On Message Integrity in Symmetric Encryption

Virgil D. Gligor* Pompiliu Donescu
VDG Inc
6009 Brookside Drive
Chevy Chase, Maryland 20815
\{gligor, pompiliu\}@eng.umd.edu

November 10, 2000

Abstract

Distinct notions of message integrity (authenticity) for block-oriented symmetric encryption are defined by integrity goals to be achieved in the face of different types of attacks. These notions are partially ordered by a "dominance" relation. When chosen-plaintext attacks are considered, most integrity goals form a lattice. The lattice is extended when known-plaintext and ciphertext-only attacks are also included. The practical use of the dominance relation and lattice in defining the relative strength of different integrity notions is illustrated with common modes of encryption, such as the "infinite garble extension" modes, and simple, non-cryptographic, manipulation detection code functions, such as bitwise exclusive-or and constant functions.

1 Introduction

The fact that encryption does not provide message integrity (authenticity) is generally well-understood [19], and so is the fact that often "encryption without integrity-checking is all but useless" [8]. Less wellunderstood is the fact that message integrity depends intimately on the protection goals of the application environment and the operational threats posed by that environment. Ignoring this fact may lead to performance and usability mismatches. For example, many embedded, low-power, systems and applications can hardly afford to use any of the traditional hash functions or message authentication codes proposed to date to maintain the integrity of encrypted messages, particularly in environments exposed only to limited-scope attacks (e.g., ciphertext-only attacks).

We explore different notions of message integrity for block-oriented symmetric encryption and their relationships. These notions are expressed as a combination of integrity goals to be achieved in the face of different types of attacks, as originally suggested by Naor (viz., attribution [4]). The set of all integrity goals include both goals known to date, such as protection against existential forgery and assurance of plaintext integrity and of non-malleability, and new ones, such as maintenance of plaintext uncertainty, and protection against known- and chosen-plaintext forgery. Attack models include chosen-plaintext, known-plaintext, ciphertextonly, and chosen-ciphertext attacks. The integrity notions defined are partially ordered by a "dominance"

[^0]relation. When chosen-plaintext attacks (CPAs) are considered, most integrity goals form a lattice. This lattice is extended by the inclusion of ciphertext-only attacks (CoAs). Although we do not explicitly show it, the lattice can also be extended by the inclusion of known-plaintext attacks (KPAs). The resulting lattice shows that the strongest notion of integrity is provided by existential forgeries in CPAs and the weakest by chosen-plaintext forgeries in CoAs.

Defining notions of integrity in terms of a "dominance" relation enables us to characterize the relative strength of various symmetric encryption modes precisely. The utility of such characterization extends beyond theory; e.g., it enables us to explore the space of encryption schemes (modes) that can be composed with a variety of Manipulation Detection Code (MDC) functions (e.g., non-cryptographic MDCs such as bitwise exclusive-or, cyclic redundancy code, and even constant, functions), and used in a variety of application environments exposed to well-defined threats. As an example of schemes whose relative strength can be precisely evaluated, we analyze Campbell's "infinite garble extension" (IGE) mode of encryption [9].

The balance of this paper is organized as follows. Section 2 contains some preliminary definitions and notation, Section 3 contains the definition of the integrity notions addressed in this paper. Section 4 contains the relations among integrity notions (i.e., dominance, incomparability, separation) based on the definition of goals and attacks, and the integrity lattice and its extensions. Section 5 contains the lemmas that help characterize the integrity properties of IGE modes when used with very simple manipulation detection code (MDC) functions, and examples of other modes that are vulnerable with respect to different integrity notions when composed with specific MDC functions.

2 Background

In defining the relationships between different notion of integrity for symmetric encryption, we will use encryption modes by the triple $\Pi=(E, D, K G)$, where E is the message encryption function, D is the message decryption function, and $K G$ is the probabilistic key-generation algorithm. These encryption modes are implemented with block ciphers, which can be modeled with finite families of pseudorandom functions (PRFs). A detailed account for the use of such functions in symmetric encryption modes intended to satisfy secrecy goals is provided by Bellare et al. [2]. Since most practical encryption schemes use both the encryption and decryption functions of block ciphers, a natural way to model such ciphers is with finite families of super-pseudorandom permutations (SPRPs) [18]. We denote both PRFs and SPRPs by F below and distinguish which we mean in context.
Perhaps the most common method used to detect modifications of encrypted messages applies a MDC function g to a plaintext message and concatenates the result with the plaintext before encryption with E. The choice of MDC function g is entirely that of the designer; e.g., g could be a non-keyed hash, cyclic redundancy code (CRC), bitwise exclusive-or, or even a constant, function [19]. A message thus encrypted can be decrypted and accepted as valid only after the integrity check passes; i.e., after decryption with D, the concatenated value of function g is removed from the plaintext, and the check passes only if this value matches that obtained by applying the MDC function to the remaining plaintext [22, 21, 19]. If the integrity check does not pass, a special failure indicator, denoted by Null herein, is returned. ${ }^{1}$ The encryption scheme obtained by using this method is denoted by $\Pi \circ g=(E \circ g, D o g, K G)$, where Π is said to be composed with the MDC function g. In this mode, we denote the use of the key K in the encryption

[^1]of a plaintext string x by $\left(E^{F_{K}} \circ g\right)(x)$, and in the decryption of ciphertext string y by $\left(D^{F_{K}} o g\right)(y)$. The passing of the integrity check at decryption is denoted by $\left(D^{F_{K}} o g\right)(y) \neq N u l l$.
For any key K, a forgery is any ciphertext message that is not the output of $E^{F_{K}} o g$. A "valid" forgery is a forgery that passes the integrity check. Forgeries can be created in many ways, for example (1) by modifying the ciphertexts of legitimate messages whose plaintext may be known by the forgerer, (2) by including arbitrary, never-seen-before, strings into existing ciphertexts, or (3) by combinations of the two. Ciphertexts of legitimate message encryptions can be obtained as a result of different attack scenarios, such as chosen-plaintext attacks (CPA) or ciphertext-only attacks (CoA).

All attacks considered in this paper are characterized by q_{e} message encryptions by ($E^{F_{K}} O g$), whose plaintext input may may not be chosen by, or known, to an adversary, and q_{v} forgery verifications; i.e., decryptions by ($D^{F_{K}} o g$) performed by an adversary. The encryptions and decryption total $\mu_{e}+\mu_{v}$ bits, and take time $t_{e}+t_{v}$. Note that parameters q_{e}, μ_{e}, t_{e} can be bound by the parameters defining the chosenplaintext security of $\Pi=$ (E,D,KG) mode in some well-defined sense. (One, but not the only, way to define these bounds is to use the notion of security in the left-or-right sense for adaptive chosen-plaintext attacks [2]). In contrast, parameters $q_{e}, \mu_{e}, t_{e}, q_{v}, \mu_{v}, t_{v}$ are bound by the parameters of the function family F and by the desired probability of adversary's success. Note that $q_{v}>0$ since the adversary must be allowed verification queries. Otherwise, the adversary cannot test whether his forgeries are correct, since he does not know key K. For the purposes of this paper, it is sufficient that $q_{v}=1$; for other purposes, such as determining the attack complexity and general bounds, q_{v} may take on other values.

3 Message Integrity Notions

3.1 Goals

We define new integrity goals and interpret extant ones, in the context of Π $o g$ modes of encryption. However, it should be clear that the same goals can be defined in the context of other modes that aim at protecting the integrity (authenticity) of encrypted message, such as those that compute the keyed MAC of a message using a secret key and encrypting the message with a separate secret key [19, 7].
The strongest known goal for message integrity is that of protection against existential forgery (EF). This goal has also been known as existential unforgeability [15] and integrity of ciphertext [7]. To defeat this goal, an adversary only needs to find a "valid" forgery. Knowledge or choice of the plaintext outcome of the forgery is unnecessary to achieve this goal. Formally, an encryption scheme or mode Π og is secure against existential-forgeries if, for any forgery y,

$$
\operatorname{Pr}\left[\left(D^{F_{K}} o g\right)(y) \neq N u l l\right] \leq \epsilon,
$$

where ϵ is a negligible quantity. Throughout this paper, negligibility is used in the traditional sense [2, 20]. In addition to protection against EF goal, two other goals have been defined that have direct applicability to message integrity, namely maintenance of plaintext integrity ($P I$) [7] and assurance non-malleability (NM) $[10,4,15,7]$.
The goal of plaintext integrity (PI) requires it be infeasible for an adversary to create a "valid" forgery whose decryption is a plaintext not seen before. Formally, an encryption scheme or mode $\Pi o g$ is secure in the sense of PI if:

$$
\operatorname{Pr}\left[\left(D^{F_{K}} o g\right)(y) \neq N u l l \text { and }\left(D^{F_{K}} o g\right)(y)=x \neq x^{i}, \forall i, 1 \leq i \leq q_{e}\right] \leq \epsilon
$$

where $x^{i}, 1 \quad i \quad q_{e}$, are plaintext strings used in encryption and ϵ is a negligible quantity.
The goal of non-malleability (NM) formalizes the adversary's inability to create "valid" forgeries that are "meaningfully related" to the unknown plaintext strings corresponding to challenge ciphertext messages. Our interpretation of non-malleability is as follows. Let q_{2} be the number of challenge ciphertexts of equal length intercepted by an adversary (i.e., the q_{2} plaintexts of the intercepted ciphertexts remain unknown to the adversary). Formally, we say that an encryption scheme $\Pi o g$ is non-malleable (NM) if, for any message length m and challenge ciphertexts $y^{1}, \cdots, y^{q_{2}}$ of unknown plaintext messages $x^{1}, \cdot \cdot, x^{q_{2}} \in\{0,1\}^{m}$, and for any forgery $y \neq y^{i}, 1 \quad i \quad q_{2}$ and any relationship \mathcal{R},

$$
\operatorname{Pr}\left[\left(D^{F_{K}} o g\right)(y) \neq \text { Null and } \mathcal{R}\left(x^{1}, \cdot \cdot, x^{q_{2}},\left(D^{F_{K}} o g\right)(y)\right)\right] \quad \epsilon,
$$

where ϵ is a negligible quantity.
We define two additional integrity goals for valid forgeries, namely protection against chosen-plaintext forgery (CPF), and assurance of plaintext-uncertainty (PU). The rationale for these goals can be summarized as follows. Since different plaintext outcomes of a valid forgery can restrict an adversary's ability to take advantage of forgery to different degrees, it is sensible to examine a variety of constraints placed on these outcomes [12]. Such constraints, which were used to define the NM and PI goals above, can lead to new integrity goals and notions, further refining the integrity design space.
The goal of chosen-plaintext forgery (CPF) formalizes the adversary's inability to create a "valid" forgery whose plaintext outcome is an a priori "chosen" challenge for the adversary. In our model, the challenge plaintext string is considered to be "chosen," if every block of the string has a specific value determined prior to the attack. Hence, a plaintext string x is not chosen if there is at least a block x_{i} such that given a specific constant $a, \operatorname{Pr}\left[x_{i}=a\right] \quad \epsilon$, where ϵ is a negligible quantity. Formally, an encryption scheme Π o g is secure against chosen-plaintext forgeries if, for an a priori chosen challenge x and any forgery y,

$$
\operatorname{Pr}\left[\left(D^{F_{K}} O g\right)(y) \neq N u l l \text { and }\left(D^{F_{K_{o}}} g\right)(y)=x \neq x^{i}, \forall i, 1 \quad i \quad q_{e}, \text { is chosen }\right] \quad \epsilon,
$$

where $x^{i}, 1 \quad i \quad q_{e}$, are plaintext strings used in encryption and ϵ is a negligible quantity.
The goal of plaintext uncertainty (PU) formalizes the adversary's inability to create a "valid" forgery for which the adversary "knows" the underlying plaintext. In our model, a plaintext string x is unknown if there is at least a block x_{i} such that for any chosen constant $a, \operatorname{Pr}\left[x_{i}=a\right] \quad \epsilon$, where ϵ is a negligible quantity. A plaintext string x is "known" if every block of the string is known. Formally,

$$
\operatorname{Pr}\left[\left(D^{F_{K}} o g\right)(y) \neq N \text { ull } \Rightarrow\left(D^{F_{K}} o g\right)(y)=x \neq x^{i}, \forall i, 1 \quad i \quad q_{e}, \text { is unknown }\right] \geq \lambda
$$

where $x^{i}, 1 \quad i \quad q_{e}$, are plaintext strings used in encryption and $1 \Leftrightarrow \lambda$ is a negligible quantity.
However, if one takes the view that any constraint placed on valid forgeries can be a legitimate integrity goal then, among the additional distinct goals made possible, some may be counterintuitive from an integrity point of view. For example, the goal of known-plaintext forgery (KPF) formalizes the adversary's inability to create a "valid" forgery without "knowing" the underlying plaintext. ${ }^{2}$ Formally, an encryption scheme $\Pi o g$ is secure against know-plaintext forgeries if, for any forgery y,

$$
\operatorname{Pr}\left[\left(D^{F_{K}} o g\right)(y) \neq N u l l \Rightarrow\left(D^{F_{K}} o g\right)(y)=x \text { is known }\right] \geq \lambda
$$

where $1 \Leftrightarrow \lambda$ is a negligible quantity. Security notions using this goal can be related to other integrity notions (e.g., PI-CPA "dominates" KPF-CPA and KPF-CPA is incomparable or separated from other notions, as

[^2]shown in Section 4.4 below). Yet, this goal seems to lack an intuitive justification for possible integrity relevance.

