-only oracle whose use preceds that of a forgery-
verifcation oracle, the order of use being enforced by a state variable 
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how can an adversary determine whether he actually "knows" the plaintext outcome of his valid forgery 

? In practice, it is sometimes the case that the plaintext outcome is not, or cannot b e , returned to the 

adversary. In such cases, we need to add a "plaintext-outcome extractor" to the defnition of the goal-
attack combination that plays much the same role as the "plaintext extractor" in the plaintext-awareness 

defnition. Practical examples of plaintext-outcome extractors are available for specifc integrity goals 

defned for I o g schemes and attacks. For instance, the plaintext outcome extractors for the KPF goal 

defned for the example schemes of Section 5.3 and CPAs, can b e easily derived using the equations of 

"message splicing and decomposition" invariant of CBC [23] and PCBC modes and simple properties of 

bitwise exclusive-or functions. 

Care must also be exercised in defning goal-attack combinations whenever a specifc goal already includes 

elements of an attack. For instance, in the NM-CPA combination, the defnition of the NM goal already 

includes some elements of a CoA model; i.e., the ciphertext challenges. For the NM-CPA combination, 

we allow the adversary to encrypt q1 

plaintext strings whose ciphertext have the same length as that of 

the challenge ciphertexts. The adversary can issue its encryption queries at any time; e.g., even after he 

has seen the challenge ciphertext strings. Furthermore, we require that q2 

> 0; q 1 

+ q2 

= qe, where qe 

is 

the total numb e r o f queries that can be encrypted by EFK o g, and that forgery y difers from any of the 

ciphertexts obtained as a result of the q1 

chosen-plaintext encryptions. For the NM-CoA combination, we 

simply set q1 

= 0, thereby removing the adversary's ability to encrypt with EFK o g ; i.e., encrypt with the 

same key as that used to generate the q2 

challenge ciphertexts. 

Note that combinations of CPA attacks with challenge ciphertexts, as suggested by the NM-CPA attack 

combination, are fairly common in distributed applications [23]. For example, consider a distributed service 

that uses a shared key for encrypting messages b e t ween two of its components services, S1 and S2. The 

adversary is one of the legitimate clients of the distributed service, and can obtain q1 

ciphertext messages 

corresponding to its own chosen plaintext submitted to S1 by eavesdropping on the communication line 

b e t ween S1 and S2. Similarly, the adversary can obtain the q2 

(challenge) ciphertexts produced by the 

encryption of other clients' plaintexts that remains unknown to the adversary. The distributed service 

changes the shared key after qe 

encryptions performed on behalf of its client, totaling Me 

bits, and taking 

te 

time. 

4 Relationships Among Integrity Notions 

The dominance relation b e t ween integrity notions A and B, denoted by A > B, is defned as follows: 

A > B if A B and B 6� A, where A B means that a scheme (mode) that is secure for notion 

A is also secure for notion B; and B 6� A means that not all schemes that are secure for notion B are 

secure in notion A (i.e., notions B and A are separable). Integrity notions A and B are incomparable if 

A 6� B and B 6� A, and equivalent if A B and B A. These relations have also been used by 

Katz and Yung [15] for diferent security notions in symmetric encryption (i.e., indistinguishability and 

non-malleability in diferent t ypes of attacks). The relations of implication ( ) and separability ( 6� ) w ere 

originally introduced by Bellare et al. for security notions in asymmetric encryption, and used later for 

some integrity notions in symmetric encryption [4, 7]. 

In proving the dominance, incomparability, and separation relations between diferent notions of integrity, 

we use (1) integrity goal defnitions, for the (simple) A B proofs, and (2) specifc I o g modes, to 

provide the necessary counter-examples for B 6� A proofs. 
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EF-CPAEF-CPA PU-CPA CPF-CPA CPF-CoA 
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NM-CPA 

Figure 1: An arrow represents a "dominance" relation (>), and there is a path from A to B if and only if 

A > B. Lack of an arrow and path between two notions indicates incomparable or separated notions. The 

number on an arrow represents the theorem number that establishes this relationship. 

4.1 Dominance 

Theorem 1: EF-ATK > PI-ATK 

Proof 

(1) EF-ATK PI-ATK.
 

An encryption scheme (mode) that is secure against existential forgeries (EFs) in an attack (i.e., CPA o r
 

CoA) is also secure against integrity of plaintexts (PI) forgeries in the same attack.
 

Part (1) of the proof follows immediately from the defnition of EF and PI goals, as shown by Bellare and 

Namprempre [7]. 

(2) PI-ATK 6� EF-ATK.
 

An encryption scheme (mode) that is PI secure in an attack (i.e., CPA or CoA) is not necessarily secure
 

against EF forgeries in the same attack.
 

Part (2) of the proof is based on a counter-example. Let scheme I o g b e an arbitrary EF-ATK secure 

scheme. (Note that such schemes exist [16, 17, 13].) We show that any such scheme can b e transformed 

into a scheme that is PI-ATK secure but not EF-ATK secure. Let us defne the modifed scheme as 

I0 E0 0o g = ( o g;D o g;KG ) that is obtained as follows: 

(E0 o g )(x) = ((E o g )(x))jjy0 

(D0 o g )(yjjy0 

) = (D o g )(y); 

i.e., the encryption is done by appending a random block y0 

to y = (E o g)(x) (y0 

is unrelated to the 

plaintext or the rest of the scheme.) The plaintext is obtained by applying the D o g function to the 

ciphertext remaining after the removal of the random block y0. 

It is clear that the scheme is not EF secure, because once the adversary obtains a ciphertext (E o g )(x)jjy0 

, 

0he generates a forgery in which he replaces the random block y0 

by a diferent block; i.e., y0 = ( E o g )(x)jjy0 

; y 0 

0 =6
y0. This forgery obviously decrypts correctly. Hence, the scheme is not EF secure. 

0Now, to show that the scheme (E0 o g;D o g;K G ) is PI secure, we use the fact the class of all possible 

forgeries can be divided into two complementary classes as follows: 

(a) forgeries of type yjjy0, where y = yi = ( E o g )(xi) (for some index i; 1 i qe) is the E o g encrypted 

part of xi; 1 i qe. These forgeries have the property that y0 

6 yi hence the forgery is not the= 0, 

ciphertext of a previous query. 

(b) forgeries of type yjjy0, where y 6 i = ( E o g )(xi); 8i; 1 i qe.= y

7
 



� �

� �

� � �

�

� � �

�

� � �

� �

�

�

� � � �

   

Any forgery in class (a) decrypts correctly as follows: 

i i(D0 o g )(yjjy0 

) = ( D0 o g )(y 

ijjy0) = ( D o g )(y ) = x : 

Hence, for any forgery from class (a): 

iPr [(D0 o g )(yjjy0 

) 6= N ull and (D0 o g )(y) 6= x ; 8i; 1 i qe] = 0 : 

For any forgery from class (b), we will use the fact that the scheme (E o g;D o g;K G ) is EF secure. Since 

y 6 i; 8i; 1 i qe, then y is a valid forgery for the EF secure scheme (E o g;D o g;KG= y ). Hence, 

iPr [(D0 o g )(yjjy0 

) 6= N ull and (D0 o g )(yjjy0 

) 6= x ; 8i; 1 i qe] 

Pr [(D0 o g )(yjjy0 

) 6= N ull ] = Pr [(D o g )(y) 6= N ull ] E; 

where E is negligible. Hence, for any forgery (either from class (a) or class (b)), 

iPr [(D0 o g )(yjjy0 

) 6= N ull and (D0 o g )(yjjy0 

) 6= x ; 8i; 1 i qe] E; 

0where E is negligible; i.e., the scheme (E0 o g;D o g;K G ) is PI secure. ut 

Theorem 2: EF-CPA > PU-CPA 

Proof 

(1) EF-CPA PU-CPA 

An encryption scheme (mode) that is secure against existential forgeries (EFs) in a CPA is also secure 

against PU forgeries in the same attack. 

Part (1) of the proof follows immediately from goal defnitions. 

Pr [(DFK o g )(y) = N ull o g )(y) = x 6 ; 8i; 1 i qe; is unknown ] 6 (DFK = x 

i

= 1 , Pr [(DFK o g )(y) 6 N ull and (DFK o g )(y) = x = x 

i; for some i; 1 i ; is known ] = qe

1 , Pr [(DFK o g )(y) 6 N ull ]:= 

However, if a scheme is EF secure, then for any forgery y, Pr [(DFK o g)(y) 6 N ull ] 8, where 8 is= 

negligible. Thus, 

Pr [(DFK o g )(y) = N ull o g )(y) = x 6 i; 8i; 1 i qe; is unknown ] 1 , 8 =6 (DFK = x 

def 

,; 

i.e., the scheme is PU-CPA secure. 

(2) PU-CPA 6� EF-CPA 

An encryption scheme (mode) that is secure against plaintext-uncertain (PU) forgeries in an CPA attack 

is not necessarily secure against EF forgeries in the same attack. 

In Part (2) of the proof, we show that there is a scheme that is PU-CPA secure, but is not EF-CPA secure. 

0Let (E o g;D o g;K G ) be an EF-CPA secure scheme. We show that the derived scheme (E0 o g;D o g;K G ), 

EFK 

R l 

def 

where (E0 o g )(x) = ( o g )(w E x)jjr; w = f (r); r  f  0; 1g , w E x = w E x1jjw E x2 

jj w E xn, and 

f = FK 

is a PRF, is PU-CPA, but it is not EF-CPA. 

The derived scheme is clearly not EF-CPA secure. For instance, let the adversary issue an encryption 

query with plaintext x and obtain the corresponding ciphertext string y = (E o g)(w E x)jjr. Then the 

adversary can construct the forgery y0 6 y, where y0 = (E o g)(w E x)jjz where z 6 r. This forgery = = 

0passes the integrity check, and (DFK o g)(y0) 6= N ull . To see this, let w = f (z) 6= w. Then DFK (y0) = 
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w E xjjg(w E x) and, hence, verifes the integrity condition. Furthermore, the plaintext outcome of forgery 

0 0y0 is (D0 o g )(y ) = x = w E w0 E x. Hence, the scheme is not EF-CPA secure. 

We show that the derived scheme is PU-CPA secure. To see this, let y0 be the adversary's forgery after qe 

encryption queries with chosen plaintext input. Write y0 = y~jjz, for some z. Two complementary cases are 

identifed for the values of the forgery prefx y~, namely: 

(a) there exists i; 1 i qe 

: y~ = ( E o g )(xi); 

(b) 8i; 1 i qe 

: y~ 6= ( E o g )(xi). 

In case (a), z 6 i, hence w and wi= r are random, uniformly distributed, and independent (here, we assume 

f 

R 

R). The forgery passes the integrity check since the derived scheme is not EF-CPA secure, and the 

its plaintext outcome is 

ix = ( w E w 

i) E x : 

Hence, any block j; 1 j jxij = jxj, of the plaintext outcome can b e written as xj 

= (w E wi) E xj
i . 

Hence, for any arbitrary constant a 

1iPr [xj 

= a] = Pr [(w E w 

i) E xj 

= a] = 

2l 

because w ; w 

i are random, uniformly distributed, and independent, and xij 

is a known constant (in the 

CPA attack). For f 

R 

F , where F is a (q; t; E) PRF family, w e obtain 

i) E x 

1iPr [xj 

= a] = Pr [(w E w = a] = + E:j 2l 

Hence, for any forgery in case (a), (DFK o g )(y0) 6= N ull and 

0 0 iPr [(D0 o g )(y 

0) = N ull and (D0 o g )(y ) = x 6 ; 8i; 1 i qe; is known ] 6 = x 

10 0 i= Pr [(D0 o g )(y ) = x =6 x ; 8i; 1 i qe; is known ] Pr [xj 

= a] = 

2l 

+ E: 

In case (b), the forgery prefx y~ is itself a forgery for the given secure EF-CPA s c heme (E o g;D o g;K G ), 

and hence: 

0 0 iPr [(D0 o g )(y 6 N ull and (D0 o g )(y ) = x = x ; 8i; 1 i qe; is known ] 

0) = 6

Pr [(D0 o g )(y 

0) = N ull ] = Pr [(DFK o g )(~ 6 N ull ]6 y) = 8; 

where 8 is negligible. Hence, for any forgery, ( )
0) E0 

def 

10 0 iPr [(D0 o g )(y = N ull and (D0 o g )(y ) = x 6 ; 8i; 1 i qe; is known ] = max 

2l 

+ E; 8 ;6 = x 

where E0 is negligible. Or, equivalently, 

1 , E0 

def0 0 iPr [(D0 o g )(y0) = N ull o g )(y ) = x 6 ; 8i; 1 i qe; is unknown ] =6 (D0 = x ,; 

0where 1 , , is a negligible quantity. Hence, the derived scheme (E0 o g;D o g;KG ) is PU-CPA secure. 

Theorem 3: EF-CPA > NM-CPA 

Proof 

(1) EF-ATK NM-ATK
 

An encryption scheme (mode) that is secure against existential forgeries (EFs) in an attack ATK (i.e.,
 

CPA or CoA) is also secure against NM forgeries in the same attack.
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Part (1) of the proof follows immediately from goal defnitions. 

Pr [(DFK o g )(y 

0) 6= N ull and R(x 

1; ; x 

q2 ; (DFK o g )(y 

0))] Pr [(DFK o g )(y) 6= N ull ]: 

However, if a scheme is EF secure, then for any forgery y Pr [(DFK o g )(y) =6 N ull ] E, where E is negligible. 