Note that if other constraints of "known/unknown" and "chosen/not chosen" plaintext outcomes for valid forgeries that differ from the ones above are defined, other integrity goals may be obtained. Regardless of the definition chosen, the implication $(x=$ is chosen $) \quad(x=$ is known $)$, and equivalently, ($x=$ is unknown $) \quad(x=$ is not chosen $)$, must hold.

3.2 Goal - Attack Combinations

The first attack model considered here is the chosen-plaintext attack (CPA). In a CPA, an adversary can obtain samples of valid encryptions for plaintext messages of his choice even though the secret encryption key remains unknown to the adversary. In this paper, we assume that the adversary obtains the ciphertext for all his chosen plaintext before submitting any of his forgeries for verification (decryption). ${ }^{3}$. This does not represent a restriction of the adversary's power, since it can be shown that the advantage of such an adversary in breaking the integrity of a scheme is at least as high as that of an adversary that is allowed to intersperse encryptions of chosen plaintext with forgery verifications [13, 15]. Although CPAs might appear to be mostly of theoretical interest, they are actually quite practical [23, 24]. In fact, these are some of the oldest known attacks in modern cryptography (viz., the "gardening" attacks of British cryptographers during WWII [14]).
In addition to CPA models, we consider ciphertext-only attack (CoA) models; i.e., attacks in which the adversary knows the ciphertext corresponding to plaintext strings encrypted with an unknown key, but does not know the plaintexts strings; i.e., the plaintext strings are random, uniformly distributed and independent of each other. (More general definition for CoA whereby the distribution of the plaintext strings is known is also possible.) In this type of attacks, the adversary can make up his forgeries based on ciphertext of valid but unknown plaintext. These attacks can be mounted very easily in practice since they imply that the adversary only needs to eavesdrop on communication between legitimate parties to obtain the desired ciphertext, which is intuitively easier than obtaining encryptions of chosen plaintext. A stronger attack than CoA but weaker than CPA is the known-plaintext attack (KPA). In this attack model, the adversary is assumed to "know" the entire message plaintext not just its corresponding ciphertext, but cannot choose the plaintext.

Other types of attack models may be used for specific problems that include both secrecy and integrity goals; e.g., chosen-ciphertext attacks (CCAs), which often appear in entity authentication and key exchange protocols. Bellare et al. [4] use these attack models in establishing relationships among different security notions in asymmetric encryption, and suggest that these relationships among their goal-attack combinations also hold for the symmetric case. Katz and Yung [15] illustrate conditions under which such relationships hold in symmetric encryption. In this paper, we do not address these types of goal-attack combinations. However, we suggest that most goals that are combined with CCAs can be represented within the integrity lattice defined in this paper. From an integrity point of view, such attacks are not stronger than CPAs.

For most goals and attacks, the combination an integrity goal with an attack is straight forward. However, some combinations require care to ensure that specific goals and attacks can be paired. For instance, a question may arise as to whether a goal is or is not satisfied at the end of an attack. More specifically,

[^3]how can an adversary determine whether he actually "knows" the plaintext outcome of his valid forgery ? In practice, it is sometimes the case that the plaintext outcome is not, or cannot be, returned to the adversary. In such cases, we need to add a "plaintext-outcome extractor" to the definition of the goalattack combination that plays much the same role as the "plaintext extractor" in the plaintext-awareness definition. Practical examples of plaintext-outcome extractors are available for specific integrity goals defined for $\Pi o g$ schemes and attacks. For instance, the plaintext outcome extractors for the KPF goal defined for the example schemes of Section 5.3 and CPAs, can be easily derived using the equations of "message splicing and decomposition" invariant of CBC [23] and PCBC modes and simple properties of bitwise exclusive-or functions.

Care must also be exercised in defining goal-attack combinations whenever a specific goal already includes elements of an attack. For instance, in the NM-CPA combination, the definition of the NM goal already includes some elements of a CoA model; i.e., the ciphertext challenges. For the NM-CPA combination, we allow the adversary to encrypt q_{1} plaintext strings whose ciphertext have the same length as that of the challenge ciphertexts. The adversary can issue its encryption queries at any time; e.g., even after he has seen the challenge ciphertext strings. Furthermore, we require that $q_{2}>0, q_{1}+q_{2}=q_{e}$, where q_{e} is the total number of queries that can be encrypted by $E^{F_{K}} o g$, and that forgery y differs from any of the ciphertexts obtained as a result of the q_{1} chosen-plaintext encryptions. For the NM-CoA combination, we simply set $q_{1}=0$, thereby removing the adversary's ability to encrypt with $E^{F_{K}} O g$; i.e., encrypt with the same key as that used to generate the q_{2} challenge ciphertexts.

Note that combinations of CPA attacks with challenge ciphertexts, as suggested by the NM-CPA attack combination, are fairly common in distributed applications [23]. For example, consider a distributed service that uses a shared key for encrypting messages between two of its components services, S1 and S2. The adversary is one of the legitimate clients of the distributed service, and can obtain q_{1} ciphertext messages corresponding to its own chosen plaintext submitted to S 1 by eavesdropping on the communication line between S 1 and S2. Similarly, the adversary can obtain the q_{2} (challenge) ciphertexts produced by the encryption of other clients' plaintexts that remains unknown to the adversary. The distributed service changes the shared key after q_{e} encryptions performed on behalf of its client, totaling μ_{e} bits, and taking t_{e} time.

4 Relationships Among Integrity Notions

The dominance relation between integrity notions A and B, denoted by $A>B$, is defined as follows: $A>B$ if $A \quad B$ and $B \nRightarrow A$, where $A \quad B$ means that a scheme (mode) that is secure for notion A is also secure for notion B; and $B \nRightarrow A$ means that not all schemes that are secure for notion B are secure in notion A (i.e., notions B and A are separable). Integrity notions A and B are incomparable if $A \nRightarrow B$ and $B \nRightarrow A$, and equivalent if $A \quad B$ and $B \quad A$. These relations have also been used by Katz and Yung [15] for different security notions in symmetric encryption (i.e., indistinguishability and non-malleability in different types of attacks). The relations of implication () and separability (\nRightarrow) were originally introduced by Bellare et al. for security notions in asymmetric encryption, and used later for some integrity notions in symmetric encryption [4, 7].

In proving the dominance, incomparability, and separation relations between different notions of integrity, we use (1) integrity goal definitions, for the (simple) $A \quad B$ proofs, and (2) specific $\Pi o g$ modes, to provide the necessary counter-examples for $B \nRightarrow A$ proofs.

Figure 1: An arrow represents a "dominance" relation ($>$), and there is a path from \mathbf{A} to \mathbf{B} if and only if A $>$ B. Lack of an arrow and path between two notions indicates incomparable or separated notions. The number on an arrow represents the theorem number that establishes this relationship.

4.1 Dominance

Theorem 1: EF-ATK > PI-ATK Proof
(1) EF-ATK PI-ATK.

An encryption scheme (mode) that is secure against existential forgeries (EFs) in an attack (i.e., CPA or (oA) is also secure against integrity of plaintexts (PI) forgeries in the same attack.
Part (1) of the proof follows immediately from the definition of EF and PI goals, as shown by Bellare and Namprempre [7].
(2) $\mathrm{PI}-\mathrm{ATK} \nRightarrow$ EF-ATK.

An encryption scheme (mode) that is PI secure in an attack (i.e., CPA or CoA) is not necessarily secure against EF forgeries in the same attack.

Part (2) of the proof is based on a counter-example. Let scheme Π o g be an arbitrary EF-ATK secure scheme. (Note that such schemes exist [16, 17, 13].) We show that any such scheme can be transformed into a scheme that is PI-ATK secure but not EF-ATK secure. Let us define the modified scheme as $\Pi^{\prime} \circ g=\left(E^{\prime} \circ g, D^{\prime} \circ g, K G\right)$ that is obtained as follows:

$$
\begin{aligned}
\left(E^{\prime} \circ g\right)(x) & =((E \circ g)(x)) \| y_{0} \\
\left(D^{\prime} \circ g\right)\left(y \| y_{0}\right) & =(D \circ g)(y)
\end{aligned}
$$

i.e., the encryption is done by appending a random block y_{0} to $y=(E \circ g)(x)\left(y_{0}\right.$ is unrelated to the plaintext or the rest of the scheme.) The plaintext is obtained by applying the $D o g$ function to the ciphertext remaining after the removal of the random block y_{0}.
It is clear that the scheme is not EF secure, because once the adversary obtains a ciphertext $(E \circ g)(x) \| y_{0}$, he generates a forgery in which he replaces the random block y_{0} by a different block; i.e., $y^{\prime}=(E \circ g)(x) \| y_{0}^{\prime}, y_{0}^{\prime} \neq$ y_{0}. This forgery obviously decrypts correctly. Hence, the scheme is not EF secure.

Now, to show that the scheme (E^{\prime} o g, D^{\prime} o $g, K G$) is PI secure, we use the fact the class of all possible forgeries can be divided into two complementary classes as follows:
(a) forgeries of type $y \| y_{0}$, where $y=y^{i}=(E \circ g)\left(x^{i}\right)$ (for some index $\left.i, 1 \quad i \quad q_{e}\right)$ is the $E o g$ encrypted part of $x^{i}, 1 \quad i \quad q_{e}$. These forgeries have the property that $y_{0} \neq y_{0}^{i}$, hence the forgery is not the ciphertext of a previous query.
(b) forgeries of type $y \| y_{0}$, where $y \neq y^{i}=(E \circ g)\left(x^{i}\right), \forall i, 1 \quad i \quad q_{e}$.