Thus, 

Pr [(DFK o g )(y 

0) 6= N ull and R(x 

1; ; x 

q2 ; (DFK o g )(y 

0))] E; 

for any forgery y 6 i; 1 i q2, which means that the scheme is NM-CPA secure. = y

(2) NM-CPA 6� EF-CPA 

An encryption scheme (mode) that is non-malleable in a CPA attack (i.e., NM-CPA secure) is not neces-
sarily secure in an EF-CPA attack. 

In Part (2) of the proof, we show that there is a scheme that is NM-CPA secure, but is not EF-CPA secure. 

In Section 5, we show that the scheme BIGE$-nzg is NM-CPA secure (Lemma 6) but not EF-CPA secure 

(Lemma 7). 

Theorem 4: PU-CPA > CPF-CPA 

Proof 

(1) PU-CPA CPF-CPA 

An encryption scheme (mode) that is secure against plaintext-uncertain (PU) forgeries in a CPA is also 

secure against chosen-plaintext forgeries (CPFs) in the same attack. 

Part (1) of the proof follows immediately from goal defnitions. If a scheme is PU-CPA secure, then for 

any forgery y 

Pr [(DFK o g )(y) 6= N ull (DFK o g )(y) = x 6 i; 8i; 1 i qe; is unknown ] ,;= x 

where xi; 1 i qe, are plaintext strings used in encryption and 1 , , is a negligible quantity. However, 

((DFK o g )(y) = x 6 i; 8i; 1 i qe; is chosen ) ((DFK o g )(y) == x x is known): 

Or, equivalently,
 

((DFK o g )(y) = x is unknown ) (DFK o g )(y) = x = xi; for some i; 1 i qe; is not chosen).
 

This implies that
 

((DFK o g )(y) = x 6 ; 8i; 1 i qe= x 

i ; is unknown ) 

((DFK o g )(y) = x = x 

i; for some i; 1 i qe; is not chosen): 

Hence, 

, Pr [((DFK o g )(y) 6 N ull ) ((DFK o g )(y) = x 6 i; 8i; 1 i qe; is unknown) = = x
 

and
 

((DFK o g )(y) = x 6 ; 8i; 1 i qe


= x 

i ; is unknown ) 

((DFK o g )(y) = x = x 

i; for some i i; 1 i qe; is not chosen)] 

Pr [((DFK o g )(y) 6= N ull ) ((DFK o g )(y) = x = x 

i; for some i i; 1 i qe; is not chosen)] 

or, equivalently, 

, 1 , Pr [(DFK o g )(y) = N ull and (DFK o g )(y) = x 6 i; 8i; 1 i qe; is chosen ] 6 = x 
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or, 

def 

Pr [(DFK o g )(y) = N ull and (DFK o g )(y) = x 6 i; 8i; 1 i qe; is chosen ] 1 , , = E;6 = x 

which means that the scheme is CPF-CPA secure. 

(2) CPF-CPA 6� PU-CPA 

An encryption scheme (mode) that is secure against chosen-plaintext forgeries (CPFs) in a CPA attack i s 

not necessarily secure against PU forgeries in the same attack. 

Part (2) of the proof follows immediately from Lemmas 4 and 5, Section 5. That is, the scheme IGE$-z0 

is CPF-CPA secure (Lemma 5) and is not PU-CPA secure (Lemma 4). 

Theorem 5: PI-CPA > CPF-CPA 

Proof 

(1) PI-ATK CPF-ATK 

An encryption scheme (mode) that is secure against plaintext-integrity (PI) forgeries in an attack ATK 

(i.e., CPA or CoA) is also secure against chosen-plaintext forgeries (CPFs) in the same attack. 

Part (1) of the proof follows immediately from goal defnitions. For any forgery y, 

Pr [(DFK o g )(y) = N ull and (DFK o g )(y) = x 6 ; 8i; 1 i qe; is chosen ] 6 = x 

i

Pr [(DFK o g )(y) = N ull and (DFK o g )(y) = x 6 ; 8i; 1 i qe] E;6 = x 

i

since the scheme supposed to be PI-ATK secure. 

(2) CPF-CPA 6� PI-CPA 

An encryption scheme (mode) that is secure against chosen-plaintext forgeries (CPFs) in a CPA attack i s 

not necessarily secure against PI forgeries in the same attack. 

Part (2) of the proof follows immediately from Lemmas 4 and 5, Section 5. That is, the scheme IGE$-z0 

is CPF-CPA secure (Lemma 5) and is not PI-CPA secure (Lemma 4). 

Theorem 6: NM-CPA > CPF-CPA 

Proof 

(1) NM-CPA CPF-CPA 

An encryption scheme (mode) that is non-malleable (NM) in a CPA is also secure against chosen-plaintext 

forgeries (CPFs) in the same attack. 

Part (1) of the proof follows immediately from goal defnitions. For any message length m and challenge 

1 q2 

1 q2 

iciphertexts y ; ; y of unknown plaintext messages x ; ; x 2 f 0; 1gm, and for any forgery y 6= y ; 1 

i q2 

and any relationship R, 

Pr [(DFK o g )(y) 6= N ull and R(x 

1; ; x 

q2 ; (DFK o g )(y))] E; 

where E is a negligible quantity. Hence, by defnition, 

def 

Pr [(DFK o g )(y) 6= N ull R(x 

1; ; x 

q2 ; (DFK o g )(y)) does not exist] 1 , E = ,: 

However, 

((DFK o g )(y) = x 6 i; 8i; 1 i q1; is chosen) (R(x 

1; ; x o g= x 

q2 ; (DFK )(y)) exists); 
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is true, since the plaintext challenge in a successful CPF-CPA attack could always be x = 111 1 (i.e., a 

def 

block of 1's), which means that R = " ". Equivalently, 

(R(x 

1; ; x 

q2 ; (DFK o g )(y)) does not exist) ((DFK o g )(y) = x = x 

i for some i; 1 i q1; is not chosen): 

Hence, 

Pr [((DFK o g )(y) 6= N ull ) ((DFK o g )(y) = x = x 

i for some i; 1 i q1; is not chosen)] 

Pr [((DFK o g )(y) 6= N ull ) (R(x 

1; ; x 

q2 ; (DFK o g )(y)) does not exist) 

and (R(x 

1; ; x 

q2 ; (DFK o g )(y)) does not exist) 

((DFK o g )(y) = x = x 

i for some i; 1 i q1; is not chosen)] 

,: 

This means that 

Pr [(DFK o g )(y) = N ull and (DFK o g )(y) = x 6 i; 8i; 1 i q1; is chosen] E;6 = x 

which means that the scheme is CPF-CPA secure. 

(2) CPF-CPA 6� NM-CPA 

An encryption scheme (mode) that is secure against chosen-plaintext forgeries (CPFs) in a CPA attack i s 

not necessarily non-malleable in the same attack. 

Part (2) of the proof follows immediately from Lemmas 4 and 5, Section 5. That is, the scheme IGE$-z0 

is CPF-CPA secure (Lemma 5) and is not NM-CPA secure (Lemma 4). 

4.2 Incomparability and Separability 

Theorem 7: PU-CPA and PI-CPA are Incomparable 

Proof 

(1) PU-CPA 6� PI-CPA 

An encryption scheme (mode) that is PU secure in a CPA attack is not necessarily secure against PI 

forgeries in the same attack. 

0For Part (1) of the proof, we c hoose the same scheme as in the proof of Theorem 2, namely, ( E0 o g;D o g;K G ), 

R def 

where (E0 o g )(x) = ( EFK o g )(w E x)jjr; w = f (r); r f 0; 1gl , w E x = w E x1jjw E x2 

jj w E xn, and 

f = FK 

. We showed in the proof of Theorem 2 that this scheme is PU-CPA secure. Here, we show that 

this scheme is not PI-CPA secure. 

0 iLet us choose the forgery y = yjjr = ( E o g)(xi)jjr, where x ; 1 i qe 

is an old plaintext string. The 

underlying plaintext for this forgery (which decrypts correctly) is 

0 ix = ( w E w 

i) E x : 

Hence, for f 

R 

R and for any old plaintext string p; 1 p qe 

and for any block index j; 1 j 

min(jx0j; jxpj) 

10 

p i pPr [x = x ] = Pr [(w E w 

i) E x = x ] = 

2l 

;j j 

j j 
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since w ; w 

i are random, uniformly distributed, and independent. For f F , where F is a (q; t; E) PRF 

family, 

1 

Pr [x 

0 = xp] = + E:j j 2l 

Hence, (D0 o g )(y 6 N ull , but 

0) = 

10 p 0 

pPr [(D0 o g )(y ) = x ; for some i; 1 p qe] Pr [xj 

= xj 

]
2l 

+ E: 

Hence, 

0 0 iPr [(D0 o g )(y 6 N ull and (D0 o g )(y ) = x = x ; 8i; 1 i qe]
0) = 6

0 0 i= Pr [(D0 o g )(y ) = x 6= x ; 8i; 1 i qe] 

0 i= 1 , Pr [(D0 o g )(y ) = x ; for some i; 1 i qe] 1 , 

1 

, E;
2l 

and hence, it cannot be negligible. 

(2) PI-ATK 6� PU-ATK 

An encryption scheme (mode) that is PI secure in an attack (i.e., CPA or CoA) is not necessarily secure 

against PU forgeries in the same attack. 

0For Part (2) of the proof, we construct the encryption scheme (E0 o g;D o g;K G ) from the EF secure 

encryption scheme (E o g;D o g;K G ) in the same way as in the proof of Theorem 1. The encryption 

0scheme (E0 o g;D o g;K G ) i s t h us PI secure. We show that this scheme is not PU secure. Let us construct 

0 0 0a forgery in the same way, namely y = ( E o g )(x)jjy0 

; y 0 

6= y0, where x is a plaintext used at encryption. 

0This forgery obviously decrypts correctly; i.e., (D0 o g )(y ) = x is known, hence, 

0Pr [(D0 o g )(y 

0) 6 N ull and (D0 o g )(y ) = x 

0 is known ] = 1:= 

Hence, the scheme is not PU secure. ut 

Theorem 8: NM-CPA is separable from PI-CPA, PU-CPA, and KPF-CPA 

Proof 

In Section 5, we show that scheme BIGE$-nzg is NM-CPA secure (Lemma 6), but not PI-CPA and KPF-
CPA secure (Lemma 7). Hence, NM-CPA 6� PI-CPA and NM-CPA 6� KPF-CPA. 

When implemented with the CBC mode and used to encrypt messages consisting of an integer numb e r o f 

l-bit blocks (possibly after padding), the Variable Input Length (VIL) cipher of Bellare and Rogaway [ 5 , 6 ] 

can be shown generate at least a random block in the plaintext outcome of any forgery produced in a CPA 

[11]. Hence, the composition of this scheme with the MDC function nzg(x) defned for the BIGE$-nzg 

scheme (viz., Section 5), namely VIL-CBC-nzg, is a PU-CPA secure scheme. However, this scheme is not 

NM-CPA secure for the same reasons the scheme IGE$-z0 

is not NM-CPA secure (viz., end of the Proof 

of Lemma 4). Hence, PU-CPA 6� NM-CPA. 

4.3 Extensions of the CPA Lattice 

Theorems 1 - 8 show that the integrity goals defned in Section 3 form a lattice for chosen-plaintext attacks. 

In this section we show that, if we also consider ciphertext-only attacks, the top of the lattice remains EF-
CPA, but CPF-CoA becomes the new bottom of the lattice. 
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Theorem 9: EF-CPA > EF-CoA 

Proof 

(1) EF-CPA EF-CoA An encryption scheme (mode) that is EF-CPA secure is also secure against EF-
CoA attacks. 

Part (1) of the proof follows directly from the following observation. 

Observation:
 

An encryption scheme (mode) that is secure with respect to a given goal (i.e., EF, PI, PU, PA, NM, CPA)
 

in an CPA attack is also secure with respect to the same goal in a CoA attack.
 

This is true because an adversary that breaks integrity with respect to a goal in a CoA attack will break 

security i n a C P A attack, since the adversary can obviously ignore the plaintext and use only the ciphertext 

obtained. 

(2) EF-CoA 6� EF-CPA An encryption scheme (mode) that is EF-CoA secure is not necessarily secure 

against EF-CPA attacks. 

Part (2) of the proof follows directly from Lemmas 2 and 4, Section 5. That is scheme IGE$-z0 

is EF-CoA 

secure (Lemma 2) and is not EF-CPA secure (Lemma 4). 

Theorem 10: CPF-CPA > CPF-CoA 

Proof 

(1) CPF-CPA CPF-CoA An encryption scheme (mode) that is CPF-CPA secure is also secure against 

CPF-CoA attacks. 

Part (1) of the proof follows directly from the the observation of the Proof in Theorem 9. 

(2) CPF-CoA 6� CPF-CPA An encryption scheme (mode) that is CPF-CoA secure is not necessarily secure 

against CPF-CPA attacks. 

Part (2) of the proof is based on a counter-example. Let scheme I o g be consist of I = XOR$ [2], and 

g(x) = fper-block, bitwise exclusive-org. It is easy to see that this scheme is CPF-CoA secure since any 

modifcation of the ciphertext that causes the bitwise exclusive-or check to pass remains unknown to (and 

therefore cannot be a priori predicted by) the adversary. In contrast, if the adversary can encrypt plaintext 

of his choice, he can (1) encrypt a plaintext message that difers from the challenge plaintext by a single 

bit, and (2) simply fip the appropriate bit of the ciphertext obtained. 

4.4 Other Relationships 

Theorem 11: PI-CPA > KPF-CPA 

Proof 

(1) PI-CPA KPF-CPA
 

An encryption scheme (mode) that is PI-CPA secure is also KPF-CPA secure.
 

Part (1) of the proof follows immediately from goal defnitions. I f a s c heme that is PI secure, then for any 

forgery y 

Pr [(DFK o g )(y) = N ull and (DFK o g )(y) = x 6 ; 8i; 1 i qe] E;6 = x 

i

where xi; 1 i qe 

are the plaintext strings used for the encryption queries and E is a negligible quantity. 
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Equivalently, 

(DFK 

i1 , Pr [(DFK o g )(y) 6 Null o g )(y) = x = x ; for some i; 1 i qe] E;= 

or, 

def 

(DFK 

iPr [(DFK o g )(y) 6= N ull o g )(y) = x = x ; for some i; 1 i qe] 1 , E = ,: 

However, ((DFK o g )(y) = x = xi; for some i; 1 i qe) ((DFK o g )(y) = x is known ). Hence, 

, Pr [((DFK o g )(y) 6 N ull (DFK o g )(y) = x = x 

i for some i; 1 i )= qe
i (DFKand ((DFK o g )(y) = x = x for some i; 1 i qe) o g )(y) = x is known )] 

Pr [(DFK o g )(y) =6 N ull (DFK o g )(y) = x is known ]; 

which means that the scheme is KPF-CPA secure. ut 

(2) KPF-CPA 6� PI-CPA
 

An encryption scheme (mode) that is KPF-CPA secure is not necessarily secure against PI-CPA attacks.
 

Part (2) of the proof follows immediately from the counter-example provided by Lemmas 3 and 4, Section
 

5. That is, scheme IGE$-c is KPF-CPA secure (Lemma 3) but it is not PI-CPA secure (Lemma 4).
 

Theorem 12: KPF-CPA is incomparable with CPF-CPA and with PU-CPA 

Proof 

(1) KPF-CPA 6� CPF-CPA
 

An encryption scheme (mode) that is KPF-CPA secure is not necessarily CPF-CPA secure.
 

Part (1) of the proof follows immediately from the fact that scheme IGE$-c is KPF-CPA secure (Lemma
 

3) but is not CPF-CPA secure in the face of a truncation attack since function g = c placed in the last
 

block of a plaintext is a known constant.
 

(2) CPF-CPA 6� KPF-CPA
 

An encryption scheme (mode) that is CPF-CPA secure is not necessarily KPF-CPA secure.
 

Part (2) of the proof follows immediately from the observation that scheme BIGE$-nzg is CPF-CPA secure, 

as a consequence of Theorem 6, and is not KPF-CPA secure, by Lemma 7, Section 5. 

Note that the scheme BIGE$-nzg also shows that CPF-CoA 6� KPF-CPA.
 

(3) KPF-CPA 6� PU-CPA
 

An encryption scheme (mode) that is KPF-CPA secure is not necessarily PU-CPA secure.
 

Part (3) follows immediately from the same example as in Part (1).
 

(4) PU-CPA 6� KPF-CPA
 

An encryption scheme (mode) that is PU-CPA secure is not necessarily KPF-CPA secure.
 

Part (4) follows immediately from the observation that the VIL-CBC-nzg mode is PU-CPA secure but not
 

KPF-CPA secure, since it generates at least a random block in the plaintext outcome of a forgery in a
 

CPA [11].
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5 Examples of Integrity Characteristics of Practical Encryption Schemes 

5.1 The Infnite Garble Extension Mode 

Most of the proofs of theorems presented in the previous section are based on examples provided by 

Lemmas 1  7  of this section. These lemmas refer to schemes derived from an encryption mode that was 

proposed by Carl Campbell at the frst National Bureau of Standards Conference on Computer Security 

and the Data Encryption Standard, in February 1977 [9]. Campbell called his mode the "Infnite Garble 

Extension" mode and, for this reason, we denote it by IGE below. Although Campbell's mode appears to 

have been proposed about the same time as the CBC mode, its integrity properties have not been explained 

in published literature to date. 

IGE uses the family F of super-pseudorandom permutation functions (SPRPs), which is defned as follows. 

([3], [18]). Let F : f0; 1gk  f  0; 1gl ! f0; 1gl b e a pseudorandom permutation family and f = FK 

be a 

R
permutation randomly chosen by k ey K (i.e., K f 0; 1gk ) and f 

,1 = FK 

,1 its inverse. Let P 

l denote all 

the permutations on f0; 1gl, and A b e a two-oracle adversary. F is a SPRP if the advantage of function 

family F , AdvF
sprp (t; q; M), is 

Advsprp fAdvsprp 

F 

(t; q; M) = max F 

(A)g� E; 

A 

where the maximum is taken over all the adversaries A issuing q enciphering or deciphering queries totaling 

M = ql bits and taking time t, E is a negligible quantity, and the advantage of an adversary A is 

Advsprp ,1 

R ,1 

R
(A) = jPr [A = 1 : f; f F ] , Pr [A = 1 : f; f P 

l]j:F 

IGE is based on the following block c haining sequence: 

yi 

= f (xi 

E yi,1) E xi,1 

for encryption, and 

xi 

= f 

,1(yi 

E xi,1) E yi,1 

for decryption, where f 

R 

F , or f = FK 

. Note that chaining is symmetric in encryption decryption, 

and consequently this mode propagates errors until the end of a message, thereby extending the error 

propagation characteristics of CBC. The initialization phase could b e defned as: r0 

f0; 1gl ; y 0 

= 

f 

0(r0); x 0 

= r0, where f 

0 = FK0 , K and K 0 being two distinct keys. (Other initialization defnitions 

can b e used.) Hence, the encryption and decryption functions for the stateless mode (denoted by IGE$ 

below) are defned by E, IG E $FK (x) and D, IG E $FK (y), as follows: 

function E, IGE$f (x) 

lr0  f 0; 1g
y0 

= f 

0(r0); x0 

= r0 

for i = 1 ; ; n do f 

yi 

= f (xi 

E yi,1) E xi,1 

g 

return y = y0jjy1y2 

yn 

function D, IGE$f (y) 

Parse y as y0jjy1 

yn 

= f 

0,1(y0);r0 

x0 

= r0 

for i = 1 ; ; n do f 

xi 

= f 

,1(yi 

E xi,1) E yi,1 

g 

return x = x1x2 

xn 

A stateful IGE mode can be defned in a similar manner to that used for the XCBC stateful mode. 

[Note that IGE$ is based on the CBC mode in the sense that its output block i is exclusive-ored plaintext 

block i , 1. Hence, the IGE$ scheme is secure in the real-or-random (or left or right) sense against adaptive 

chosen plaintext attacks and the proof is very similar to that of Bellare et al. [2].] 

16
 



 

      

   
   

 

� � � �

      

�

 

 

 

  

�

�

Let us introduce the scheme I o g = IGE$-z0 

= (E, IG E $ o z0; D, IG E $ o z0;K G ) by using function 

g(x) = z0 

= f 

0(r0 

+1) to defne y = E o z 0 

= EFK (xjjz0)). Hence, the scheme IGE$-z0 

encrypts any plaintext 

x = x1 

xn 

by appending block xn+1 

= z0 

to plaintext x, and then encrypting string x1 

xnxn+1. 

Let us introduce the scheme I0 o g = IGE$-c = (E, IG E $ o c; D, IG E $ o c;KG) by using function 

g(x) = c, where c is a known constant, to defne y = E o c = EFK (xjjc)). Hence, the scheme IGE$-c 

encrypts any plaintext x = x1 

xn 

by appending block xn+1 

= c to plaintext x, and then encrypting 

string x1 

xnxn+1. 

The integrity properties of schemes IGE$-z0 

and IGE$-c are formalized in Lemmas 1 5 (whose proofs 

can be found in the appendix). 

To state Lemma 1 [Main IGE Lemma], we need to introduce two sets, namely 

p pSe = fyk E xk,1; 1 p qe; 1 k npg; 

which consists of all inputs to f 

,1 that can be made up by taking the exclusive-or of every plaintext block 

p p pp p p pof the qe 

strings x = x x with every block of the qe 

ciphertext strings y = y y obtained at 1 

n 0 

y1 

n 

encryption; and set 

R 

Sd 

j 

= fys E xs,1; 1 s j g; 

which consists of all the combinations ys E xs,1 

of forgery y plaintext and ciphertext blocks used at the 

decryption of y up to (but not including) position j. 

R
For any f P 

l and Se, we defne the fnite family of random functions GS 

: f0; 1gk  f 0; 1gl ! f 0; 1gl 

whose members are f ; f , with f defned as:  
f 

,1(t); t 2 Se 

f = ;
l 

R 

Rl;lv(t); t 2 f 0; 1g , Se; v 

Rl l lwhere Rl; is the set of all functions from f0; 1g to f0; 1g . We denote by f GS 

the random selection of 

f and f from GS. 

The family of functions GS 

behaves exactly like P 

l when the plaintext blocks input to f and ciphertext 

blocks input to f 

,1 are those generated during the encryption of any adversary's qe 

chosen-plaintext 

queries, and behaves exactly like Rl;l  during the decryption of any ciphertext block not in Se . 

Note that the family GS 

is well-defned for any message-integrity attack because, by defnition (viz., Section 

3.2), in any such attack, all qe 

encryption queries precede the forgery verifcation queries. (Also note that 

we allow qe 

= 0 and, in this case, Se = ; and f = v.) 

For Lemmas 1-7 we defne Succ the event that the forgery is successful for the chosen goal-attack combi-
nation. Then in the proofs of these Lemmas, we use the result of Fact 0 below (whose proof can be found 

elsewhere [13]) that provides the reduction from f 

R 

F to f 

R 

GS. 

Fact 0 

(a) 

+P l 

P
 [Succ] E + P [Succ]:r rR 

f+F f 

R 

(b) 

Mv(Mv , l) 

+P l 

P
 [Succ] P [Succ] + :
r r R

l22l+1f f+GS 
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where 

�
l 

v is the total number of ciphertext blocks used in all verifed forgeries. Unless we state otherwise, 

R
assume that f GS 

(and drop this subscript from P [Succ].)r 

f 

R 

+GS 

Let i denote the position of the frst ciphertext block in the forgery y = y0y1 

yn 

such that yi 

E xi,1 

does 

not collide with any of the yp E xp values generated during the encryption of the qe 

queries. Formally, ik k,1 

is the index of the frst block such that yi 

E xi,1 

2¢ Se and Si
d � Se . 

Lemma 1 [Main IGE Lemma] 

Let y = y0y1 

yn 

be a forged ciphertext and x = x0x1 

xn 

be its decryption by the function D, IGE$f (y). 

Let a be an arbitrary constant v alue. 

(a) If y0 

6 0 

p; 8p; 1 p qe, then = y

nMe 

n2 

P
 [xn 

= a] +
r R

2l+1l2lf+GS 

E0 

def 

nMe 

n(2n , 1) 

= +P
 [xn 

= a] ;
r 

+P 

l 

where qe 

is the maximum number of encryption queries, totaling at most Me 

bits. 

(b) If i; 1 i n, is the frst block for which yi 

E xi,1 

2¢ Se, then 

nMe 

n2 

R

2l+1l2lf 

P
 [xn 

= a] +
r R

2l+1l2lf+GS 

E0 

def 

nMe 

n(2n , 1) 

= +P
 [xn 

= a] ;
r 

+P 

l
R 

where the total number of bits for the qe 

encryption queries is at most Me. 

One can also show that the conclusions of Main IGE$ Lemma remain valid if the constant a is replaced with 

the random, uniformly distributed, and independent z0 

= f 

0(r0 

+ 1). This is formalized in the following 

corollary. 

Corollary 

Let y = y0y1 

yn 

be a forged ciphertext and x = x0x1 

xn 

be its decryption by the function D , IGE$f (y). 

(a) If y0 

6= yp 

0 

; 8p; 1 p qe, then 

nMe 

n2 

2l+1l2lf 

P
 [xn 

= z0] +
r R

2l+1l2lf+GS 

E0 

def 

nMe 

n(2n , 1) 

= +P
 [xn 

= z0] ;
r R 

+P 

l 

where where the total number of bits for the qe 

encryption queries is at most Me 

bits. 

(b) If i; 1 i n, is the frst block for which yi 

E xi,1 

2¢ Se, then 

nMe 

n2 

2l+1l2lf 

P
 [xn 

= z0] +
r R

2l+1l2lf+GS 

E0 

def 

nMe 

n(2n , 1) 

= +P
 r [xn 

= z0] ;


2l+1l2lf 

R 

+P 

l 

where qe 

is the maximum number of encryption queries, totaling at most Me 

bits. 
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Lemma 2. The scheme IGE$-z0 

is EF-CoA secure. 

Lemma 3. The scheme IGE$-c is KPF-CPA secure. 

Lemma 4. The schemes IGE$-z0 

and IGE$-c are not EF-CPA, PU-CPA, PI-CPA, and NM-CPA secure. 

Lemma 5. The scheme IGE$-z0 

is CPF-CPA secure. 

5.2 The Bidirectional Infnite Garble Extension Mode 

In this section, we defne a variant of the IGE modes that is intended to illustrate, among other things, the 

separation between NM-CPA and several other integrity notions such as EF, PI, and PA i n c hosen-plaintext 

attacks. 