Any forgery in class (a) decrypts correctly as follows:

$$
\left(D^{\prime} \circ g\right)\left(y \| y_{0}\right)=\left(D^{\prime} \circ g\right)\left(y^{i} \| y_{0}\right)=(D \circ g)\left(y^{i}\right)=x^{i}
$$

Hence, for any forgery from class (a):

$$
\operatorname{Pr}\left[\left(D^{\prime} \circ \text { o } g\right)\left(y \| y_{0}\right) \neq N \text { ull and }\left(D^{\prime} \circ g\right)(y) \neq x^{i}, \forall i, 1 \quad i \quad q_{e}\right]=0
$$

For any forgery from class (b), we will use the fact that the scheme (E o $g, D o g, K G$) is EF secure. Since $y \neq y^{i}, \forall i, 1 \quad i \quad q_{e}$, then y is a valid forgery for the EF secure scheme ($\left.E \circ g, D \circ g, K G\right)$. Hence,

$$
\begin{gathered}
\operatorname{Pr}\left[\left(D^{\prime} \circ g\right)\left(y \| y_{0}\right) \neq N \text { vull } \text { and }\left(D^{\prime} \circ g\right)\left(y \| y_{0}\right) \neq x^{i}, \forall i, 1 \quad i \quad q_{e}\right] \\
\operatorname{Pr}\left[\left(D^{\prime} \circ g\right)\left(y \| y_{0}\right) \neq N u l l\right]=\operatorname{Pr}[(D \circ g)(y) \neq N u l l] \quad \epsilon,
\end{gathered}
$$

where ϵ is negligible. Hence, for any forgery (either from class (a) or class (b)),

$$
\operatorname{Pr}\left[\left(D^{\prime} \circ g\right)\left(y \| y_{0}\right) \neq N u l l \text { and }\left(D^{\prime} \circ g\right)\left(y \| y_{0}\right) \neq x^{i}, \forall i, 1 \quad i \quad q_{e}\right] \quad \epsilon,
$$

where ϵ is negligible; i.e., the scheme (E^{\prime} o g, D^{\prime} o $g, K G$) is PI secure.

Theorem 2: EF-CPA > PU-CPA Proof

(1) EF-CPA PU-CPA

An encryption scheme (mode) that is secure against existential forgeries (EFs) in a CPA is also secure against PU forgeries in the same attack.

Part (1) of the proof follows immediately from goal definitions.

$$
\begin{aligned}
& \operatorname{Pr}\left[\left(D^{F_{K}} \circ g\right)(y) \neq N \text { ull } \quad\left(D^{F_{K}} \text { o } g\right)(y)=x \neq x^{i}, \forall i, 1 \quad i \quad q_{e}, \text { is unknown }\right] \\
& =1 \Leftrightarrow \operatorname{Pr}\left[\left(D^{F_{K}} \text { o } g\right)(y) \neq N \text { ull } \text { and }\left(D^{F_{K}} o g\right)(y)=x=x^{i}, \text { for some } i, 1 \quad i \quad q_{e}, \text { is known }\right] \\
& \quad 1 \Leftrightarrow \operatorname{Pr}\left[\left(D^{F_{K}} o g\right)(y) \neq N u l l\right] .
\end{aligned}
$$

However, if a scheme is EF secure, then for any forgery $y, \operatorname{Pr}\left[\left(D^{F_{K}}\right.\right.$ o $\left.\left.g\right)(y) \neq N u l l\right] \quad \delta$, where δ is negligible. Thus,

$$
\operatorname{Pr}\left[\left(D^{F_{K}} O g\right)(y) \neq N u l l \quad\left(D^{F_{K}} O g\right)(y)=x \neq x^{i}, \forall i, 1 \quad i \quad q_{e}, \text { is unknown }\right] \quad 1 \Leftrightarrow \delta \stackrel{\text { def }}{=} \lambda ;
$$

i.e., the scheme is PU-CPA secure.

(2) $\mathrm{PU}-\mathrm{CPA} \nRightarrow \mathrm{EF}-\mathrm{CPA}$

An encryption scheme (mode) that is secure against plaintext-uncertain (PU) forgeries in an CPA attack is not necessarily secure against EF forgeries in the same attack.
In Part (2) of the proof, we show that there is a scheme that is PU-CPA secure, but is not EF-CPA secure. Let $(E \circ g, D \circ g, K G)$ be an EF-CPA secure scheme. We show that the derived scheme ($\left.E^{\prime} \circ g, D^{\prime} \circ g, K G\right)$, where $\left(E^{\prime} \circ g\right)(x)=\left(E^{F_{K}} \circ g\right)(w \oplus x)\left\|r, w=f(r), r \stackrel{\mathcal{R}}{\leftarrow}\{0,1\}^{l}, w \oplus x \stackrel{\text { def }}{=} w \oplus x_{1}\right\| w \oplus x_{2} \quad \| w \oplus x_{n}$, and $f=F_{K}$ is a PRF, is PU-CPA, but it is not EF-CPA.
The derived scheme is clearly not EF-CPA secure. For instance, let the adversary issue an encryption query with plaintext x and obtain the corresponding ciphertext string $y=(E \circ g)(w \oplus x) \| r$. Then the adversary can construct the forgery $y^{\prime} \neq y$, where $y^{\prime}=(E \circ g)(w \oplus x) \| z$ where $z \neq r$. This forgery passes the integrity check, and $\left(D^{F_{K}}\right.$ o $\left.g\right)\left(y^{\prime}\right) \neq$ Null. To see this, let $w^{\prime}=f(z) \neq w$. Then $D^{F_{K}}\left(y^{\prime}\right)=$
$w \oplus x \| g(w \oplus x)$ and, hence, verifies the integrity condition. Furthermore, the plaintext outcome of forgery y^{\prime} is $\left(D^{\prime} \circ g\right)\left(y^{\prime}\right)=x^{\prime}=w \oplus w^{\prime} \oplus x$. Hence, the scheme is not EF-CPA secure.

We show that the derived scheme is PU-CPA secure. To see this, let y^{\prime} be the adversary's forgery after q_{e} encryption queries with chosen plaintext input. Write $y^{\prime}=\tilde{y} \| z$, for some z. Two complementary cases are identified for the values of the forgery prefix \tilde{y}, namely:
(a) there exists $i, 1 \quad i \quad q_{e}: \tilde{y}=(E \circ g)\left(x^{i}\right)$;
(b) $\forall i, 1 \quad i \quad q_{e}: \tilde{y} \neq(E \circ g)\left(x^{i}\right)$.

In case (a), $z \neq r^{i}$, hence w and w^{i} are random, uniformly distributed, and independent (here, we assume $f^{\mathcal{R}} R$). The forgery passes the integrity check since the derived scheme is not EF-CPA secure, and the its plaintext outcome is

$$
x=\left(w \oplus w^{i}\right) \oplus x^{i} .
$$

Hence, any block $j, 1 \quad j \quad\left|x^{i}\right|=|x|$, of the plaintext outcome can be written as $x_{j}=\left(w \oplus w^{i}\right) \oplus x_{j}^{i}$. Hence, for any arbitrary constant a

$$
\operatorname{Pr}\left[x_{j}=a\right]=\operatorname{Pr}\left[\left(w \oplus w^{i}\right) \oplus x_{j}^{i}=a\right]=\frac{1}{2^{l}}
$$

because w, w^{i} are random, uniformly distributed, and independent, and x_{j}^{i} is a known constant (in the CPA attack). For $f^{\mathcal{R}} F$, where F is a (q, t, ϵ) PRF family, we obtain

$$
\operatorname{Pr}\left[x_{j}=a\right]=\operatorname{Pr}\left[\left(w \oplus w^{i}\right) \oplus x_{j}^{i}=a\right]=\frac{1}{2^{l}}+\epsilon .
$$

Hence, for any forgery in case (a), $\left(D^{F_{K}} o g\right)\left(y^{\prime}\right) \neq$ Null and

$$
\begin{aligned}
& \operatorname{Pr}\left[\left(D^{\prime} \circ g\right)\left(y^{\prime}\right) \neq N \text { ull and }\left(D^{\prime} \circ g\right)\left(y^{\prime}\right)=x^{\prime} \neq x^{i}, \forall i, 1 \quad i \quad q_{e}, \text { is known }\right] \\
& \quad=\operatorname{Pr}\left[\left(D^{\prime} \circ g\right)\left(y^{\prime}\right)=x^{\prime} \neq x^{i}, \forall i, 1 \quad i \quad q_{e}, \text { is known }\right] \quad \operatorname{Pr}\left[x_{j}=a\right]=\frac{1}{2^{l}}+\epsilon .
\end{aligned}
$$

In case (b), the forgery prefix \tilde{y} is itself a forgery for the given secure EF-CPA scheme ($E \circ g, D \circ g, K G$), and hence:

$$
\begin{aligned}
& \operatorname{Pr}\left[\left(D^{\prime} \circ g\right)\left(y^{\prime}\right) \neq N u l l \text { and }\left(D^{\prime} \circ g\right)\left(y^{\prime}\right)=x^{\prime} \neq x^{i}, \forall i, 1 \quad i \quad q_{e}, \text { is known }\right] \\
& \operatorname{Pr}\left[\left(D^{\prime} \circ g\right)\left(y^{\prime}\right) \neq N u l l\right]=\operatorname{Pr}\left[\left(D^{F_{K}} \circ g\right)(\tilde{y}) \neq N u l l\right] \quad \delta,
\end{aligned}
$$

where δ is negligible. Hence, for any forgery,

$$
\operatorname{Pr}\left[\left(D^{\prime} \circ g\right)\left(y^{\prime}\right) \neq N u l l \text { and }\left(D^{\prime} \circ g\right)\left(y^{\prime}\right)=x^{\prime} \neq x^{i}, \forall i, 1 \quad i \quad q_{e}, \text { is known }\right] \quad \epsilon^{\prime} \stackrel{\text { def }}{=} \max \left(\frac{1}{2^{l}}+\epsilon, \delta\right),
$$

where ϵ^{\prime} is negligible. Or, equivalently,
$\operatorname{Pr}\left[\left(D^{\prime} \circ g\right)\left(y^{\prime}\right) \neq N\right.$ ull $\quad\left(D^{\prime} \circ g\right)\left(y^{\prime}\right)=x^{\prime} \neq x^{i}, \forall i, 1 \quad i \quad q_{e}$, is unknown $] \quad 1 \Leftrightarrow \epsilon^{\prime} \stackrel{\text { def }}{=} \lambda$, where $1 \Leftrightarrow \lambda$ is a negligible quantity. Hence, the derived scheme ($E^{\prime} \circ g, D^{\prime} \circ g, K G$) is PU-CPA secure.

Theorem 3: EF-CPA > NM-CPA Proof

(1) EF-ATK NM-ATK

An encryption scheme (mode) that is secure against existential forgeries (EFs) in an attack ATK (i.e., CPA or CoA) is also secure against NM forgeries in the same attack.

Part (1) of the proof follows immediately from goal definitions.

$$
\operatorname{Pr}\left[\left(D^{F_{K}} o g\right)\left(y^{\prime}\right) \neq N u l l \text { and } \mathcal{R}\left(x^{1}, \quad, x^{q_{2}},\left(D^{F_{K}} o g\right)\left(y^{\prime}\right)\right)\right] \quad \operatorname{Pr}\left[\left(D^{F_{K}} o g\right)(y) \neq N u l l\right] .
$$

However, if a scheme is EF secure, then for any forgery $y \operatorname{Pr}\left[\left(D^{F_{K}} o g\right)(y) \neq N u l l\right] \quad \epsilon$, where ϵ is negligible. Thus,

$$
\operatorname{Pr}\left[\left(D^{F_{K}} o g\right)\left(y^{\prime}\right) \neq \text { Null and } \mathcal{R}\left(x^{1}, \quad, x^{q_{2}},\left(D^{F_{K}} o g\right)\left(y^{\prime}\right)\right)\right] \quad \epsilon,
$$

for any forgery $y \neq y^{i}, 1 \quad i \quad q_{2}$, which means that the scheme is NM-CPA secure.
(2) NM-CPA \nRightarrow EF-CPA

An encryption scheme (mode) that is non-malleable in a CPA attack (i.e., NM-CPA secure) is not necessarily secure in an EF-CPA attack.

In Part (2) of the proof, we show that there is a scheme that is NM-CPA secure, but is not EF-CPA secure. In Section 5, we show that the scheme BIGE\$-nzg is NM-CPA secure (Lemma 6) but not EF-CPA secure (Lemma 7).