The bidirectional IGE (BIGE) scheme consists of the application of the IGE scheme to the input plaintext 

to obtain an intermediate "hidden" ciphertext, followed by the application of the IGE chaining to the 

hidden ciphertext in opposite direction to obtain the ciphertext that is output to the user. This general 

description allows for several actual variants of the bidirectional IGE scheme, namely the stateless or 

stateful schemes, or schemes that use diferent keys per pass in each direction. In our example here, the 

scheme that uses three keys, one p e r pass in one direction, and one for we have the initialization phase. 

That is, during initialization we set: r0 

f0; 1gl; y 0 

= f 

0(r0); x 0 

= r0, where f 

0 = FK0 , K and K 0 are 

the two distinct keys, and F is the SPRP family. Then, the frst pass generates the hidden ciphertext as 

zi 

= f (xi 

E zi,1) E xi,1; 1 i n = jxj. The second pass consists of y0 

= f 

0(zn), where f 

0 = FK0 , and 

yi 

= f 

00(zn,i 

E yi,1) E zn,i+1; 1 i n, where f 

00 = FK00 , K;K  

0 and K 00 are distinct keys. 

In the BIGE$ scheme defned below, the actual encryption and decryption functions for the stateless 

$FK 

;F 

0 ;F 

00 

bidirectional IGE scheme that uses two k eys, one for each pass, are defned by E, B IG E 

K K (x) and 

$FK 

;F 

0 ;F 

00 

D, B IG E 

K K (y), as follows: 

f ;f 

0;f 00 

function E, BIGE$ (x) 

lr0  f 0; 1g
z0 

= f 

0(r0); x0 

= r0 

for i = 1 ; ; n do f 

zi 

= f (xi 

E zi,1) E xi,1 

g 

y0 

= f 

0(zn) 

for i = 1 ; ; n do f 

yi 

= f 

00(zn,i 

E yi,1) E zn,i+1 

g 

return y = y0jjy1y2 

yn 

f ;f 

0 ;f 00 

function D, BIGE$ (y) 

Parse y as y0jjy1 

yn 

= f 

0,1(y0);zn 

for i = 1 ; ; n do f 

= f 

00,1(yi 

Ezn,i+1)Eyi,1zn,i 

g 

= f 

0,1(z0 

);r0 

x0 

= r0 

for i = 1 ; ; n do f 

xi 

= f 

,1(zi 

E xi,1) E zi,1 

g 

return x = x1x2 

xn 

Let us introduce the scheme I o g = BIGE$-nzg = (E, B IG E $ o nzg; D, B IG E $ o nzg;KG) by using 

R l EFK 

;F 

0 ;F 

00 

function g(x) = nzg(x) = r f 0; 1g ; r =6 0 to defne y = E o g = 

K K (xjjg)). Hence, the scheme 

BIGE$-nzg encrypts any plaintext x = x1 

xn 

by appending block xn+1 

= r to plaintext x, and then 

encrypting string x1 

xnxn+1. The integrity c heck performed upon the decryption of a forgery y0 is simply 

0x =6 0.n+1 
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The intuition behind the BIGE$ scheme is as follows. Any modifcation of ciphertext would cause a 

modifcation of the hidden ciphertext, which acts as the input to the second pass of encryption. The 

resulting hidden ciphertext's modifcation is unpredictable and propagates from the block position where 

it occurs until the block z0 

of the hidden ciphertext. The propagation cannot be stopped by the adversary 

with more than negligible probability, since the adversary does know the values of the hidden ciphertext 

input to the second pass of encryption with non-negligible probability. (To stop the propagation of any 

modifcation to ciphertext output to the user, the adversary would have to know both the input and the 

output to second encryption pass, as illustrated by the proof of Lemma 4.) Furthermore, any unpredictable 

modifcation of the hidden ciphertext starting with block z0, ends up propagating throughout the message 

plaintext during the second decryption pass. Hence, the entire plaintext output of BIGE$ will contain 

blocks whose content is unpredictable. 

The integrity properties of the scheme BIGE$-nzg are formalized in the following lemmas (whose the proofs 

can be found in the appendix). 

Lemma 6. The scheme BIGE$-nzg is NM-CPA secure. 

Lemma 7. The scheme BIGE$-nzg is not EF-CPA, PI-CPA and KPF-CPA secure. 

5.3 Other Examples 

Example 1. Let I b e one of the modes fCBC, PCBCg, and function g(x) b e the per-block, bitwise 

exclusive-or function, which we denote by XOR. The schemes I o XOR are CPF-CoA secure, but not 

CPF-CPA secure [19], or secure with respect to any other goals. 

Example 2. Let I be one of the modes fCBC, PCBCg, and function g(x) be the "confounded CRC-32" 

function used by Kerberos V [22] and DCE [21]. The schemes I o XOR are CPF-CPA secure, and not 

secure with respect to any of the other goals CPAs [23]. 

Example 3. The scheme I o g = BIGE$-c = (E, B IG E $ o c; D, B IG E $ o c;KG) by using function 

g(x) = c where c is a constant is EF-CPA secure. (The proof is very similar to the proof of Lemma 6.) 
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A Proofs 

Proof of Lemma 1 [Main IGE Lemma] 

By using Fact 0, we reduce the proof from f 

R 

F to f 

R 

GS. In the proof of this lemma we use the 

notation Pr [:] = Pr R 

[:]. We frst present the part of the proof that is common for both parts (a) and 

f+GS 

(b) of Lemma 1, and then we complete the proof for parts (a) and (b) separately. 

Block xn 

= f(yn E xn,1) E yn,1 

of the decrypted forgery y is random, uniformly distributed, and inde-
pendent o f a n ything else, including value a, whenever f(yn E xn,1) is random, uniformly distributed, and 

independent o f a n ything else. For this to happen, ynE xn,1 

must not collide with any element of either Se 

R 

Rl;lor Sn
d (since, in this case, f(ynE xn,1) = v(ynE xn,1); v and ynE xn,1 

has never been encountered 

before). Let event Cn 

be defned as: 

Cn 

: yn E xn,1 

2 Se u Sn
d: 

In this case, i.e., when there are no collisions, we h a ve 

1 

Pr [xn 

= ajCn] : 

2l 

By standard conditioning, 

1 

Pr [xn 

= a] Pr [Cn] + Pr [xn 

= ajCn] Pr [Cn] + : 

2l 

To determine Pr [Cn], we use standard conditioning again, and obtain 

n,1 X 

Pr [Cn] Pr [Cn,1] + Pr [CnjCn,1] Pr [C1] + Pr [Cj+1jCj]; 

j=1 

where event Cj 

is defned in a similar manner to that of Cn, namely 

Cj 

: yj E xj,1 

2 Se u Sj
d: 

We now determine an upper bound for Pr [Cj+1jCj ]. Event Cj 

is true for 1 j n , 1 means that 

yj 

E xj,1 

does not collide with any element of either Se or Sn
d . In this case, xj 

= f(yj 

E xj,1) E yj,1 

= 

v(yj 

E xj,1) E yj,1 

is random, uniformly distributed and independent of anything else, since yj,1 

is a 

R 

Rl;lconstant, v and yiE xi,1 

has never been encountered before. Hence, since yj+1 

is a chosen constant, 

yj+1 

E xj 

is also random, uniformly distributed, and independent o f a n ything else. This means that 

1p pPr [yj+1 

E xj 

= yk E xk,1jCj] ; 8p; k; 1 p qe; 1 k np;
2l

1 

Pr [yj+1 

E xj 

= ys E xs,1jCj] ; 8s; 1 s j:
2l

But, by standard conditioning and union bound, 

Pr [Cj+1jCj ] = Pr [yj+1 

E xj 

2 Se u Sj
d 

+1jCj ] 

Pr [yj+1 

E xj 

2 SejCj] + Pr [yj+1 

E xj 

2 Sj
d 

+1jCj ] 

qe 

np XX 

p pPr [yj+1 

E xj 

= yk E xk,1jCj ] 

p=1 k=1 

j X 

+	 Pr [yj+1 

E xj 

= ys E xs,1jCj ]: 

s=1 

1
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Thus, 

e 

l 

+ j
Pr [Cj+1jCj] 

2l 

e ebecause there are at most elements in Se (the ciphertext blocks include y0 

p; 1 p qe 

and yp; 1
l l 

k

p qe; 1 k np), and j elements in Sj
d 

+1 

(y1 E x0; ; y 

j E xj,1). 

(a) Since y0 

6 0 

p; 8p; 1 p qe, it follows that r0 

) = v0(y0) is random, uniformly distributed, and 

Now w e consider event C1 

of part (a) of the Lemma separately from event Ci 

of part (b) of the Lemma. 

= y = f 

0(y0
independent o f a n ything else. Here v0 is the corresponding function for f 

0 constructed in the same way a s 

0 R 

Rl;lv, namely, v . Hence x0 

= r0 

is random, uniformly distributed, and independent o f anything else. 

.ejSej2 Se lHence y1 

E x0 

happens with probability a t most = . From here on, we apply the same idea 

2l 2l 

(viz., also part (b) below), namely: 

2 Se
Me 

(n , i)Me 

n2 , i2 

Pr [xn 

= a] Pr [xn 

= ajy1 

E x0 

¢ ] + Pr [y1 

E x0 

2 Se] + + 

2l+1 

nMe 

n2 

l2l l2l 

+ : 

2l+1l2l 

Hence, by F act 0 with 

l 

v = n, 

n(n , 1) nMe 

n2 n(n , 1)
P RR [xn 

= a] P [xn 

= a] + + +
r r 

2l+1 2l+1 2l+1l2l+P 

l +P 

l 

E0 

def 

nMe 

n(2n , 1) 

= = + : 

2l+1l2l 

(b) However, by the Lemma hypothesis, event Cj 

is true for j i and event Ci 

is false. Hence, 

n,1 X 

Pr [Cn] Pr [Ci] + Pr [Cj+1jCj] 

j=i 

n,1 X 

R 

= Pr [Cj+1jCj 

]: 

j=i 

Using the formula for Pr [Cj+1jCj] w e obtain 

n,1 n,1 e X X 

l 

+ j (n , i)Me 

(n , i)(i + n , 1)
Pr [Cn] Pr [Cj+1jCj 

] = + 

2l l2l 2l+1 

j=i j=i 

(n , i)Me 

n2 , i2 

+ : 

2l+1 

Finally, 

1 (n , i)Me 

n2 , i2 1 nMe 

n2 

l2l 

Pr [xn 

= a] Pr [Cn] + + + + : 

2l l2l 2l+1 2l l2l 2l+1 

Hence, by F act 0 with 

l 

v = n, 

E0 

def 

nMe 

n2 n(n , 1) nMe 

n(2n , 1)
Pr [xn 

= a] = + + = + : 

+P 

l 

f f 

f l2l 2l+1 2l+1 l2l 2l+1 

ut 
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Proof of Lemma 2 

We h a ve to show that for the IGE$-z0 

encryption mode, whenever the adversary knows only valid ciphertext 

strings (by the defnition of EF-CoA), any forgery y passes the integrity c heck with negligible probability. 

In CoA, the plaintext strings used for generating the valid ciphertexts the adversary sees are random 

strings. 

The forged ciphertext that the adversary generates can fall into one of the following complementary classes: 

(a) the forgery is a truncation of a known valid ciphertext string; 

(b) the forgery is an extension of a known valid ciphertext string; 

(c) the forgery is neither a truncation nor an extension of a known ciphertext string. 

In case (c), the forged ciphertext y can b e such that either (c1) y0 

= y0 

p for some p; 1 p qe, or (c2)
 

y0 

6= y0 

p; 8p; 1 p qe; in the former case, the forged ciphertext and ciphertext string yi will difer from
 

each other in at least one block yk; 1 k min(ni 

+ 1 ; n + 1). Hence, case (c) can be further divided into
 

two complementary subcases:
 

(c1) the forged ciphertext string has a common prefx with an existent ciphertext;
 

(c2) the forged ciphertext is diferent from any existent ciphertext starting with its frst block ( y0).
 

We summarize these classes of forgeries and defne them formally. The forged ciphertext y belongs to one
 

of the following complementary classes defned as follows:
 

(a) 9i; 1 i qe 

: n n i 

and 8j; 1 j n + 1 : yk 

= yk
i ; i.e., the forged ciphertext is a truncation of 

ciphertext yi; 

(b) 9i; 1 i qe 

: n > ni 

and 8j; 1 j ni 

+ 1 : yk 

= yk
i ; i.e., the forged ciphertext is a extension of 

ciphertext yi; 

(c1) 9i; 1 i qe; 9j; 1 j min(ni 

+ 1 ; n + 1) : 8k; 1 k j : yk 

= yk
i and yj 

6= yj
i ; i.e., the forged 

ciphertext and ciphertext yi have a common prefx; 

(c2) y0 

6 0; 8i; 1 i qe= yi ; i.e., there is no previous ciphertext that has a common prefx with the forged 

ciphertext. 

Now, we show that, for an arbitrary forgery in each of the complementary cases defned above, the probabil-
ity of adversary's success is negligible. We determine upper bounds on P [(
D, IG E $ , z0)(y) =6 N ull ]r R 

+F 

D, IG E $ , z0)(y) =6
f 

and the maximum of these bounds is an upper bound for P 

f 

R 

+F 

[(
 N ull ] for any r 

forgery type. 

By using Fact 0, we h ave 

P 

f 

R 

+F 

[Succ] E + P [Succ];r r 

f 

R 

+P 

l 

where Succ = (xn+1 

= z0). Hence, for the balance of this proof, we use the notation Pr [:] = P [:],
r R 

+P 

l 

unless otherwise specifed. 

Upper bound for forgeries of type {a}. 

In this case, the forgery is a truncation of ciphertext i, and hence, the decrypted plaintext blocks are: 

i i ixk 

= xk; 8k; 0 k n + 1 ni 

+ 1 . Thus, the integrity condition xn+1 

= z0 

becomes x = z andn+1 0 

hence, it happens with probability 1 ¢2l; i.e., 

1 

Pr [xn+1 

= z0] = ;
2l 

f 

since xi is random, uniformly distributed, and independent o f a n ything else, by the defnition of CoAs. n+1 
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Upper bound for forgeries of type {b}. 

In this case, the forgery is a extension of ciphertext i, and hence, the decrypted plaintext blocks are: 

ixk 

= xk; 8k; 0 k ni 

+ 1  n + 1. 

Since n + 1 > ni 

+ 1 , there must exist a ciphertext block yni+2. To compute an upper bound on the 

probability o f successful forgery, we condition on the event of collisions between yni+2 

E xni+1 

with yk
p E 

xpk,1; 8p; k; 1 p qe; 1 k np 

+ 1. Let D b e the event defning the collisions yni+2 

E xni+1 

= 

yk
p E xk

p 

,1; 1 p qe; 1 k np 

+ 1, or using the defnition for set Se , yni+2 

E xni+1 

2 Se; w e obtain 

D : yni+2 

E xni+1 

2 Se: 

By union bound, 

qe 

np+1 X X 

p pPr [D] Pr [yni+2 

E xni+1 

= y E xk,1]:k 

p=1 k=1 

i i iSince event D implies yni+2 

E xni+1 

= yp E xp , and since xni+1 

= x = z0, it follows that yni+2 

E z = k k,1 ni+1 0 

p p p p py E x In this equality, x is random and uniformly distributed because either x = x whenk k,1. k,1 k,1 0 

k,1 = 0 or xpk,1 

is a random block due to the CoA attack when k,1 1. Furthermore, since z0 

i is encrypted 

with key K 0, it follows that xp and z0 

i are independent. Since yni+2 

and yp; 1 p qe; 1 k np 

+ 1k,1 k

are chosen constants, 

1i 

p pPr [yni+2 

E z = y E x ] = :0 k k,1 2l 

p p pThus, since 

e includes all the ciphertext blocks (y ; y 1 

; ; y p qe),l 

0 n+p+1; 1 

Me
Pr [D] : 

l2l 

If D is false, then we can choose ni 

+ 2 as the position of the frst block that does not yield a collision with 

any element i n Se . Furthermore, by the Corollary to Lemma 1 [Main IGE Lemma] with a = z0, w e obtain, 

(n + 1) Me 

(n + 1) 

2 

Pr [xn+1 

= z0 

j D] + : 

2l+1l2l 

Hence, by standard conditioning, 

Pr [xn+1 

= z0] Pr [xn+1 

= z0 

j D] + Pr [D] 

(n + 1) Me 

(n + 1) 

2 Me 

(n + 2) Me 

(n + 1) 

2 

+ + = + : 

2l+1 2l+1l2l l2l l2l 

Upper bound for forgeries of type {c1}. 

In a similar manner to the proof for the forgeries of type (b), we condition the probability of successful 

forgery on the event of collisions between yj 

E xj,1 

and yp E xp ; 1 p qe; 1 k np 

+ 1. Let Dj 

thek k,1

event defning these collisions. Formally, 

Dj 

: yj 

E xj,1 

2 Se: 

By union bound, 

qe 

np+1 X X 

p pPr [Dj] Pr [yj 

E xj,1 

= y E x ]:k k,1
p=1 k=1 

Consider the collisions yj 

E xj,1 

= yp E xp Since j is the frst index such that yj 

6= yi , it follows that k k,1. j
i i ixj,1 

= x Hence, these collisions can b e expressed as yj 

E x = yp E xp In this equality, xj,1. j,1 k k,1. j,1 

4
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is random, uniformly distributed and independent of any xpk; y k
p; 1 p qe; 1 k np 

+ 1 , with the 

exception of xj
i 

,1, by the defnition of CoA. For p = i; k = j, we have xi = xp , but by the defnition j,1 k,1


= y 6 i p
of j (yj 

6 j
i ), yj 

E xj
i 

,1 

= yj 

E xj
i 

,1. Since yj; y k; 1 p qe; 1 k np 

+ 1 are constants, then 

1i 

p pPr [yj 

E x = y E x ] :j,1 k k,1 2l 

Note that Pr [yj 

E xi = yp E xp ] = 0 for i = p; j = k from the defnition of yj. Hence, by the same j,1 k k,1

arguments as for the case of forgeries of type (b), 

Me
Pr [Dj] : 

l2l 

Furthermore, in a manner similar to that for the case of forgeries of type (b), 

(n + 1) Me 

(n + 1)(2n + 1)
Pr [xn+1 

= z0 

j Dj] + ;
2l+1l2l 

by the Corollary to Lemma 1 [ Main IGE Lemma ] with a = z0. 

Upper bound for forgeries of type {c2}. 

In a similar manner to the proof for the forgeries of type (c1), we condition the probability o f successful 

forgery on the event of collisions between y1 

E x0 

and yk
p E xpk,1; 1 p qe; 1 k np 

+ 1 . Hence, we 

defne event D as for the case of forgeries of type (c1) 

D : y1 

E x0 

2 Se: 

By union bound, 

qe 

np+1 X X 

p pPr [D] Pr [y1 

E x0 

= y E x ]:k k,1
p=1 k=1 

p p pThus, we consider the collision y1 

E x0 

= y E xk,1. In this equality x is random and uniformly k k,1 

distributed since it is either r0 

p for k , 1 = 0 or is a random and uniformly distributed plaintext block i n a 

CoA for k , 1 1. Furthermore, x0 

= r0 

= f 

0,1(y0) is the decryption of block y0 

6= y0 

p; 8p; 1 p qe 

with 

a diferent k ey, hence x0 

is independent o f a n ything else, and hence, it si independent o f xpk,1. Therefore, 

1p pPr [y1 

E x0 

= y E x ] ;k k,1 2l 

and 

Me
Pr [D] : 

l2l 

From here on, the computation of the upper bound for forgeries of type (c2) is similar with the computation 

for the upper bound for forgeries of type (c1) in which one chooses j = 1. 

Hence, for any forgery type 

(n + 2) Me 

(n + 1)(2n + 1)
Pr [xn+1 

= z0] + ;
2l+1l2l 

i.e., the probability that the integrity c heck passes, or equivalently that the EF-CoA adversary is successful, 

is 

(n + 2) Me 

(n + 1)(2n + 1) 1 

Pr [(D, IG E $ , z0)(y) 6 N ull ] + += ;
2l+1l2l 2l 

5
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and, by F act 0 

(n + 2) Me 

(n + 1)(2n + 1) 1 

D, IG E $ , z0)(y) =6P
 [(
 N ull ] E + +
 + ;
r R

2l+1l2l 2lf+F 

i.e., this probability is negligible, and scheme IGE$-z0 

is EF-CoA secure. tu

Proof of Lemma 3 

We prove that scheme IGE$-c is KPF-CPA secure. Hence, we m ust show that, for any forgery y, 

P
 r [(
D, IG E $ , c)(y) =6 N ull (D IG E $ , c)(y) = x is known ] ,;,
R 

f+F 

where 1, , is negligible. By defnition, ((D, IG E $, c)(y) 6 N ull (D, IG E $, c)(y) == x is known ) = 

((D, IG E $ , c)(y) = N ull or (D, IG E $ , c)(y) = x is known ). Hence, we m ust show that 

P
 r [(
D, IG E $ , c)(y) = N ull or (D IG E $ , c)(y) = x is known ] ,;,
R 

f+F 

where 1 , , is negligible. 

For the balance of this proof, we use the notation Pr [:] = P [:], unless otherwise specifed. r R 

+P 

l 

To prove this lemma, we divide the space of all possible forgeries into two complementary classes: (a) 

forgeries that have at least a ciphertext block yi 

such that yi 

E xi,1 

does not collide with any element o f 

Se , yp E xp ; 1 p qe; 1 k np 

+ 1 , and (b) forgeries for which a n y block leads to a collision with k k,1

Se p psome element o f , y E x ; 1 p qe; 1 k np 

+ 1.k k,1

Let y b e an arbitrary forgery in class (a), and i the index of the frst block such that yi 

E xi,1 

does not 

collide with any elements of Se , yp E xp ; 1 p qe; 1 k np 

+ 1 . Then, since c is a constant, by k k,1

Lemma 1 [ Main IGE Lemma] with a = c, 

(n + 1) Me 

(n + 1)(2n + 1)
Pr [xn+1 

= c] + : 

2l+1l2l 

Hence, by the defnition of event ( D, IG E $ , c)(y) 6 N ull := 

(n + 1) Me 

(n + 1)(2n + 1)
Pr [(D, IG E $ , c)(y) 6 N ull ] = Pr [xn+1 

= c] + := 

2l+1l2l 

and, by F act 0 

f 

P
 r [(
D, IG E $ , c)(y) =6 N ull ] = P [xn+1 

= c] 1 , ,rR R 

f+F f+F 

(n + 1) Me 

(n + 1)(2n + 1) 

= E + + : 

2l+1l2l 

Thus, 

P
 r [(
D, IG E $ , c)(y) = N ull or (D IG E $ , c)(y) = x is known ] ,
R 

f+F 

P
 r [(
D
 ,
 IG E $ , c)(y) = N ull ] = 1 , P R [(
D, IG E $ , c)(y) =6 N ull ]r ,
R 

f+F f+F 

(n+1) e 

(n+1)(2n+1)where 1 , , = E + 

l2l 

+ 

2l+1 

is negligible. 
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Let y b e an arbitrary forgery in class (b); i.e., for any i a block, yi 

E xi,1 

collides with any element of 

p p p pSe , y E x ; 1 p qe; 1 k np 

+ 1 . Hence, xi 

= f 

,1(yi 

E xi,1) E yi,1 

= x E y E yi,1 

isk k,1 k k,1 

known. If the last decrypted plaintext block leads to xn+1 

= c, then the ciphertext decrypts correctly 

and the adversary knows the entire plaintext outcome of forgery. Hence event ((D, IG E $ , c)(y) = 

N ull or (D, IG E $ , c)(y) = x is known ) is true. If the last decrypted plaintext block leads to xn+1 

6= 

c, then the ciphertext does not decrypt correctly. Hence (D, IG E $ , c)(y) = N ull , and thus event 

((D, IG E $ , c)(y) = N ull or (D, IG E $ , c)(y) = x is known ) is still true. Thus, for any forgery in class 

(b) 

Pr [(D, IG E $ , c)(y) = N ull or (D, IG E $ , c)(y) = x is known ] = 1:R 

f+F 

Hence, for any forgery (either of class (a) or (b)), 

Pr [(D, IG E $ , c)(y) 6 N ull (D, IG E $ , c)(y) = x is known ] ,;R 

= 

f+F 

where 1 , , is negligible, and by the defnition of security against known-plaintext forgeries, the IGE$-c 

scheme is KPF-CPA secure. 

Proof of Lemma 4 

First, we prove that the IGE$-z0 

and IGE$-c encryption modes are not secure against EF-CPA attacks, 

and then we prove that these schemes are not PI-CPA, PU-CPA, and NM-CPA secure. To prove the frst 

part of the lemma, it is sufcient to provide counter-examples that show that an adversary can construct 

a forgery y that passes the integrity check provided by xn+1 

= z0 

for IGE$-z0 

and the integrity check 

xn+1 

= c for IGE$-c (and whose plaintext x is known to the adversary.) 

We show that the adversary can choose a plaintext with certain properties, obtain the ciphertext, then, he 

can construct a forgery that yields some changes plaintext blocks only in the middle of the plaintext, and 

thus, the beginning and the ending of the plaintext are unmodifed and, hence, the decrypted plaintext 

passes the integrity c hecks xn+1 

= z0 

or xn+1 

= c. 

Let an adversary submit for encryption the chosen plaintext 

x = x1 

xi,2xi,1xixi+1 

xm, where xi,2 

= xi 

and xi,1 

= xi+1. That is, the adversary simply constructs 

a plaintext that replicates two consecutive blocks in the two positions that follow those blocks. The 

adversary obtains ciphertext y = y1 

yi,2yi,1yiyi+1 

ym, and constructs forgery (of equal length, m) 

as follows: 

0 0 0 0 0 0 0 y = y y y ;1 i,2yi,1yiyi+1 m

where 

0 0 y y = y1 

yi,21 i,2 

0 yi,1 

= yi+1 

0 y = yi,2i 

y 

0 y 

0 ym:i+1 m 

= yi+1 

In other words, the forgery y0 6= y is 

y 

0 = y1 

yi,2yi+1yi,2yi+1 

ym: 

Next, we describe the attack outcome. The decryption of forgery y0, namely x0, will contain (1) the same 

0plaintext blocks as those of the chosen plaintext x up to position i , 2; i.e., xj 

= xj; 8j; 1 j i , 2; (2) 

7
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the same plaintext blocks as those of the chosen plaintext x from position i + 1 to the end of the message; 

0i.e., x = xj; 8j; i + 1 j m; and (3) two modifed plaintext blocks (both with a known predictable j 

0 0modifcation) at position i , 1, i.e., x = xi+1 

E yi 

E yi,2, and at position i; i.e., x = xi 

E yi,1 

E yi+1.i,1 i 

0 0 0To v erify the outcome of this attack, we compute x ; x , and x That is, i,1 i i,1. 

0 0 0 0 x = f 

,1(yi,1 

E xi,2) E y = f 

,1(yi+1 

E xi) E yi,2i,1 i,2 

= xi+1 

E yi 

E yi,2 

which i s known to the adversary. 