Theorem 4: PU-CPA > CPF-CPA
 Proof
 (1) PU-CPA CPF-CPA

An encryption scheme (mode) that is secure against plaintext-uncertain (PU) forgeries in a CPA is also secure against chosen-plaintext forgeries (CPFs) in the same attack.
Part (1) of the proof follows immediately from goal definitions. If a scheme is PU-CPA secure, then for any forgery y

$$
\operatorname{Pr}\left[\left(D^{F_{K}} o g\right)(y) \neq \text { Null } \quad\left(D^{F_{K}} o g\right)(y)=x \neq x^{i}, \forall i, 1 \quad i \quad q_{e}, \text { is unknown }\right] \quad \lambda,
$$

where $x^{i}, 1 \quad i \quad q_{e}$, are plaintext strings used in encryption and $1 \Leftrightarrow \lambda$ is a negligible quantity. However,

$$
\left(\left(D^{F_{K}} o g\right)(y)=x \neq x^{i}, \forall i, 1 \quad i \quad q_{e}, \text { is chosen }\right) \quad\left(\left(D^{F_{K}} o g\right)(y)=x \text { is known }\right)
$$

Or, equivalently,
$\left(\left(D^{F_{K}} \circ g\right)(y)=x\right.$ is unknown $) \quad\left(D^{F_{K}} \circ g\right)(y)=x=x^{i}$, for some $i, 1 \quad i \quad q_{e}$, is not chosen $)$.
This implies that

$$
\begin{aligned}
& \left(\left(D^{F_{K}} O g\right)(y)=x \neq x^{i}, \forall i, 1 \quad i \quad q_{e}, \text { is unknown }\right) \\
& \quad\left(\left(D^{F_{K}} O g\right)(y)=x=x^{i}, \text { for some } \quad i, 1 \quad i \quad q_{e}, \text { is not chosen }\right)
\end{aligned}
$$

Hence,
$\lambda \quad \operatorname{Pr}\left[\left(\left(D^{F_{K}}\right.\right.\right.$ o $\left.\left.g\right)(y) \neq N u l l\right) \quad\left(\left(D^{F_{K}}\right.\right.$ og $)(y)=x \neq x^{i}, \forall i, 1 \quad i \quad q_{e}$, is unknown $)$
and

$$
\begin{aligned}
& \left(\left(D^{F_{K}} \text { og } g\right)(y)=x \neq x^{i}, \forall i, 1 \quad i \quad q_{e}, \text { is unknown }\right) \\
& \left.\left(\left(D^{F_{K}} O g\right)(y)=x=x^{i}, \text { for some i } i, 1 \quad i \quad q_{e}, \text { is not chosen }\right)\right] \\
& \quad \operatorname{Pr}\left[\left(\left(D^{F_{K}} O g\right)(y) \neq N u l l\right) \quad\left(\left(D^{F_{K}} \text { og }\right)(y)=x=x^{i}, \text { for some i } i, 1 \quad i \quad q_{e}, \text { is not chosen }\right)\right]
\end{aligned}
$$

or, equivalently,

$$
\lambda \quad 1 \Leftrightarrow \operatorname{Pr}\left[\left(D^{F_{K}} o g\right)(y) \neq N u l l \text { and }\left(D^{F_{K}} o g\right)(y)=x \neq x^{i}, \forall i, 1 \quad i \quad q_{e}, \text { is chosen }\right]
$$

or,

$$
\operatorname{Pr}\left[\left(D^{F_{K}} o g\right)(y) \neq N u l l \text { and }\left(D^{F_{K}} o g\right)(y)=x \neq x^{i}, \forall i, 1 \quad i \quad q_{e}, \text { is chosen }\right] \quad 1 \Leftrightarrow \lambda \stackrel{\text { def }}{=} \epsilon,
$$

which means that the scheme is CPF-CPA secure.
(2) CPF-CPA \nRightarrow PU-CPA

An encryption scheme (mode) that is secure against chosen-plaintext forgeries (CPFs) in a CPA attack is not necessarily secure against PU forgeries in the same attack.

Part (2) of the proof follows immediately from Lemmas 4 and 5 , Section 5. That is, the scheme IGE $\$-z_{0}$ is CPF-CPA secure (Lemma 5) and is not PU-CPA secure (Lemma 4).

Theorem 5: PI-CPA > CPF-CPA Proof

(1) PI-ATK CPF-ATK

An encryption scheme (mode) that is secure against plaintext-integrity (PI) forgeries in an attack ATK (i.e., CPA or CoA) is also secure against chosen-plaintext forgeries (CPFs) in the same attack.

Part (1) of the proof follows immediately from goal definitions. For any forgery y,

$$
\begin{gathered}
\operatorname{Pr}\left[\left(D^{F_{K}} \circ g\right)(y) \neq N \text { ull } \text { and }\left(D^{F_{K}} o g\right)(y)=x \neq x^{i}, \forall i, 1 \quad i \quad q_{e}, \text { is chosen }\right] \\
\quad \operatorname{Pr}\left[\left(D^{F_{K}} o g\right)(y) \neq N \text { ull } \text { and }\left(D^{F_{K}} O g\right)(y)=x \neq x^{i}, \forall i, 1 \quad i \quad q_{e}\right] \quad \epsilon,
\end{gathered}
$$

since the scheme supposed to be PI-ATK secure.
(2) $\mathrm{CPF}-\mathrm{CPA} \nRightarrow \mathrm{PI}-\mathrm{CPA}$

An encryption scheme (mode) that is secure against chosen-plaintext forgeries (CPFs) in a CPA attack is not necessarily secure against PI forgeries in the same attack.
Part (2) of the proof follows immediately from Lemmas 4 and 5 , Section 5. That is, the scheme IGE $\$-z_{0}$ is CPF-CPA secure (Lemma 5) and is not PI-CPA secure (Lemma 4).

Theorem 6: NM-CPA > CPF-CPA
 Proof

(1) NM-CPA CPF-CPA

An encryption scheme (mode) that is non-malleable (NM) in a CPA is also secure against chosen-plaintext forgeries (CPFs) in the same attack.

Part (1) of the proof follows immediately from goal definitions. For any message length m and challenge ciphertexts $y^{1}, \quad, y^{q_{2}}$ of unknown plaintext messages $x^{1}, \quad, x^{q_{2}} \in\{0,1\}^{m}$, and for any forgery $y \neq y^{i}, 1$ $i \quad q_{2}$ and any relationship \mathcal{R},

$$
\operatorname{Pr}\left[\left(D^{F_{K}} o g\right)(y) \neq N u l l \text { and } \mathcal{R}\left(x^{1}, \quad, x^{q_{2}},\left(D^{F_{K}} o g\right)(y)\right)\right] \quad \epsilon,
$$

where ϵ is a negligible quantity. Hence, by definition,

$$
\operatorname{Pr}\left[\left(D^{F_{K}} O g\right)(y) \neq N \text { ull } \quad \mathcal{R}\left(x^{1}, \quad, x^{q_{2}},\left(D^{F_{K}} O g\right)(y)\right) \text { does not exist }\right] \quad 1 \Leftrightarrow \epsilon \stackrel{\text { def }}{=} \lambda
$$

However,

$$
\left(\left(D^{F_{K}} \circ g\right)(y)=x \neq x^{i}, \forall i, 1 \quad i \quad q_{1}, \text { is chosen }\right) \quad\left(\mathcal{R}\left(x^{1}, \quad, x^{q_{2}},\left(D^{F_{K}} O g\right)(y)\right) \text { exists }\right),
$$

is true, since the plaintext challenge in a successful CPF-CPA attack could always be $x=111 \quad 1$ (i.e., a block of 1's), which means that $\mathcal{R} \stackrel{\text { def }}{=}$ ". Equivalently,
$\left(\mathcal{R}\left(x^{1}, \quad, x^{q_{2}},\left(D^{F_{K}} O g\right)(y)\right)\right.$ does not exist $) \quad\left(\left(D^{F_{K}} o g\right)(y)=x=x^{i}\right.$ for some $i, 1 \quad i \quad q_{1}$, is not chosen $)$.
Hence,

$$
\begin{aligned}
& \operatorname{Pr}\left[\left(\left(D^{F_{K}} \circ g\right)(y) \neq N u l l\right) \quad\left(\left(D^{F_{K}} O g\right)(y)=x=x^{i} \text { for some } i, 1 \quad i \quad q_{1}, \text { is not chosen }\right)\right] \\
& \quad \operatorname{Pr}\left[\left(\left(D^{F_{K}} o g\right)(y) \neq N u l l\right) \quad\left(\mathcal{R}\left(x^{1}, \quad, x^{q_{2}},\left(D^{F_{K}} o g\right)(y)\right) \text { does not exist }\right)\right. \\
& \text { and }\left(\mathcal{R}\left(x^{1}, \quad, x^{q_{2}},\left(D^{F_{K}} \circ g\right)(y)\right) \text { does not exist }\right) \\
& \left.\quad\left(\left(D^{F_{K}} o g\right)(y)=x=x^{i} \text { for some } i, 1 \quad i \quad q_{1}, \text { is not chosen }\right)\right] \\
& \quad \lambda .
\end{aligned}
$$

This means that

$$
\operatorname{Pr}\left[\left(D^{F_{K}} o g\right)(y) \neq N u l l \text { and }\left(D^{F_{K}} o g\right)(y)=x \neq x^{i}, \forall i, 1 \quad i \quad q_{1}, \text { is chosen }\right] \quad \epsilon,
$$

which means that the scheme is CPF-CPA secure.

(2) $\mathrm{CPF}-\mathrm{CPA} \nRightarrow$ NM-CPA

An encryption scheme (mode) that is secure against chosen-plaintext forgeries (CPFs) in a CPA attack is not necessarily non-malleable in the same attack.

Part (2) of the proof follows immediately from Lemmas 4 and 5 , Section 5. That is, the scheme IGE $\$-z_{0}$ is CPF-CPA secure (Lemma 5) and is not NM-CPA secure (Lemma 4).

4.2 Incomparability and Separability

Theorem 7: PU-CPA and PI-CPA are Incomparable Proof

(1) $\mathrm{PU}-\mathrm{CPA} \nRightarrow \mathrm{PI}-\mathrm{CPA}$

An encryption scheme (mode) that is PU secure in a CPA attack is not necessarily secure against PI forgeries in the same attack.

For Part (1) of the proof, we choose the same scheme as in the proof of Theorem 2, namely, $\left(E^{\prime} \circ g, D^{\prime}\right.$ o $\left.g, K G\right)$, where $\left.\left(E^{\prime} \circ g\right)(x)=\left(E^{F_{K}} \circ g\right)(w \oplus x) \| r, w=f(r), r^{\mathcal{R}} \quad 0,1\right\}^{l}, w \oplus x \stackrel{\text { def }}{=} w \oplus x_{1}\left\|w \oplus x_{2} \quad\right\| w \oplus x_{n}$, and $f=F_{K}$. We showed in the proof of Theorem 2 that this scheme is PU-CPA secure. Here, we show that this scheme is not PI-CPA secure.