0 0 0 0 x = f 

,1(yi 

E xi,1) E y = f 

,1(yi,2 

E xi+1 

E yi 

E yi,2) E yi+1i i,1 

= f 

,1(xi,1 

E yi) E yi+1 

= xi 

E yi,1 

E yi+1 

which i s known to the adversary. 

0 0 0 0 xi+1 

= f 

,1(yi+1 

E xi) E yi 

= f 

,1(yi+1 

E xi 

E yi,1 

E yi+1) E yi,2 

= f 

,1(xi 

E yi,1) E yi,2 

= f 

,1(xi,2 

E yi,1) E yi,2 

= xi,1 

= xi+1: 

which means that the plaintext at position i + 1 remains unmodifed. 

0 0 0 0 xi+2 

= f 

,1(yi+2 

E xi+1) E yi+1 

= f 

,1(yi+2 

E xi+1) E yi+1 

= xi+2: 

which means that the plaintext at position i+2 also remains unmodifed. From this point on, all remaining 

plaintext blocks remain unmodifed to the end of the message. 

Hence, the integrity conditions x0 = z0 

for the IGE$-z0 

or x0 = c for the IGE$-c are verifed with n+1 n+1 

probability 1 (one), i.e., neither scheme is secure against EF-CPA. 

The same counter-example as that given above is sufcient to show that the IGE$-z0 

and IGE$-c are not 

PU-CPA, and PI-CPA secure. (The actual proof for PI-CPA security i n volves the event that there are no 

collisions in the inputs to function f ; i.e., includes the bound 8R 

defned in the proof of Lemma 6, Fact 

1 below.) A similar example can be used to prove that these schemes are not NM-CPA secure, also. For 

instance, construct a forgery in which all but the last two blocks of the plaintext outcome contain all 1's, 

and the last two blocks contain the known but garbled data produced by the exclusive-or operations with 

ciphertext blocks obtained at encryption. Modify the plaintext outcome of the forgery as follows: divide 

(i.e., by integer division) the plaintext outcome of the forgery by 22l, where l is the block size, thereby 

def 

shifting the garbled blocks out of the message and zero-flling its frst two blocks. The relationship R = 

holds among the modifed plaintext outcome and the similarly modifed (but unknown) plaintext of the 

challenge ciphertexts. ut 

Proof of Lemma 5 

To prove this lemma, we partition all possible forgeries into successively smaller classes, and demonstrate 

that, for each class of forgery, either the integrity c heck fails or the plaintext outcome of forgery includes 

an unknown block. 

We note that all forgeries can b e created in the following three complementary ways. That is, a forgery 

0 0 0 0 0y = y y y can be: 0y1 
n n+1 

0(1) a truncation of a ciphertext message yp of length np 

+1 obtained at encryption, namely, y = yp; 8j; 0k 

j j 

j n + 1  n p 

+ 1; 

8
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0(2) an extensions of a ciphertext message yp of length np+1 obtained at encryption, namely, yj 

= yj
p; 8j; 0 

j np + 1  n + 1; and 

(3) in neither class (1) nor (2). That is, the forgery is a ciphertext message such that there exists index 

s minfn + 1 ; n p + 1 g : ys 

0 6 s
p whose ciphertext block difers from block s of a ciphertext message y= y p of 

length np + 1 obtained at encryption. We denote by j be the minimum of these indices s. 

It is easy to see that for forgeries of types (1) and (2) the lemma is proved, since for case (1) the integrity 

0check passes with only negligible probability whereas for case (2) plaintext block xnp+1, which contains 

random block z0 

p, is unknown, and hence could not be chosen by the adversary. That is, for any forgery of 

type (1), x0 = xp is a constant since n n , and z0 is a random variable. Thus n+1 n+1 

p 0 

0 0 0 0P [z [z +1]+P l +P l
RR 

= P+1]r = x r = x0 0n n0f f ;f

0 0 0 0 0 0P
 [z P+1] , [z ] + P
 [z +1]=
 r = x r = x r = x0 0 +1 0R 

+P l +P l;f +P l;f

1l;l= AdvD(P 

l; R ) + 

2l
; 

l;l R R 

Rl;lwhere AdvD(P 

l; R ) is the advantage of an adversary D in distinguishing between f 

0 P 

l from f 

0 

using an encryption oracle for f 

0 in the process of implementing the IGE$ scheme. Also, since ran-

R 

R0 0l;lRdom variable z is uniformly distributed when f 

0 and since x is a constant, it follows that 0 n+1 

0 0 l;l qe(qe,1)Pr [z = x ] = 1 ¢2l . However, by the bound of the birthday attack, AdvD(P 

l; R )0 +1 2l+1 

+P l;f

R 

R 

R Rn n nl;l l;l0 0 0f ;f f +R f +R

R nl;l0f +R
0since z0 

= z0 

p = f 

0(r0 

p + 1) and 1 p qe. Hence, 

K 

0) 

K 

0 i[((DF o g )(y = N ull and ((DF o g )(y ) = x 66 = xP
 r ; 1 i qe; is chosen] 

+P lR 

P 

f 

1 qe(qe , 1)0) 

0 0[((DF 6=K o g )(y N ull ] = P [z ] = +
 :
r r = x0 +1R 

+P l +P l 

0 0For any forgery of type (2), x = xp = z0 

p, which is random. Hence, event x = xn hasnp+1 np+1 

np+1 
p+1 

p 1 

qe(qe,1) 

R
the same distribution as z0 

and happens with probability 

2l 

+ 

2l+1 

whenever f 

0 P 

l (by the same 

argument as in case (1)). Hence, 

R +1n 2l 2lf f 

K 

0) 

K 

0 i[((DF o g )(y = N ull and ((DF o g )(y ) = x 66 = x ; 1 i qe; is chosen] P
 r 

f 

R
lP+ 

0 

p p 

0 

]P
 [x ] = P
 [xn ] = P
 [xnr = xn r = z r = z+1 +1 +1+1 R 

R 

R 

+P l +P l
 

1 qe(qe , 1)
 

= + : 

2l 2l+1 

To complete the proof of the lemma, we partition forgeries of type (3) further. We frst distinguish the 

case whereby there exists a ciphertext block position j; 0 j n + 1 , such that the input to f 

,1 at 

that block position does not collide with any of possible inputs to f used during encryption. That is, 

0 0 0y 6 0 

p; 8p; 1 p qe 

or y E x 2¢ Se . Then, by the Corollary to the Main IGE Lemma (Lemma 1), = y0 j j,1 

0 0 

(n + 1) Me 

(n + 1)(2n + 1)
P [x 0] + : 

+P l 

0 Rn p p p0pf f f +P

r = zn+1 +1l2l 2l

R 

f 

Hence, 

+P l 

K 

0) 

K 

0 i[((DF o g )(y = N ull and ((DF o g )(y ) = x 66 = xP
 ; 1 i qe; is chosen] r R 

P 

+P lf 

(n + 1) Me 

(n + 1)(2n + 1)
[((DFK o g )(y 

0) 6= N ull ] = P r 

0 

0
0 ][x +
 :
r n = z+1R 

f+P l 

9 

l2l 2l+1f 



� � � �

� �
� �

�

�

� � � � �
�

� � � �

 

� � � �

�

�

� �

The lemma is proven for this case also. 

In all remaining type (3) cases, all inputs to f 

,1 during decryption collide with some inputs to f used 

0 0 0during encryption. That is, y0 

= y0 

p; for some p; 1 p qe 

or all yj 

E xj,1 

2 Se; 8j; 1 j n. 

Let a t ype (3) forgery y0 difer from any of the qe 

encrypted messages at block position j, 1 j n + 1; 

0i.e., the adversary chooses xi 

= xi
p; 8i; 1 i j , 1. We show that plaintext obtained at position j during 

0the decryption of the forgery y0, namely xj 

, can b e chosen only with negligible probability, or that the 

integrity condition happens with negligible probability. This completes the proof since the maximum of 

all the probabilities of passing the integrity c heck and choosing all the plaintext of the forgery decryption 

is negligible. 

0If the adversary chooses xi 

= xpi 

, the chosen plaintext blocks could b e obtained up to position j of the 

forgery decryption. Now, we show that the chosen plaintext can b e obtained at position j with only 

negligible probability. We h a ve t wo complementary cases to analyze: (a) j n and (b) j = n + 1. 

0(a) For j n, w e compute an upper bound on the probability of the integrity condition x = xj 

, where xjj 

0 0 0 0 0 0is the chosen value. However, by defnition, xj 

= f 

,1(yj 

E xj,1) E yj,1, and by hypothesis, yj 

E xj,1 

2 

0 0 s sSe; 8j; 1 j n. Thus, a collision y E x = y E x must take place for some s; t, 1 t +1 ; 1j j,1 
t t,1 

ns 

s qe. 

0 0 s s 0 0 0 0 0If yj 

E xj,1 

= yt 

E xt,1, 1 s qe; 1 t ns 

+ 1, then, since xj 

= f 

,1(yj 

E xj,1) E yj,1 

and yj,1 

= yj
p 

,1 

0 s s 0 s sby the defnition of block position j, we obtain x = x E y = x E y p Now note j 

t t,1 

E yj,1 

t t,1 

E yj,1. 

that (s; t) 6 (p; j) , (s; t , 1) = (p; j , 1) by the defnition of block position j. This means that = 6
0 s s s sx = xj 

, x E y = xj 

E yp However, the two sides of the equation x E y = xj 

E yp arej 

t t,1 j,1. t t,1 j,1 

s s p 

R
random because xt 

; x j 

are chosen constants and yt,1; y j,1 

are random since f P 

l . The two sides of the 

R 

equation are also independent of each other whenever ys and yp are distinct (i.e., do not collide with t,1 j,1 

each other). To compute the probability that ys and yp are distinct, we defne D (Distinct) to be the t,1 j,1 

event that all inputs to function f = FK 

used during the qe 

encryptions are distinct. Fact 1 provides a 

bound for the probability o f D. 

Fact 1 

Let D Distinct denote the event at all inputs to function f = FK 

used during the qe 

encryptions yk
p = 

p p pf (x E y ) E x ; 1 p qe; 1 k np, are distinct. Then, k k,1 k,1  ! 

M2 

def 

1 e 

Me
Pr [D] 8R 

+Rl;l 

= ,
2l+1 l2 lf 

and 

def 

Me(Me 

, l) Me(Me 

, l)
P
 r [D] 8P 

= 8R 

+ :
=
 R 

f+P 

l 

0 

l22l+1 l22l 

ps sE y = xj 

E yt t,1Then, the probability of event b e bound by using standard x = xj 

, x canj,1j 

RRRR 

conditioning and Fact 1. 

Me(Me 

, l)0 0 0 

+P 

l +P 

l +P 

l +P 

l 

= xj 

j D = xj 

j DP
 [x = xj] P [x ] + P
 [D] P
 [x ]
 +
 :
r r r rj j j l22lf f f f 

RR 

However, by the same argument as that used in (1), we obtain 

0 l;l  0 

+Rl;l+P 

l 

AdvD(P 

lP
 r [xj 

= xj 

j D]
 =
 ;
 R
 ) + P
 r [xj 

= xj 

j D]; 

f f 

10
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or 

(Me 

, l) 10 

Me
= xj 

j D]P
 [x + ;
r j l22l+1 2lf+P 

l
 

Rl;l  s
since, when f 

R 

and event D is true, yt,1 

and yp where (s; t , 1) =6 ( p; j , 1), are random, uniformly j,1 

0 

+Rl;l
R 

R 

= xj 

jD] = 1 ¢2ldistributed, and independent, and thus P [x Hence,r .
jf 

(Me 

, l) 10 

3Me
P
 [x = xj 

] + ;
r 

+P 

l 

= xj 

] is negligible. 

R j l22l+1 2lf 

0which shows that P [xr 

+P 

l 

(b) For j = n + 1 , w e compute an upper bound for the probability of the integrity condition x0 

j 

= z0
0 . (The 

proof of the negligible upper bound for this case is almost identical to that for case j n. We repeat it here 

0 0 0 0 0 0for completeness.) However, by defnition xj 

= f 

,1(yj 

E xj,1) E yj,1, and by h ypothesis yj 

E xj,1 

2 Se . 

0 0 s sHence, a collision y E x = y E x must take place for some s; t, 1 t ns 

+ 1 ; 1 s qe.j j,1 

t t,1 

0 0 s s 0 0 0 0 0If y E x = y E x , 1 s qe; 1 t ns 

+ 1, then, since x = f 

,1(y E xj,1) E yj,1 

and y = yp 

j j,1 

t t,1 j j j,1 j,1 

0 s s 0 s sby the defnition of of block position j, we obtain x = x E yt,1 

E y = x E yt,1 

E yp Note that j t j,1 

t j,1. 

(s; t) =6 ( p; j) , (s; t , 1) =6 ( p; j , 1) by the defnition of block position j. 