Let us choose the forgery $y^{\prime}=y\left\|r=(E \circ g)\left(x^{i}\right)\right\| r$, where $x^{i}, 1 \quad i \quad q_{e}$ is an old plaintext string. The underlying plaintext for this forgery (which decrypts correctly) is

$$
x^{\prime}=\left(w \oplus w^{i}\right) \oplus x^{i} .
$$

Hence, for $f^{\mathcal{R}} R$ and for any old plaintext string $p, 1 \quad p \quad q_{e}$ and for any block index $j, 1 \quad j$ $\min \left(\left|x^{\prime}\right|,\left|x^{p}\right|\right)$

$$
\operatorname{Pr}\left[x_{j}^{\prime}=x_{j}^{p}\right]=\operatorname{Pr}\left[\left(w \oplus w^{i}\right) \oplus x_{j}^{i}=x_{j}^{p}\right]=\frac{1}{2^{l}},
$$

since w, w^{i} are random, uniformly distributed, and independent. For $f^{\mathcal{R}} F$, where F is a $(q, t, \epsilon) \operatorname{PRF}$ family,

$$
\operatorname{Pr}\left[x_{j}^{\prime}=x_{j}^{p}\right]=\frac{1}{2^{l}}+\epsilon .
$$

Hence, $\left(D^{\prime}\right.$ og $)\left(y^{\prime}\right) \neq N u l l$, but

$$
\operatorname{Pr}\left[\left(D^{\prime} \circ g\right)\left(y^{\prime}\right)=x^{p}, \text { for some } i, 1 \quad p \quad q_{e}\right] \quad \operatorname{Pr}\left[x_{j}^{\prime}=x_{j}^{p}\right] \quad \frac{1}{2^{l}}+\epsilon
$$

Hence,

$$
\begin{aligned}
& \operatorname{Pr}\left[\left(D^{\prime} \circ g\right)\left(y^{\prime}\right) \neq N \text { ull and }\left(D^{\prime} \circ g\right)\left(y^{\prime}\right)=x^{\prime} \neq x^{i}, \forall i, 1 \quad i \quad q_{e}\right] \\
& =\operatorname{Pr}\left[\left(D^{\prime} \circ g\right)\left(y^{\prime}\right)=x^{\prime} \neq x^{i}, \forall i, 1 \quad i \quad q_{e}\right] \\
& =1 \Leftrightarrow \operatorname{Pr}\left[\left(D^{\prime} \circ g\right)\left(y^{\prime}\right)=x^{i} \text {, for some } i, 1 \quad i \quad q_{e}\right] \quad 1 \Leftrightarrow \frac{1}{2^{l}} \Leftrightarrow \epsilon,
\end{aligned}
$$

and hence, it cannot be negligible.
(2) PI-ATK \nRightarrow PU-ATK

An encryption scheme (mode) that is PI secure in an attack (i.e., CPA or CoA) is not necessarily secure against PU forgeries in the same attack.
For Part (2) of the proof, we construct the encryption scheme (E^{\prime} o $g, D^{\prime} \circ g, K G$) from the EF secure encryption scheme ($E \circ g, D \circ g, K G)$ in the same way as in the proof of Theorem 1. The encryption scheme (E^{\prime} o g, D^{\prime} o $g, K G$) is thus PI secure. We show that this scheme is not PU secure. Let us construct a forgery in the same way, namely $y^{\prime}=(E \circ g)(x) \| y_{0}^{\prime}, y_{0}^{\prime} \neq y_{0}$, where x is a plaintext used at encryption. This forgery obviously decrypts correctly; i.e., $\left(D^{\prime} \circ g\right)\left(y^{\prime}\right)=x$ is known, hence,

$$
\operatorname{Pr}\left[\left(D^{\prime} \circ g\right)\left(y^{\prime}\right) \neq N u l l \text { and }\left(D^{\prime} \circ g\right)\left(y^{\prime}\right)=x^{\prime} \text { is known }\right]=1 .
$$

Hence, the scheme is not PU secure.

Theorem 8: NM-CPA is separable from PI-CPA, PU-CPA, and KPF-CPA Proof

In Section 5, we show that scheme BIGE $\$$-nzg is NM-CPA secure (Lemma 6), but not PI-CPA and KPFCPA secure (Lemma 7). Hence, NM-CPA \nRightarrow PI-CPA and NM-CPA \nRightarrow KPF-CPA.

When implemented with the CBC mode and used to encrypt messages consisting of an integer number of l-bit blocks (possibly after padding), the Variable Input Length (VIL) cipher of Bellare and Rogaway [5, 6] can be shown generate at least a random block in the plaintext outcome of any forgery produced in a CPA [11]. Hence, the composition of this scheme with the MDC function nzg(x) defined for the BIGE $\$-\mathrm{nzg}$ scheme (viz., Section 5), namely VIL-CBC-nzg, is a PU-CPA secure scheme. However, this scheme is not NM-CPA secure for the same reasons the scheme IGE $\$-z_{0}$ is not NM-CPA secure (viz., end of the Proof of Lemma 4). Hence, PU-CPA \nRightarrow NM-CPA.

4.3 Extensions of the CPA Lattice

Theorems 1-8 show that the integrity goals defined in Section 3 form a lattice for chosen-plaintext attacks. In this section we show that, if we also consider ciphertext-only attacks, the top of the lattice remains EFCPA, but CPF-CoA becomes the new bottom of the lattice.

Theorem 9: EF-CPA > EF-CoA

Proof
(1) EF-CPA EF-CoA An encryption scheme (mode) that is EF-CPA secure is also secure against EFCoA attacks.

Part (1) of the proof follows directly from the following observation.

Observation:

An encryption scheme (mode) that is secure with respect to a given goal (i.e., EF, PI, PU, PA, NM, CPA) in an CPA attack is also secure with respect to the same goal in a CoA attack.

This is true because an adversary that breaks integrity with respect to a goal in a CoA attack will break security in a CPA attack, since the adversary can obviously ignore the plaintext and use only the ciphertext obtained.
(2) $\mathrm{EF}-\mathrm{CoA} \nRightarrow \mathrm{EF}-\mathrm{CPA}$ An encryption scheme (mode) that is EF-CoA secure is not necessarily secure against EF-CPA attacks.

Part (2) of the proof follows directly from Lemmas 2 and 4, Section 5. That is scheme IGE $\$-z_{0}$ is EF-CoA secure (Lemma 2) and is not EF-CPA secure (Lemma 4).

Theorem 10: CPF-CPA > CPF-CoA

Proof

(1) CPF-CPA CPF-CoA An encryption scheme (mode) that is CPF-CPA secure is also secure against CPF-CoA attacks.

Part (1) of the proof follows directly from the the observation of the Proof in Theorem 9.
(2) $\mathrm{CPF}-\mathrm{CoA} \nRightarrow \mathrm{CPF}-\mathrm{CPA}$ An encryption scheme (mode) that is CPF-CoA secure is not necessarily secure against CPF-CPA attacks.

Part (2) of the proof is based on a counter-example. Let scheme Π o g be consist of $\Pi \equiv \mathrm{XOR} \$[2]$, and $g(x) \equiv\{$ per-block, bitwise exclusive-or\}. It is easy to see that this scheme is CPF-CoA secure since any modification of the ciphertext that causes the bitwise exclusive-or check to pass remains unknown to (and therefore cannot be a priori predicted by) the adversary. In contrast, if the adversary can encrypt plaintext of his choice, he can (1) encrypt a plaintext message that differs from the challenge plaintext by a single bit, and (2) simply flip the appropriate bit of the ciphertext obtained.

4.4 Other Relationships

Theorem 11: PI-CPA > KPF-CPA
 Proof

(1) PI-CPA KPF-CPA

An encryption scheme (mode) that is PI-CPA secure is also KPF-CPA secure.
Part (1) of the proof follows immediately from goal definitions. If a scheme that is PI secure, then for any forgery y

$$
\operatorname{Pr}\left[\left(D^{F_{K}} o g\right)(y) \neq N u l l \text { and }\left(D^{F_{K}} o g\right)(y)=x \neq x^{i}, \forall i, 1 \quad i \quad q_{e}\right] \quad \epsilon,
$$

where $x^{i}, 1 \quad i \quad q_{e}$ are the plaintext strings used for the encryption queries and ϵ is a negligible quantity.

Equivalently,

$$
1 \Leftrightarrow \operatorname{Pr}\left[\left(D^{F_{K}} o g\right)(y) \neq \text { Null } \quad\left(D^{F_{K}} o g\right)(y)=x=x^{i}, \text { for some } i, 1 \quad i \quad q_{e}\right] \quad \epsilon,
$$

or,

$$
\operatorname{Pr}\left[\left(D^{\left.\left.F_{K} O g\right)(y) \neq N u l l \quad\left(D^{F_{K}} O g\right)(y)=x=x^{i}, \text { for some } i, 1 \quad i \quad q_{e}\right] \quad 1 \Leftrightarrow \epsilon \stackrel{\text { def }}{=} \lambda . . . ~ . ~}\right.\right.
$$

However, $\left(\left(D^{\left.F_{K} o g\right)}(y)=x=x^{i}\right.\right.$, for some $\left.i, 1 \quad i \quad q_{e}\right) \quad\left(\left(D^{\left.F_{K} o g\right)(y)=x}\right.\right.$ is known $)$. Hence,

$$
\begin{aligned}
& \lambda \quad \operatorname{Pr}\left[\left(\left(D^{\left.F_{K} o g\right)(y) \neq N u l l} \quad\left(D^{\left.F_{K} o g\right)}(y)=x=x^{i} \text { for some } i, 1 \quad i \quad q_{e}\right)\right.\right.\right. \\
& \text { and }\left(\left(D^{F_{K}} o g\right)(y)=x=x^{i} \text { for some } i, 1 \quad i \quad q_{e}\right) \quad\left(D^{\left.\left.F_{K} o g\right)(y)=x \text { is known }\right)}\right] \\
& \quad \operatorname{Pr}\left[\left(D^{F_{K}} o g\right)(y) \neq N \text { ull } \quad\left(D^{F_{K}} o g\right)(y)=x \text { is known }\right]
\end{aligned}
$$

which means that the scheme is KPF-CPA secure.
(2) $\mathrm{KPF}-\mathrm{CPA} \nRightarrow \mathrm{PI}-\mathrm{CPA}$

An encryption scheme (mode) that is KPF-CPA secure is not necessarily secure against PI-CPA attacks.
Part (2) of the proof follows immediately from the counter-example provided by Lemmas 3 and 4, Section 5. That is, scheme IGE $\$-\mathrm{c}$ is KPF-CPA secure (Lemma 3) but it is not PI-CPA secure (Lemma 4).

Theorem 12: KPF-CPA is incomparable with CPF-CPA and with PU-CPA Proof
(1) $\mathrm{KPF}-\mathrm{CPA} \nRightarrow \mathrm{CPF}-\mathrm{CPA}$

An encryption scheme (mode) that is KPF-CPA secure is not necessarily CPF-CPA secure.
Part (1) of the proof follows immediately from the fact that scheme IGE $\$$-c is KPF-CPA secure (Lemma 3) but is not CPF-CPA secure in the face of a truncation attack since function $g=c$ placed in the last block of a plaintext is a known constant.
(2) $\mathrm{CPF}-\mathrm{CPA} \nRightarrow \mathrm{KPF}-\mathrm{CPA}$

An encryption scheme (mode) that is CPF-CPA secure is not necessarily KPF-CPA secure.
Part (2) of the proof follows immediately from the observation that scheme BIGE\$-nzg is CPF-CPA secure, as a consequence of Theorem 6, and is not KPF-CPA secure, by Lemma 7, Section 5.

Note that the scheme BIGE $\$$-nzg also shows that CPF-CoA \nRightarrow KPF-CPA.
(3) $\mathrm{KPF}-\mathrm{CPA} \nRightarrow \mathrm{PU}-\mathrm{CPA}$

An encryption scheme (mode) that is KPF-CPA secure is not necessarily PU-CPA secure.
Part (3) follows immediately from the same example as in Part (1).
(4) $\mathrm{PU}-\mathrm{CPA} \nRightarrow \mathrm{KPF}-\mathrm{CPA}$

An encryption scheme (mode) that is PU-CPA secure is not necessarily KPF-CPA secure.
Part (4) follows immediately from the observation that the VIL-CBC-nzg mode is PU-CPA secure but not KPF-CPA secure, since it generates at least a random block in the plaintext outcome of a forgery in a CPA [11].

5 Examples of Integrity Characteristics of Practical Encryption Schemes

5.1 The Infinite Garble Extension Mode

Most of the proofs of theorems presented in the previous section are based on examples provided by Lemmas $1-7$ of this section. These lemmas refer to schemes derived from an encryption mode that was proposed by Carl Campbell at the first National Bureau of Standards Conference on Computer Security and the Data Encryption Standard, in February 1977 [9]. Campbell called his mode the "Infinite Garble Extension" mode and, for this reason, we denote it by IGE below. Although Campbell's mode appears to have been proposed about the same time as the CBC mode, its integrity properties have not been explained in published literature to date.