0 0 s sThe integrity condition x = z , x E y = zp E yp , where the right hand side is random and j 
0 

t t,1 0 j,1
sindependent of the left hand side. This is the case because zp is random and independent of y and0 

t,1 

p p py , since it is generated using function f 

0 with key K 0 6 K, and x = x = z0 

, since block position = 

s 6j,1 t j 

(s; t) =6 ( p; j); j = n + 1, and xst 

is a chosen constant. Using the same arguments as in case (a), we obtain 

an upper bound for the probability o f x0 

j 

= z0
0 , as follows: 

1 qe(qe 

, 1)0 0 0 0Pr [x = z r [x = z0] + : 

+P 

l
R 

R jf 

] = P
0 Rj j 2l+12lf 0f +P 

Finally, for any possible forgery, the probability of success is bounded by the maximum of the probabilities 

obtained for cases (1) - 3(a)(b); i.e., 

P
 r 

f 

R lP+ 

0 i[((DFK o g )(y 

0) = N ull and ((DFK o g )(y ) = x 66 = x is chosen; 1 i qe] { }
(n + 1) Me 

(n + 1)(2n + 1) 3Me(Me 

, l) 1 1 qe(qe 

, 1) 

max + ; + ; + : 

2l+1 l22l+1 2l+1l2l 2l 2l 

Hence, when the scheme is implemented with the SPRP family F , 

E0 

def0 i[((DFK o g )(y 

0) = N ull and ((DFK o g )(y ) = x 6 ; 1 i qe 

is chosen] =6 = xP
 r R 

f+F { } 

(n + 1) Me 

(n + 1)(2n + 1) 3Me(Me 

, l) 1 1 qe(qe 

, 1) 

max + ; + ; + + E;
2l+1 l22l+1 2l+1l2l 2l 2l 

and E0 is negligible. ut 

Proof of Lemma 6 

This proof is based frst on replacing SPRP family F with the family of random functions GS, i.e., f ; f 

R 

GS 

. Next, we use the idea that if the inputs to function f in the reverse pass of the decryption are diferent 

from all the quantities obtained at encryption (either from the unknown plaintext of the challenges or the 

plaintext the adversary chooses to encrypt), and if they are diferent (i.e., do not collide among themselves), 

the plaintext outcome of the forgery is random, uniformly distributed, and independent o f anything else 

11
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R 

Rl;l(since, for these input, f = v and v ). Hence, for the most part, the proof focuses on determining 

upper bounds for these events. 

Let qe 

= q1 

+ q2 

with q1; q 2 

defned in the NM-CPA, and defne the following sets (encompassing both the 

unknown plaintexts corresponding to the ciphertext challenges, and the plaintexts chosen by the adversary): 

p pSe = fz E x ; 1 p qe; 1 k np 

+ 1 gk k,1

Sd = fzs 

E xs,1; 1 s n + 1 g: 

p pT 

e = fx E z ; 1 p qe; 1 k np 

+ 1 g:k k,1

If the elements of the set Sd do not collide with each other (i.e., the set Se is collision-free) and Se n Sd = ¢ 

(i.e., the empty set), then the inputs to the functions f at decryption are new, and hence the quantities 

f (zs 

E xs,1) = v(zs 

E xs,1) are random, uniformly distributed, and mutually independent and independent 

of anything else. Furthermore, all plaintexts xs 

= f(zs 

E xs,1) E zs,1 

are random, uniformly distributed, 

and mutually independent and independent of anything else. Hence, there is no relationship among the 

decrypted plaintext and the challenge plaintexts. 

Let us defne the following events: 

T 

eD : is collision-free 

A	 : Se n Sd = ¢ 

SdB : is collision-free: 

Event D is the event Distinct from Fact 1, hence 

def 

Me(Me 

, l)
Pr R 

[D] 8P 

= : 

f+P 

l	 l22l 

In the following we consider Pr [:] = Pr R 

[:] and drop the subscript. 

f+GS 

If both the events A and B are true, then the event R(x1; ; x 

q2 ; (DFK o g )(y)) is false, i.e., there does not 

exist any relationship between the decrypted plaintext and the challenge plaintexts. Hence, the following 

implication is true: R(x1; ; x 

q2 ; (DFK o g )(y)) A and B = A or B. Hence, 

(DFK	 

1 q2 ; (DFK (DFKo g )(y) 6 N ull and R(x ; ; x o g )(y)) o g )(y) 6 N ull and (A or B)=	 = 

Hence, 

Pr [(DFK o g )(y) 6= N ull and R(x 

1; ; x 

q2 ; (DFK o g )(y))]
 

Pr [((DFK o g )(y) =6 N ull and (A or B)] Pr [A or B]:
 

Now, we compute an upper bound for the probability o f e v ent A or B. 

Let us defne the following set: 

Sd = fzs 

E xs,1; 1 s igi 

and events: 

Ai 

: Se n Sd = ¢i 

Sd: is collision-free:Bi i 

12
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Hence, event A = An+1 

and event B = Bn+1. For any index i, w e obtain, by standard conditioning, 

Pr [Ai+1 

or Bi+1] Pr [Ai+1 

or Bi+1 

j Ai 

and Bi] + Pr [Ai 

or Bi]; 

and, using standard conditioning repeatedly, w e obtain 

Pr [A or B] = Pr [An+1 

or Bn+1] 

Pr [An+1 

or Bn+1 

j An 

and Bn] + Pr [An 

or Bn]: 

n X 

Pr [A1 

or B1] + Pr [Ai+1 

or Bi+1 

j Ai 

and Bi]: 

i=1 

First, we determine an upper bound for Pr [Ai+1 

or Bi+1 

j Ai 

and Bi]. By union bound, 

Pr [Ai+1 

or Bi+1 

j Ai 

and Bi] Pr [Ai+1 

j Ai 

and Bi] + Pr [Bi+1 

j Ai 

and Bi] 

= Pr [zi+1 

E xi 

2 Se j Ai 

and Bi] + Pr [zi+1 

E xi 

2 Sd j Ai 

and Bi]:i 

To see this, note that if event Ai 

is true, then Se n Sd = ¢. Hence, since Sd = Sd u f zi+1 

E xig, then, for i i+1 i 

Se n Si
d 

+1 

6 ¢, zi+1 

E xi 

must b e in Se . Hence, Pr j Ai 

and Bi] = Pr 2 Se j Ai 

= [Ai+1 

[zi+1 

E xi 

and Bi]. 

Similarly, if event Bi 

is true, i.e., Sd is collision-free, then for Bi+1 

to b e false, zi+1 

E xi 

must b e in Sd 

i i 

. 

Hence, Pr [Bi+1 

j Ai 

and Bi] = Pr [zi+1 

E xi 

2 Si
d j Ai 

and Bi]. 

Furthermore, by union bound, 

qe 

np+1 X X 

p pPr [zi+1 

E xi 

2 Se j Ai 

and Bi] Pr [zi+1 

E xi 

= zk 

E xk,1 

j Ai 

and Bi] 

p=1 k=1 

i X 

Pr [zi+1 

E xi 

2 Sd j Ai 

and Bi] Pr [zi+1 

E xi 

= zj 

E xj,1 

j Ai 

and Bi]:i 

j=1 

Whenever Ai 

and Bi 

are true, element zi 

E xi,1 

has never been seen before, and hence f(zi 

E xi,1) = 

v(ziExi,1) is random, uniformly distributed and independent o f a n ything else. Thus, xi 

= f(ziExi,1)Ezi,1 

is random, uniformly distributed, and independent of anything else, and each of the events zi+1 

E xi 

= 

zk
p E xpk,1 

and zi+1 

E xi 

= zj 

E xj,1 

happens with probability 1 ¢2l . Hence, 

qe 

np+1 qe 

np+1 X X X X 

p p 

1 Me
Pr [zi+1 

E xi 

2 Se j Ai 

and Bi] Pr [zi+1 

E xi 

= z E x j Ai 

and Bi] = k k,1 l2l2l 

p=1 k=1 

p=1 k=1 

i i X X i
 

Pr [zi+1 

E xi 

2 Si
d j Ai 

and Bi] Pr [zi+1 

E xi 

= zj 

E xj,1 

j Ai 

and Bi] = 

1
= :
 

2l 2l 

j=1 j=1 

Then 

Me 

i 

Pr [Ai+1 

or Bi+1 

j Ai 

and Bi] + : 

l2l 2l 

Second, we fnd an upper bound for Pr [A1 

or B1]. S1 

d = fz1 

E x0g has only one element, and hence it is 

collision free. Therefore, event B1 

is always true. Hence, we fnd an upper bound for Pr [A1]. We i n troduce 

event 

p pC : z0 

6 0 

and z0 

= y 8p; 1 p qe= z 6 0 

; : 

By standard conditioning, 

Pr [A1] Pr [A1 

j C] + Pr [C]: 

13
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By union bound, 

qe 

np+1 X X 

p pPr [A1 

j C] Pr [z1 

E x0 

= z E x j C]:k k,1 

p=1 k=1 

Now, let us assume event C is true. In this case, z0 

has never been the input to f 

0, and hence x0 

= f 

0(z0) = 

0 R 

Rl;lv0(z0); v is random, uniformly distributed, and independent o f a n ything else, hence 

1p pPr [z1 

E x0 

= z E x j C] = :k k,1 2l 

Thus, 

qe 

np+1 qe 

np+1 X X X X 1 Mep pPr [z1 

E x0 

= z E x j C] ;k k,1 2l l2l 

p=1 k=1 

p=1 k=1 

and 

Me
Pr [A1] + Pr [C]: 

l2l 

Now, we fnd an upper bound for Pr [C]. Using the conditioning on the event D (Distinct) and standard 

conditioning, we obtain: 

Pr [C] Pr [C j D] + Pr [D]; 

R R0 00where, by F act 1 and the fact that f GS 

means that f; f ; f P 

l , w e have 

def 

Me(Me 

, l)
Pr [D] = Pr R 

[D] 8P 

= : 

f+P 

l l22l 

Next, we use the following claim (whose proof is at the end of this Lemma). 

Claim 

2(n + 1) Me 

(n + 1) 

2 Me(Me 

+ l)
Pr [C j D] + + : 

l22l+1l2l 2l 

Thus, 

2(n + 1) Me 

(n + 1) 

2 Me(Me 

+ l)
Pr [C] 8P 

+ + + : 

l22l+1l2l 2l 

Hence, 

Me 

2(n + 1) Me 

(n + 1) 

2 Me(Me 

+ l)
Pr [A1 

or B1] + 8P 

+ + + : 

2l l22l+1l2l l2l 

Furthermore, 

n X 

Pr [A or B] Pr [A1 

or B1] + Pr [Ai+1 

or Bi+1 

j Ai 

and Bi]
 

i=1
 

2 

n 

( )
Me 

Me(Me 

+ l) 2(n + 1) Me 

(n + 1) 

X Me 

i 

8P 

+ + + + + + 

l22l+1 2l 2ll2l l2l l2l 

i=1 

Me 

Me(Me 

+ l) 2(n + 1) Me 

(n + 1) 

2 nMe 

n2 

8P 

+ + + + + + 

l22l+1 2l+1l2l l2l 2l l2l 

Me(Me 

+ l) 3(n + 1) Me 

3(n + 1) 

2 

8P 

+ + + : 

l22l+1 2l+1l2l 
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Finally, 

Pr [(DFK o g )(y) 6= N ull and R(x 

1; ; x 

q2 ; (DFK o g )(y))] 

Pr [((DFK o g )(y) =6 N ull and (A or B)] Pr [A or B] 

Me(Me 

+ l) 3(n + 1) Me 

3(n + 1) 

2 

8P 

+ + + : 

l22l+1 2l+1l2l 

Hence, when the scheme is implemented with the pseudo-random family F , b y F act 0 (with Mv¢l = 2( n+1)), 

we have 

Pr R 

[(DFK o g )(y) 6= N ull and R(x 

1; ; x 

q2 ; (DFK o g )(y))]
f+F 

Me(Me 

+ l) 3(n + 1) Me 

3(n + 1) 

2 2(n + 1)(2n + 1)
8P 

+ + + + + E;
l22l+1 2l+1 2l+1l2l 

i.e., the scheme is NM-CPA secure. ut 

Proof of Claim 

We i n troduce the set of all inputs to function f 

00 at decryption in the reversed direction, namely 

p pRe = fyk 

E z ; 1 p qe; 1 k np 

+ 1 g: np,k+2

Note that z0 

p does not appear in the defnition of set Re . 

To compute Pr [C j D] w e divide the choice of ciphertext forgeries into several complementary classes, then 

compute the probability for each class of forgeries. The forged ciphertext that the adversary generates can 

fall into one of the following complementary classes: 

(a) the forgery is a truncation of a known valid ciphertext string; 

(b) the forgery is an extension of a known valid ciphertext string; 

(c) the forgery is neither a truncation nor an extension of a known ciphertext string. Case (c) can b e
 

further divided into two complementary subcases:
 

(c1) the forged ciphertext string has a common prefx with an existent ciphertext;
 

(c2) the forged ciphertext is diferent from any existent ciphertext starting with its frst block ( y0).
 

For each classes of forgery we fnd an upper bound the probability that z0 

collides with some z0 

p or y0 

p . 

(a) If the forgery is a truncation of a valid ciphertext, then there exists s; 1 s qe 

: y = y0y1 

yn+1; y k 

= 

s s 4y ; 8k; 0 k n + 1 ns 

+ 1 . Then z0 

= z by the defnition of the BIGE$ decryption. Then,k ns,n 

p p p pwe have the collision b e t ween zs and z0 

, or b etween zs and y0 

; 1 p qe, w here z and y arens,n ns,n 0 0 

computed by enciphering with a diferent k ey. Furthermore, Pr [C j D] = Pr [C j D], (based on our R 

f+GS 

0 00 

R 

Rl;lR R
notation), then f; f ; f P 

l . Hence, an adversary can distinguish between f 

0 P 

l and f 

0 in the 

computation of z0 

p or y0 

p; 1 p qe. Hence, 

def 

Pr [C j D] = Pr R 

[C j D] = Pr [C j D]R R 

f 0;f 00f+GS 

f; +GS 

;f;f 0;f 00+P 

l 

= Pr R R 

[C j D] , Pr R R R 

[C j D]
f 0;f 00 +P 

l f 0;f 00 +Rl;lf; +GS 

;f;f 0;f 00 f; +GS 

;f;f 00+P 

l;f 0 

+ Pr 

l;l  

R R R 

[C j D];R R R 

[C j D] AdvD(P 

l; R ) + Pr 

f 0;f 00 +Rl;lf; +GS 

;f;f 00+P 

l;f 0 f ;f 0;f 00+GS 

;f;f 00+P 

l;f 0+Rl;l 

4 s s s = f 

0,1 (y 

s s s sSince y0 

= y0 

, then zn+1 

= zns 

+1; furthermore, if y1 

= y1 

then zn 

= f 

0,1 (y1 

f zn+1) f y0 1 

f z ) f y0 

= z ;ns 

+1 ns 

etc. 
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P 

l 

R 

Rl;lwhere the advantage refers to distinguishing between f 

0 and f 

0 . Since there are 2qe 

queries 

to f 

0, it follows that 

(2qe 

, 1) (2qe 

, 1)l;l  

2qe qe
AdvD(P 

l; R ) = : 

2l+1 2l 

def 

We introduce the notation Pr 

0[C j D] = Pr [C j D], and we compute an upper R R R 

f 0;f 00 +Rl;lf; +GS 

;f;f 00+P 

l;f 0 

bound for Pr 

0[C j D]. By union bound, 

qe X, )p pPr 

0[C j D] Pr 

0[z0 

= z0 

j D] + Pr 

0[z0 

= y0 

j D] :
 

p=1
 

p p p p
Since z = f 

0(r0 

) and y = f 

0(z +1) are encrypted with a diferent key than the one used to obtain 0 0 np

zs ; n s 

, n 1, then zp and yp are random, uniformly distributed, and independent of zs sincens,n 0 0 

ns,n 

f 

0 R 

Rl;l  . Hence, 

1p s pPr 

0[z0 

= z j D] = Pr 

0[z = z j D] = 

2l0 

ns,n 0 

p s pPr 

0[z0 

= y j D] = Pr 

0[z = y j D] = 

1 

:0 

ns,n 0 2l 

Hence, by union bound, 

2qe
Pr 

0[C j D]
2l 

: 

Hence, 

qe(2qe 

, 1) 2qe 

qe(2qe 

+ 1)
Pr [C j D] + = : 

2l 2l 2l
 

i i i
(b) If y = y y where n > n i, then we show that yni+2 

E zn,ni 

2 Re with low probability, 0y1 ni+1 

yn+1 

and this enables us to show that events z0 

= z0 

p or z0 

= y0 

p occur with low probability in a manner similar 

to the Main IGE Lemma. Hence, by standard conditioning we h a ve 

Pr [C j D] Pr [C j D and yni+2 

E zn,ni 

2¢ Re] + Pr [yni+2 

E zn,ni 

2 Re j D]: 

R p (n+1) e 

(n+1)2 

If yni+2 

E zn,ni 

2¢ Re and f GS, then z0 

= z happens with probability + 

2l+1 

in a manner 0 l2l 

similar to the Corollary to the Main IGE Lemma, since z0 

p is obtained by encrypting with a diferent k ey. 

The same conclusion is reached for the collisions z0 

= y0 

p . Hence, 

2(n + 1) Me 

2(n + 1) 

2 2(n + 1) Me 

(n + 1) 

2 

Pr [C j D and yni+2 

E zn,ni 

2¢ Re] + = + : 

2l+1l2l l2l 2l 

Now, we compute an upper bound for Pr [yni+2 

E zn,ni 

2 Re j D]. For the extension forgery, we have 

zn,ni 

= z0 

i = f 

0(r0
i ) by the defnition of the decryption of the BIGE$ scheme. (The argument is similar 

to the one used in case (a).) Hence, we use the same argument as in case (a) for the computing an upper 

bound for the probability when f 

R 

GS. We use the advantage of an adversary in making the distinction 

R R 

Rl;l  ib e t ween f 

0 P 

l and f 

0 in computing z0 

Pr [yni+2 

E zn,ni 

2 Re j D] = Pr R 

[yni+2 

E zn,ni 

2 Re j D]
f+GS 

= Pr R R 

[yni+2 

E zn,ni 

2 Re j D]
f 0;f 00 +P 

lf; +GS 

;f;f 0;f 00 

= Pr R R R 

[yni+2 

E zn,ni 

2 Re j D]
f 0;f 00 +Rl;lf; +GS 

;f;f 00+P 

l;f 0 

, Pr R R R 

[yni+2 

E zn,ni 

2 Re j D]
f 0;f 00 +Rl;lf; +GS 

;f;f 00+P 

l;f 0 

+ Pr R R R 

[yni+2 

E zn,ni 

2 Re j D]
f 0;f 00 +Rl;lf; +GS 

;f;f 00+P 

l;f 0 

l;lAdvD(P 

l; R ) + Pr R R R 

[yni+2 

E zn,ni 

2 Re j D]: 

f 0;f 00 +Rl;lf; +GS 

;f;f 00+P 

l;f 0 
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In a manner similar to case (a), 

l;l  

qe(2qe 

, 1)
AdvD(P 

l; R )
2l 

: 

Now, we compute an upper bound for the second term Pr [:], which w e denote by R R R 

f 0;f 00 +Rl;lf; +G;f;f 00+P 

l;f 0 

i i 0 R 

Rl;lPr 

0[:]; i.e., we compute an upper bound for Pr 

0[yni+2 

E zn,ni 

2 Re j D]. Since z0 

= f 

0(r0); f is 

computed with a diferent k ey, it follows that z0 

i is random and uniformly distributed, and since it does not 

appear in Re, then z0 

i is independent o f a n y terms in Re . Hence, since yni+2 

is a constant, it follows that 

yni+2 

E zn,ni 

= yni+2 

E z0 

i is random uniformly distributed, and independent o f a n y element o f Re . Hence 

jRej Me
Pr 

0[yni+2 

E zn,ni 

2 Re j D] : 

2l l2l 

Hence, 

qe(2qe 

, 1) Me
Pr [yni+2 

E zn,ni 

2 Re j D] + ;
2l l2l 

and, by standard conditioning, 

Pr [C j D]	 Pr [C j D and yni+2 

E zn,ni 

2¢ Re] + Pr [yni+2 

E zn,ni 

2 Re j D] 

2(n + 1) Me 

(n + 1) 

2 qe(2qe 

, 1) Me 

+ + + : 

l2l 2l 2l l2l 

(c1) Let j b e the index of the frst block where yj 

6= yj
i ; 1 j minfn + 1 ; n i 

+ 1 g. By standard 

conditioning, 

Pr [C j D] Pr [C j D and yj 

E zn,j+2 

2¢ Re] + Pr [yj 

E zn,j+2 

2 Re j D]: 

In a similar manner to the proof for the forgeries of type (b) (using the Corollary to the Main IGE Lemma), 

we have 

2(n + 1) Me 

(n + 1) 

2 

Pr [C j D and yj 

E zn,j+2 

2¢ Re] + : 

l2l 2l 

Now, we fnd an upper bound for collisions between yj 

Ezn,j+2 

and yp Ezp ; 1 p qe; 1 k np 

+ 1.k np,k+2

Let Dj 

the event defning these collisions. Formally, 

Dj 

: yj 

E zn,j+2 

2 Re: 

i i i i iSince j is the frst index such that yj 

6 , it follows that zn,j+2 

= z = f (x= yj ni,j+2 ni,j+2
Ezni,j+1)Exni,j+1, 

R R
i.e., they are the image through f P 

l . Hence, as in case (b) an adversary can distinguish between f P 

l 

R 

Rl;land f and 

Pr [Dj 

j D] = Pr [Dj 

j D]R R 

f 0;f 00f; +G;f;f 0;f 00+P 

l 

= Pr R R 

[Dj 

j D] , Pr R R R 

[Dj 

j D]
f 0;f 00 +P 

l	 f 0;f 00 +Rl;lf; +G;f;f 0;f 00	 f; +G;f 0;f 00+P 

l;f 

+ Pr [Dj 

j D]R R R 

f 0;f 00 +Rl;lf; +G;f 0;f 00+P 

l;f 

l;l  [Dj 

j D]AdvD(P 

l; R ) + Pr R R R 

f 0;f 00 +Rl;lf; +G;f 0;f 00+P 

l;f 

where the advantage of the distinguisher takes into account that f sees 

l 

e blocks, i.e., 

l;l  

Me(Me 

, l)
AdvD(P 

l; R ) : 

l22l+1 

17
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Hence, we compute an upper bound for Pr 

0[Dj 

jD] = Pr [Dj 

j D]. By union bound R R R 

f 0;f 00 +Rl;lf; +G;f 0;f 00+P 

l;f 

we have 

qe 

np+1 X X 

p pPr 

0[Dj 

j D] Pr 

0[yj 

E zn,j+2 

= y E z j D]:k n,k+2 

p=1 k=1 

Since j is the frst index such that yj 

6 yi , it follows that zn,j+2 

= zi Hence, these collisions can = j ni,j+2
. 

p p pbe expressed as yj 

E zi = y E z For i 6= p or j 6= k, since D is true, zi and z areni,j+2 k np,k+2
. ni,j+2 np,k+2 

Rl;lrandom, uniformly distributed, and mutually independent (since f 

R 

); hence, the collision happens 

with probability 1 ¢2l . If i = p; j = k, the collision would reduce to yj 

= yj
i , which w ould be impossible by 

the defnition of index j. Thus, 

jRej Me
Pr 

0[Dj 

j D] = : 

2l l2l 

Hence, 

Me(Me 

, l) Me 

Me(Me 

+ l)
Pr [Dj 

j D] + = : 

l22l+1 l22l+1l2l 

Thus, by standard conditioning, 

Pr [C j D] Pr [C j D and Dj 

] + Pr [Dj 

j D] 

2(n + 1) Me 

(n + 1) 

2 Me(Me 

+ l)
+ + : 

l22l+1l2l 2l 

(c2) If y0 

6 0 

p; 8p; 1 p qe t of any zk
p since= y , then zn+1 

is random, uniformly distributed, and independen
it is encrypted with a diferent k ey. The same argument as in case (c1) is applied to y1 

E zn+1. Hence, 

2(n + 1) Me 

(n + 1) 

2 Me(Me 

+ l)
Pr [C j D] + + : 

l22l+1l2l 2l 

Thus, for any forgery type, 

2(n + 1) Me 

(n + 1) 

2 Me(Me 

+ l)
Pr [C j D] + + : 

l22l+1l2l 2l 

ut 

Proof of Lemma 7 

This proof is similar to the Proof of Lemma 6. Let Pr [:] = Pr R 

[:]. Let y b e a n y forgery, y 6= yp; 1 

f+GS 

p qe. If the events A and B that are defned in the proof of Lemma 6 are true, then the resulting 

f 

0; f 

00plaintext is random and uniformly distributed (since f; 

R 

GS 

and we have inputs to f that have 

not been seen before). Thus, the condition xn+1 

= 0 happens with probability 1 ¢2l . Hence, by standard 

conditioning, 

Pr [xn+1 

= 0] Pr [xn+1 

= 0 j A and B] + Pr [(A or B)] 

1 Me(Me 

+ l) 3(n + 1) Me 

3(n + 1) 

2 

+ 8P 

+ + + : 

2l l22l+1 l2l 2l+1 

Hence, when the scheme is implemented with the SPRP family F , w e have by Fact 0, 

Me(Me 

+ l) 3(n + 1) Me 

3(n + 1) 

2 2(n + 1)(2n + 1)
Pr R 

[xn+1 

= 0] 8P 

+ + + + + E: 

f+F l22l+1 l2l 2l+1 2l+1 
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Finally, the integrity condition passes with probability 

Pr R 

[xn+1 

=6 0] = 1 , Pr [xn+1 

= 0]R 

f+F f+F ! 

Me(Me 

+ l) 3(n + 1) Me 

3(n + 1) 

2 2(n + 1)(2n + 1)
1 , 8P 

+ + + + + E ;
l22l+1 2l+1 2l+1l2l 

i.e., this probability is not negligible, and hence the scheme is not EF-CPA secure. 

Since any forgery that passes the integrity check of scheme BIGE$-nzg includes at least a random block 

with non-negligible probability, the scheme BIGE$, which is not EF-CPA secure, cannot be KPF-CPA and 

PI-CPA secure. ut 

Proof of Fact 1 

It is clear that if all inputs to f = FK 

are distinct, then the ciphertext blocks obtained at encryption are 

p p prandom, uniformly distributed, and mutually independent. Let y = f (x E ypk,1 ) E y with all distinct k k k,1 

inputs to f . It follows that f (xk
p E ypk,1 ) is random, uniformly distributed, and independent o f anything 

else, and hence yk
p is random, uniformly distributed, and independent o f a n ything else. 

To bound the probability of the event defning collisions in the input to f , namely D, we use the same 

proof idea used by Bellare et al. [2] in their proof of the Main CBC Lemma. The only diference is that, 

in this case, the collisions include only the given plaintext strings and there is no notion of left or right 

plaintext strings. Hence, following the proof of the Main CBC Lemma, the size of the prohibited set in 

this case is half of the size obtained by Bellare et al.; viz., their Claim 4 [2]. 

Up to now, we h a ve considered f = FK 

a random function. When f is a random permutation, the bound , )
1 e echanges by adding the term 

2l+1 l l 

, 1 . tu
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