IGE uses the family F of super-pseudorandom permutation functions (SPRPs), which is defined as follows. ([3], [18]). Let $F:\{0,1\}^{k} \times\{0,1\}^{l} \rightarrow\{0,1\}^{l}$ be a pseudorandom permutation family and $f=F_{K}$ be a permutation randomly chosen by key K (i.e., $\left.K^{\mathcal{R}} \quad 0,1\right\}^{k}$) and $f^{-1}=F_{K}^{-1}$ its inverse. Let P^{l} denote all the permutations on $\{0,1\}^{l}$, and A be a two-oracle adversary. F is a SPRP if the advantage of function family $F, A d v_{F}^{s p r p}(t, q, \mu)$, is

$$
A d v_{F}^{s p r p}(t, q, \mu)=\max _{A}\left\{A d v_{F}^{s p r p}(A)\right\} \leq \epsilon
$$

where the maximum is taken over all the adversaries A issuing q enciphering or deciphering queries totaling $\mu=q l$ bits and taking time t, ϵ is a negligible quantity, and the advantage of an adversary A is

$$
A d v_{F}^{s p r p}(A)=\left|\operatorname{Pr}\left[A=1: f, f^{-1} \mathcal{R} F\right] \Leftrightarrow \operatorname{Pr}\left[A=1: f, f^{-1} \mathcal{R}^{\mathcal{R}} P^{l}\right]\right|
$$

IGE is based on the following block chaining sequence:

$$
y_{i}=f\left(x_{i} \oplus y_{i-1}\right) \oplus x_{i-1}
$$

for encryption, and

$$
x_{i}=f^{-1}\left(y_{i} \oplus x_{i-1}\right) \oplus y_{i-1}
$$

for decryption, where $f^{\mathcal{R}} F$, or $f=F_{K}$. Note that chaining is symmetric in encryption/decryption, and consequently this mode propagates errors until the end of a message, thereby extending the error propagation characteristics of CBC . The initialization phase could be defined as: $r_{0} \quad\{0,1\}^{l}, y_{0}=$ $f^{\prime}\left(r_{0}\right), x_{0}=r_{0}$, where $f^{\prime}=F_{K^{\prime}}, K$ and K^{\prime} being two distinct keys. (Other initialization definitions can be used.) Hence, the encryption and decryption functions for the stateless mode (denoted by IGE $\$$ below) are defined by $\mathcal{E} \Leftrightarrow I G E \$^{F_{K}}(x)$ and $\mathcal{D} \Leftrightarrow I G E \Phi^{F_{K}}(y)$, as follows:

$$
\begin{aligned}
& \text { function } \mathcal{E} \Leftrightarrow \operatorname{lGE}^{f}(x) \\
& \left.r_{0} \quad 0,1\right\}^{l} \\
& y_{0}=f^{\prime}\left(r_{0}\right) ; x_{0}=r_{0} \\
& \text { for } i=1, \quad, n \text { do }\{ \\
& \left.y_{i}=f\left(x_{i} \oplus y_{i-1}\right) \oplus x_{i-1}\right\} \\
& \text { return } y=y_{0} \| y_{1} y_{2} \quad y_{n}
\end{aligned}
$$

```
function \(\mathcal{D} \Leftrightarrow \operatorname{IGE}^{f}(y)\)
Parse \(y\) as \(y_{0} \| y_{1} \quad y_{\overparen{n}}\{\)
\(r_{0}=f^{\prime-1}\left(y_{0}\right) ; x_{0}=r_{0}\)
for \(i=1, \quad, n\) do \(\{\)
\(\left.x_{i}=f^{-1}\left(y_{i} \oplus x_{i-1}\right) \oplus y_{i-1}\right\}\)
return \(x=x_{1} x_{2} \quad x_{n}\)
```

A stateful IGE mode can be defined in a similar manner to that used for the XCBC stateful mode.
[Note that IGE $\$$ is based on the CBC mode in the sense that its output block i is exclusive-ored plaintext block $i \Leftrightarrow 1$. Hence, the IGE $\$$ scheme is secure in the real-or-random (or left or right) sense against adaptive chosen plaintext attacks and the proof is very similar to that of Bellare et al. [2].]

Let us introduce the scheme Π o $g \equiv \operatorname{IGE} \$-z_{0}=\left(\mathcal{E} \Leftrightarrow I G E \$\right.$ o $z_{0}, \mathcal{D} \Leftrightarrow I G E S$ o $\left.z_{0}, K G\right)$ by using function $g(x)=z_{0}=f^{\prime}\left(r_{0}+1\right)$ to define $y=\mathcal{E}$ o $\left.z_{0}=\mathcal{E}^{F_{K}}\left(x \| z_{0}\right)\right)$. Hence, the scheme IGE $\$-z_{0}$ encrypts any plaintext $x=x_{1} \quad x_{n}$ by appending block $x_{n+1}=z_{0}$ to plaintext x, and then encrypting string $x_{1} \quad x_{n} x_{n+1}$.

Let us introduce the scheme Π^{\prime} o $g \equiv \operatorname{IGE} \$-c=(\mathcal{E} \Leftrightarrow I G E \$$ o $c, \mathcal{D} \Leftrightarrow I G E \$$ o $c, K G)$ by using function $g(x)=c$, where c is a known constant, to define $\left.y=\mathcal{E} o c=\mathcal{E}^{F_{K}}(x \| c)\right)$. Hence, the scheme IGE $\$-c$ encrypts any plaintext $x=x_{1} \quad x_{n}$ by appending block $x_{n+1}=c$ to plaintext x, and then encrypting string $x_{1} \quad x_{n} x_{n+1}$.

The integrity properties of schemes IGE $\$-z_{0}$ and IGE $\$-c$ are formalized in Lemmas $1 \quad 5$ (whose proofs can be found in the appendix).

To state Lemma 1 [Main IGE Lemma], we need to introduce two sets, namely

$$
S^{e}=\left\{y_{k}^{p} \oplus x_{k-1}^{p}, 1 \quad p \quad q_{e}, 1 \quad k \quad n_{p}\right\},
$$

which consists of all inputs to f^{-1} that can be made up by taking the exclusive-or of every plaintext block of the q_{e} strings $x^{p}=x_{1}^{p} \quad x_{n}^{p}$ with every block of the q_{e} ciphertext strings $y^{p}=y_{0}^{p} y_{1}^{p} \quad y_{n}^{p}$ obtained at encryption; and set

$$
S_{j}^{d}=\left\{y_{s} \oplus x_{s-1}, 1 \quad s \quad j\right\},
$$

which consists of all the combinations $y_{s} \oplus x_{s-1}$ of forgery y plaintext and ciphertext blocks used at the decryption of y up to (but not including) position j.
For any $f^{\mathcal{R}} P^{l}$ and S^{e}, we define the finite family of random functions $\left.G_{S}:\{0,1\}^{k} \quad 0,1\right\}^{l} \rightarrow\{0,1\}^{l}$ whose members are f, \bar{f}, with \bar{f} defined as:

$$
\bar{f}=\left\{\begin{array}{rl}
f^{-1}(t), & t \in S^{e} \\
v(t), & t \in\{0,1\}^{l} \Leftrightarrow S^{e}, v^{\mathcal{R}} R^{l, l}
\end{array},\right.
$$

where $\underline{R}^{l, l}$ is the set of all functions from $\{0,1\}^{l}$ to $\{0,1\}^{l}$. We denote by $f^{\mathcal{R}} G_{S}$ the random selection of f and \bar{f} from G_{S}.

The family of functions G_{S} behaves exactly like P^{l} when the plaintext blocks input to f and ciphertext blocks input to f^{-1} are those generated during the encryption of any adversary's q_{e} chosen-plaintext queries, and behaves exactly like $R^{l, l}$ during the decryption of any ciphertext block not in S^{e}.

Note that the family G_{S} is well-defined for any message-integrity attack because, by definition (viz., Section 3.2), in any such attack, all q_{e} encryption queries precede the forgery verification queries. (Also note that we allow $q_{e}=0$ and, in this case, $S^{e}=\emptyset$ and $\bar{f}=v$.)

For Lemmas 1-7 we define Succ the event that the forgery is successful for the chosen goal-attack combination. Then in the proofs of these Lemmas, we use the result of Fact 0 below (whose proof can be found elsewhere [13]) that provides the reduction from $f^{\mathcal{R}} F$ to $f^{\mathcal{R}} G_{S}$.

Fact 0

(a)

$$
\operatorname{Pr}_{f}^{\mathcal{R}_{F}}[\text { Succ }] \quad \epsilon+\operatorname{Pr}_{f}^{\mathcal{R}_{\leftarrow} P_{l}}[\text { Succ }] .
$$

(b)

$$
\operatorname{Pr}_{f \mathcal{R}_{P^{l}}}[\mathrm{Succ}] \quad \operatorname{Pr}_{f \leftarrow \mathcal{R}_{S}}[\mathrm{Succ}]+\frac{\mu_{v}\left(\mu_{v} \Leftrightarrow l\right)}{l^{2} 2^{l+1}} .
$$

where $\frac{\mu_{v}}{l}$ is the total number of ciphertext blocks used in all verified forgeries. Unless we state otherwise, assume that $f^{\mathcal{R}} G_{S}$ (and drop this subscript from $\operatorname{Pr}_{f_{f}{ }^{\mathcal{R}}}^{G_{S}}$ [Succ].)
Let i denote the position of the first ciphertext block in the forgery $y=y_{0} y_{1} \quad y_{n}$ such that $y_{i} \oplus x_{i-1}$ does not collide with any of the $y_{k}^{p} \oplus x_{k-1}^{p}$ values generated during the encryption of the q_{e} queries. Formally, i is the index of the first block such that $y_{i} \oplus x_{i-1} \notin S^{e}$ and $S_{i}^{d} \subseteq S^{e}$.

Lemma 1 [Main IGE Lemma]

Let $y=y_{0} y_{1} \quad y_{n}$ be a forged ciphertext and $x=x_{0} x_{1} \quad x_{n}$ be its decryption by the function $\mathcal{D} \Leftrightarrow \operatorname{lGE}^{f}(y)$. Let a be an arbitrary constant value.
(a) If $y_{0} \neq y_{0}^{p}, \forall p, 1 \quad p \quad q_{e}$, then

$$
\begin{array}{ll}
\operatorname{Pr}_{f f_{G_{S}}^{\mathcal{R}}}\left[x_{n}=a\right] & \frac{n \mu_{e}}{l 2^{l}}+\frac{n^{2}}{2^{l+1}} \\
\operatorname{Pr}_{f \mathcal{R}^{\mathcal{R}} P^{l}}\left[x_{n}=a\right] & \epsilon^{\prime} \stackrel{\text { def }}{=} \frac{n \mu_{e}}{l 2^{l}}+\frac{n(2 n \Leftrightarrow 1)}{2^{l+1}},
\end{array}
$$

where q_{e} is the maximum number of encryption queries, totaling at most μ_{e} bits. (b) If $i, 1 \quad i \quad n$, is the first block for which $y_{i} \oplus x_{i-1} \notin S^{e}$, then

$$
\begin{array}{ll}
\operatorname{Pr}_{f f_{G S}^{\mathcal{R}}}\left[x_{n}=a\right] & \frac{n \mu_{e}}{l 2^{l}}+\frac{n^{2}}{2^{l+1}} \\
\operatorname{Pr}_{f{ }_{f}^{\mathcal{R}} P^{l}}\left[x_{n}=a\right] & \epsilon^{\prime} \stackrel{\text { def }}{=} \frac{n \mu_{e}}{l 2^{l}}+\frac{n(2 n \Leftrightarrow 1)}{2^{l+1}},
\end{array}
$$

where the total number of bits for the q_{e} encryption queries is at most μ_{e}.

One can also show that the conclusions of Main IGE $\$$ Lemma remain valid if the constant a is replaced with the random, uniformly distributed, and independent $z_{0}=f^{\prime}\left(r_{0}+1\right)$. This is formalized in the following corollary.
Corollary
Let $y=y_{0} y_{1} \quad y_{n}$ be a forged ciphertext and $x=x_{0} x_{1} \quad x_{n}$ be its decryption by the function $\mathcal{D} \Leftrightarrow \operatorname{GGE}^{f}(y)$. (a) If $y_{0} \neq y_{0}^{p}, \forall p, 1 \quad p \quad q_{e}$, then

$$
\begin{array}{ll}
\operatorname{Pr}_{f \mathbb{R}_{S} G_{S}}\left[x_{n}=z_{0}\right] & \frac{n \mu_{e}}{l 2^{l}}+\frac{n^{2}}{2^{l+1}} \\
\operatorname{Pr}_{f \leftarrow P^{\mathcal{R}}}\left[x_{n}=z_{0}\right] & \epsilon^{\prime} \stackrel{\text { def }}{=} \frac{n \mu_{e}}{l 2^{l}}+\frac{n(2 n \Leftrightarrow 1)}{2^{l+1}},
\end{array}
$$

where where the total number of bits for the q_{e} encryption queries is at most μ_{e} bits.
(b) If $i, 1 \quad i \quad n$, is the first block for which $y_{i} \oplus x_{i-1} \notin S^{e}$, then

$$
\begin{array}{ll}
\operatorname{Pr}_{f{ }_{f}^{\mathcal{R}} G_{S}}\left[x_{n}=z_{0}\right] & \frac{n \mu_{e}}{l 2^{l}}+\frac{n^{2}}{2^{l+1}} \\
\operatorname{Pr}_{f \leftarrow \mathcal{R}^{l}}\left[x_{n}=z_{0}\right] & \epsilon^{\prime} \stackrel{\text { def }}{=} \frac{n \mu_{e}}{l 2^{l}}+\frac{n(2 n \Leftrightarrow 1)}{2^{l+1}},
\end{array}
$$

where q_{e} is the maximum number of encryption queries, totaling at most μ_{e} bits.

Lemma 2．The scheme IGE $\$-z_{0}$ is EF－CoA secure．

Lemma 3．The scheme IGE $\$-c$ is KPF－CPA secure．

Lemma 4．The schemes IGE $\$-z_{0}$ and IGE $\$-c$ are not EF－CPA，PU－CPA，PI－CPA，and NM－CPA secure．

Lemma 5．The scheme IGE $\$-z_{0}$ is CPF－CPA secure．

5．2 The Bidirectional Infinite Garble Extension Mode

In this section，we define a variant of the IGE modes that is intended to illustrate，among other things，the separation between NM－CPA and several other integrity notions such as EF，PI，and PA in chosen－plaintext attacks．

The bidirectional IGE（BIGE）scheme consists of the application of the IGE scheme to the input plaintext to obtain an intermediate＂hidden＂ciphertext，followed by the application of the IGE chaining to the hidden ciphertext in opposite direction to obtain the ciphertext that is output to the user．This general description allows for several actual variants of the bidirectional IGE scheme，namely the stateless or stateful schemes，or schemes that use different keys per pass in each direction．In our example here，the scheme that uses three keys，one per pass in one direction，and one for we have the initialization phase． That is，during initialization we set：$r_{0} \quad\{0,1\}^{l}, y_{0}=f^{\prime}\left(r_{0}\right), x_{0}=r_{0}$ ，where $f^{\prime}=F_{K^{\prime}}, K$ and K^{\prime} are the two distinct keys，and F is the SPRP family．Then，the first pass generates the hidden ciphertext as $z_{i}=f\left(x_{i} \oplus z_{i-1}\right) \oplus x_{i-1}, 1 \quad i \quad n=|x|$ ．The second pass consists of $y_{0}=f^{\prime}\left(z_{n}\right)$ ，where $f^{\prime}=F_{K^{\prime}}$ ，and $y_{i}=f^{\prime \prime}\left(z_{n-i} \oplus y_{i-1}\right) \oplus z_{n-i+1}, 1 \quad i \quad n$ ，where $f^{\prime \prime}=F_{K^{\prime \prime}}, K, K^{\prime}$ and $K^{\prime \prime}$ are distinct keys．

In the BIGE $\$$ scheme defined below，the actual encryption and decryption functions for the stateless bidirectional IGE scheme that uses two keys，one for each pass，are defined by $\mathcal{E} \Leftrightarrow B I G E \Phi^{F_{K}, F_{K}^{\prime}, F_{K}^{\prime \prime}(x) \text { and }}$ $\mathcal{D} \Leftrightarrow B I G E \$^{F_{K}, F_{K}^{\prime}, F_{K}^{\prime \prime}}(y)$ ，as follows：

```
function \mathcal{E}\LeftrightarrowBIGE$ f,\mp@subsup{f}{}{\prime},\mp@subsup{f}{}{\prime\prime}}(x
ro 0,1}
zo = f'(ro); x 俍
for i=1, ,n do {
zi}=f(\mp@subsup{x}{i}{}\oplus\mp@subsup{z}{i-1}{})\oplus\mp@subsup{x}{i-1}{}
yo = f'(zn}
for i=1, ,n do {
yi}=\mp@subsup{f}{}{\prime\prime}(\mp@subsup{z}{n-i}{}\oplus\mp@subsup{y}{i-1}{})\oplus\mp@subsup{z}{n-i+1}{
}
return y= y0| |y1 y y r yn
function }\mathcal{D}\Leftrightarrow\mathrm{ BIGE }\mp@subsup{$}{}{f,\mp@subsup{f}{}{\prime},\mp@subsup{f}{}{\prime\prime}}(y
Parse }y\mathrm{ as }\mp@subsup{y}{0}{}|\mp@subsup{|}{1}{}\quady\overleftarrow{n}
z
for i=1, ,n do {
zn-i}=\mp@subsup{f}{}{\prime\prime-1}(\mp@subsup{y}{i}{}\oplus\mp@subsup{z}{n-i+1}{})\oplus\mp@subsup{y}{i-1}{
}
ro = fl-1}(\mp@subsup{z}{0}{});\mp@subsup{x}{0}{}=\mp@subsup{r}{0}{
for i=1, , n do {
xi= f
return x= 和稆 利
```

Let us introduce the scheme Π o $g \equiv$ BIGE $\$$－nzg $=(\mathcal{E} \Leftrightarrow B I G E \$$ o $n z g, \mathcal{D} \Leftrightarrow B I G E \$$ o $n z g, K G)$ by using function $\left.g(x)=n z g(x)=r^{\mathcal{R}} \quad 0,1\right\}^{l}, r \neq 0$ to define $y=\mathcal{E}$ o $g=\mathcal{E}^{\left.F_{K}, F_{K}^{\prime}, F_{K}^{\prime \prime}(x \| g)\right) \text { ．Hence，tha }\{\text { scheme }}$ BIGE $\$-n z g$ encrypts any plaintext $x=x_{1} \quad x_{n}$ by appending block $x_{n+1}=r$ to plaintext x ，and then encrypting string $x_{1} \quad x_{n} x_{n+1}$ ．The integrity check performed upon the decryption of a forgery y^{\prime} is simply $x_{n+1}^{\prime} \neq 0$ ．

The intuition behind the BIGE $\$$ scheme is as follows. Any modification of ciphertext would cause a modification of the hidden ciphertext, which acts as the input to the second pass of encryption. The resulting hidden ciphertext's modification is unpredictable and propagates from the block position where it occurs until the block z_{0} of the hidden ciphertext. The propagation cannot be stopped by the adversary with more than negligible probability, since the adversary does know the values of the hidden ciphertext input to the second pass of encryption with non-negligible probability. (To stop the propagation of any modification to ciphertext output to the user, the adversary would have to know both the input and the output to second encryption pass, as illustrated by the proof of Lemma 4.) Furthermore, any unpredictable modification of the hidden ciphertext starting with block z_{0}, ends up propagating throughout the message plaintext during the second decryption pass. Hence, the entire plaintext output of BIGE $\$$ will contain blocks whose content is unpredictable.

The integrity properties of the scheme BIGE $\$$ - $n z g$ are formalized in the following lemmas (whose the proofs can be found in the appendix).

Lemma 6. The scheme BIGE\$-nzg is NM-CPA secure.

Lemma 7. The scheme BIGE $\$$-nzg is not EF-CPA, PI-CPA and KPF-CPA secure.

5.3 Other Examples

Example 1. Let Π be one of the modes $\{\mathrm{CBC}, \mathrm{PCBC}\}$, and function $g(x)$ be the per-block, bitwise exclusive-or function, which we denote by XOR. The schemes Π o XOR are CPF-CoA secure, but not CPF-CPA secure [19], or secure with respect to any other goals.

Example 2. Let Π be one of the modes $\{\mathrm{CBC}, \mathrm{PCBC}\}$, and function $g(x)$ be the "confounded CRC-32" function used by Kerberos V [22] and DCE [21]. The schemes Π o XOR are CPF-CPA secure, and not secure with respect to any of the other goals CPAs [23].

Example 3. The scheme П o $g \equiv \operatorname{BIGE} \$$-c $=(\mathcal{E} \Leftrightarrow B I G E \$$ o $c, \mathcal{D} \Leftrightarrow B I G E \$$ o $c, K G)$ by using function $g(x)=c$ where c is a constant is EF-CPA secure. (The proof is very similar to the proof of Lemma 6.)

Acknowledgements

We than thank Michaela Iorga for her help with the proof of Lemma 4, and to Jonathan Katz for his comments and suggestions on earlier drafts.

References

[1] M. Bellare and P. Rogaway, "Optimal Asymmetric Encryption How to encrypt with RSA," Advances in Cryptology - Eurocrypt '94 (LNCS 950) (A. De Santis ed.), Springer-Verlag, 1994.
[2] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, "A Concrete Security Treatment of Symmetric Encryption," Proceedings of the 38th Symposium on Foundations of Computer Science, IEEE, 1997, (394-403). A full version of this paper is available at http://www-cse.ucsd.edu/users/mihir.
[3] M. Bellare, J. Killian, and P. Rogaway, "The security of cipher block chaining", Advances in CryptologyCRYPTO '94 (LNCS 839), 341-358, 1995.
[4] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway, "Relations Among Notions of Security for Public-key Encryption Schemes," Advances in Cryptology - CRYPTO '98 (LNCS 1462), 26-45, 1998.
[5] M. Bellare and P. Rogaway, "Block Cipher Mode of Operation for Secure, Length-Preserving Encryption," U.S Patent No. 5,673,319, September, 1997.
[6] M. Bellare and P. Rogaway, "On the construction of variable-input-length ciphers," Proceedings of the 6th Workshop on Fast Software Encryption, L. Knudsen (Ed), Springer-Verlag, 1999.
[7] M. Bellare and C. Namprempre, "Authenticated Encryption: Relations among notions and analysis of the generic composition paradigm," manuscript, May 2000, http://eprint.iacr.org/2000.025.ps.
[8] S.M. Bellovin, "Cryptography and the Internet," Advances in Cryptology - CRYPTO '98 (LNCS 1462), 46-55, 1998.
[9] C.M. Campbell, "Design and Specification of Cryptographic Capabilities," in Computer Security and the Data Encryption Standard, (D.K. Brandstad (ed.)) National Bureau of Standards Special Publications 500-27, U.S. Department of Commerce, February 1978, pp. 54-66.
[10] D. Dolev, C. Dwork, and M.Naor, "Non-malleable Cryptography," Proc. of the 23rd ACM Symp. on Theory of Computing, pp. 542-552, 1991.
[11] V.D. Gligor and P. Donescu, "Integrity Conditions for Symmetric Encryption," University of Maryland, Computer Science Technical Report, CS-TR-3958, December 1998.
[12] V.D. Gligor, S.G. Stubblebine, and P. Donescu, "New Integrity-Aware CBC Encryption Schemes," University of Maryland, Computer Science Technical Report, CS-TR-3999, March 1999.
[13] V.D. Gligor and P. Donescu, "Fast Encryption and Authentication: XCBC Encryption and XECB Authentication Modes," manuscript August, 2000. http://www.glue.umd.edu/~gligor.
[14] F.H. Hinsley and A. Stripp, Codebreakers: the inside story of Bletchley Park, Oxford University Press, 1993.
[15] J. Katz and M. Yung, "Complete characterization of security notions for probabilistic private-key encryption," Proc. of the 32nd Annual Symp. on the Theory of Computing, ACM 2000.
[16] J. Katz and M. Yung, "Unforgeable Encryption and Adaptively Secure Modes of Operation," Proc. Fast Software Encryption 2000, B. Schneier (ed.) (to appear in Springer-Verlag, LNCS).
[17] C.S. Jutla, "Encryption Modes with Almost Free Message Integrity," IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, manuscript, August, 2000. http://eprint.iacr.org/2000/039.
[18] M Luby and C. Rackoff, "How to construct pseudorandom permutations from pseudorandom functions", SIAM J. Computing, Vol. 17, No. 2, April 1988.
[19] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone, Handbook of Applied Cryptography, CRC Press, Boca Raton, 1997.
[20] M. Naor and O. Reingold, "From Unpredictability to Indistinguishability: A Simple Construction of Pseudo-Random Functions from MACs," Advances in Cryptology - CRYPTO '98 (LNCS 1462), 267-282, 1998.
[21] Open Software Foundation, "OSF - Distributed Computing Environment (DCE), Remote Procedure Call Mechanisms," Code Snapshot 3, Release, 1.0, March 17, 1991.
[22] RFC 1510, "The Kerberos network authentication service (V5)", Internet Request for Comments 1510, J. Kohl and B.C. Neuman, September 1993.
[23] S. G. Stubblebine and V. D. Gligor, "On message integrity in cryptographic protocols", Proceedings of the 1992 IEEE Symposium on Research in Security and Privacy, 85-104, 1992.
[24] S. G. Stubblebine and C. Meadows, "On Searching for Known and Chosen Pairs Using the NRL Protocol Analyzer," DIMACS Workshop on Design and Formal Verification of Security Protocols, September 1997 (also in IEEE Journal on Selected Areas in Communications, 1999).

A Proofs

Proof of Lemma 1 [Main IGE Lemma]

By using Fact 0, we reduce the proof from $f^{\mathcal{R}} F$ to $f^{\mathcal{R}} G_{S}$. In the proof of this lemma we use the notation $\operatorname{Pr}[]=.\operatorname{Pr}_{f}^{f \mathcal{R}_{G_{S}}}$ [.]. We first present the part of the proof that is common for both parts (a) and (b) of Lemma 1, and then we complete the proof for parts (a) and (b) separately.

Block $x_{n}=\bar{f}\left(y_{n} \oplus x_{n-1}\right) \oplus y_{n-1}$ of the decrypted forgery y is random, uniformly distributed, and independent of anything else, including value a, whenever $\bar{f}\left(y_{n} \oplus x_{n-1}\right)$ is random, uniformly distributed, and independent of anything else. For this to happen, $y_{n} \oplus x_{n-1}$ must not collide with any element of either S^{e} or S_{n}^{d} (since, in this case, $\bar{f}\left(y_{n} \oplus x_{n-1}\right)=v\left(y_{n} \oplus x_{n-1}\right), v^{\mathcal{R}} R^{l, l}$ and $y_{n} \oplus x_{n-1}$ has never been encountered before). Let event $\overline{C_{n}}$ be defined as:

$$
C_{n}: y_{n} \oplus x_{n-1} \in S^{e} \cup S_{n}^{d}
$$

In this case, i.e., when there are no collisions, we have

$$
\operatorname{Pr}\left[x_{n}=a \mid \overline{C_{n}}\right] \quad \frac{1}{2^{l}} .
$$

By standard conditioning,

$$
\operatorname{Pr}\left[x_{n}=a\right] \quad \operatorname{Pr}\left[C_{n}\right]+\operatorname{Pr}\left[x_{n}=a \mid \overline{C_{n}}\right] \quad \operatorname{Pr}\left[C_{n}\right]+\frac{1}{2^{l}}
$$

To determine $\operatorname{Pr}\left[C_{n}\right]$, we use standard conditioning again, and obtain

$$
\operatorname{Pr}\left[C_{n}\right] \quad \operatorname{Pr}\left[C_{n-1}\right]+\operatorname{Pr}\left[C_{n} \mid \overline{C_{n-1}}\right] \quad \operatorname{Pr}\left[C_{1}\right]+\sum_{j=1}^{n-1} \operatorname{Pr}\left[C_{j+1} \mid \overline{C_{j}}\right],
$$

where event C_{j} is defined in a similar manner to that of C_{n}, namely

$$
C_{j}: y_{j} \oplus x_{j-1} \in S^{e} \cup S_{j}^{d}
$$

We now determine an upper bound for $\operatorname{Pr}\left[C_{j+1} \mid \overline{C_{j}}\right]$. Event $\overline{C_{j}}$ is true for $1 \quad j \quad n \Leftrightarrow 1$ means that $y_{j} \oplus x_{j-1}$ does not collide with any element of either S^{e} or S_{n}^{d}. In this case, $x_{j}=\bar{f}\left(y_{j} \oplus x_{j-1}\right) \oplus y_{j-1}=$ $v\left(y_{j} \oplus x_{j-1}\right) \oplus y_{j-1}$ is random, uniformly distributed and independent of anything else, since y_{j-1} is a constant, $v^{\mathcal{R}} R^{l, l}$ and $y_{i} \oplus x_{i-1}$ has never been encountered before. Hence, since y_{j+1} is a chosen constant, $y_{j+1} \oplus x_{j}$ is also random, uniformly distributed, and independent of anything else. This means that

$$
\begin{array}{lllllll}
\operatorname{Pr}\left[y_{j+1} \oplus x_{j}=y_{k}^{p} \oplus x_{k-1}^{p} \mid \overline{C_{j}}\right] & \frac{1}{2^{l}}, & \forall p, k, 1 & p & q_{e}, 1 & k & n_{p}, \\
\operatorname{Pr}\left[y_{j+1} \oplus x_{j}=y_{s} \oplus x_{s-1} \mid \overline{C_{j}}\right]
\end{array} \quad \frac{1}{2^{l}}, \quad \forall s, 1 \quad s \quad j . ~ l l l l
$$

But, by standard conditioning and union bound,

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j+1} \mid \overline{C_{j}}\right]= & \operatorname{Pr}\left[y_{j+1} \oplus x_{j} \in S^{e} \cup S_{j+1}^{d} \mid \overline{C_{j}}\right] \\
& \operatorname{Pr}\left[y_{j+1} \oplus x_{j} \in S^{e} \mid \overline{C_{j}}\right]+\operatorname{Pr}\left[y_{j+1} \oplus x_{j} \in S_{j+1}^{d} \mid \overline{C_{j}}\right] \\
& \sum_{p=1}^{q_{e}} \sum_{k=1}^{n_{p}} \operatorname{Pr}\left[y_{j+1} \oplus x_{j}=y_{k}^{p} \oplus x_{k-1}^{p} \mid \overline{C_{j}}\right] \\
+ & \sum_{s=1}^{j} \operatorname{Pr}\left[y_{j+1} \oplus x_{j}=y_{s} \oplus x_{s-1} \mid \overline{C_{j}}\right] .
\end{aligned}
$$

Thus,

$$
\operatorname{Pr}\left[C_{j+1} \mid \overline{C_{j}}\right] \quad \frac{\frac{e}{l}+j}{2^{l}}
$$

because there are at most $\frac{e}{l}$ elements in S^{e} (the $\frac{e}{l}$ ciphertext blocks include $y_{0}^{p}, 1 \quad p \quad q_{e}$ and $y_{k}^{p}, 1$ $\left.p \quad q_{e}, 1 \quad k \quad n_{p}\right)$, and j elements in $S_{j+1}^{d}\left(y^{1} \oplus x_{0}, \quad, y^{j} \oplus x^{j-1}\right)$.
Now we consider event C_{1} of part (a) of the Lemma separately from event C_{i} of part (b) of the Lemma.
(a) Since $y_{0} \neq y_{0}^{p}, \forall p, 1 \quad p \quad q_{e}$, it follows that $r_{0}=\overline{f^{\prime}}\left(y_{0}\right)=v^{\prime}\left(y_{0}\right)$ is random, uniformly distributed, and independent of anything else. Here v^{\prime} is the corresponding function for f^{\prime} constructed in the same way as v, namely, $v^{\prime \mathcal{R}} R^{l, l}$. Hence $x_{0}=r_{0}$ is random, uniformly distributed, and independent of anything else. Hence $y_{1} \oplus x_{0} \in S^{e}$ happens with probability at most $\frac{\left|S^{e}\right|}{2^{l}}=\frac{\frac{\mu_{e}}{l}}{2^{l}}$. From here on, we apply the same idea (viz., also part (b) below), namely:

$$
\begin{aligned}
\operatorname{Pr}\left[x_{n}=a\right] \quad & \operatorname{Pr}\left[x_{n}=a \mid y_{1} \oplus x_{0} \notin S^{e}\right]+\operatorname{Pr}\left[y_{1} \oplus x_{0} \in S^{e}\right] \quad \frac{\mu_{e}}{l 2^{l}}+\frac{(n \Leftrightarrow i) \mu_{e}}{l 2^{l}}+\frac{n^{2} \Leftrightarrow i^{2}}{2^{l+1}} \\
& \frac{n \mu_{e}}{l 2^{l}}+\frac{n^{2}}{2^{l+1}}
\end{aligned}
$$

Hence, by Fact 0 with $\frac{v}{l}=n$,

$$
\begin{aligned}
\operatorname{Pr}_{f \underset{\leftarrow}{\mathcal{R}} P^{l}}\left[x_{n}=a\right] \quad & \operatorname{Pr}_{f \underset{\leftarrow}{\mathcal{R}} P^{l}}\left[x_{n}=a\right]+\frac{n(n \Leftrightarrow 1)}{2^{l+1}} \quad \frac{n \mu_{e}}{l 2^{l}}+\frac{n^{2}}{2^{l+1}}+\frac{n(n \Leftrightarrow 1)}{2^{l+1}} \\
= & \epsilon^{\prime} \stackrel{\text { def }}{=} \frac{n \mu_{e}}{l 2^{l}}+\frac{n(2 n \Leftrightarrow 1)}{2^{l+1}} .
\end{aligned}
$$

(b) However, by the Lemma hypothesis, event C_{j} is true for $j<i$ and event C_{i} is false. Hence,

$$
\begin{aligned}
\operatorname{Pr}\left[C_{n}\right] & \operatorname{Pr}\left[C_{i}\right]+\sum_{j=i}^{n-1} \operatorname{Pr}\left[C_{j+1} \mid \overline{C_{j}}\right] \\
= & \sum_{j=i}^{n-1} \operatorname{Pr}\left[C_{j+1} \mid \overline{C_{j}}\right]
\end{aligned}
$$

Using the formula for $\operatorname{Pr}\left[C_{j+1} \mid \overline{C_{j}}\right]$ we obtain

$$
\begin{aligned}
\operatorname{Pr}\left[C_{n}\right] \quad & \sum_{j=i}^{n-1} \operatorname{Pr}\left[C_{j+1} \mid \overline{C_{j}}\right] \quad \sum_{j=i}^{n-1} \frac{\frac{e}{l}+j}{2^{l}}=\frac{(n \Leftrightarrow i) \mu_{e}}{l 2^{l}}+\frac{(n \Leftrightarrow i)(i+n \Leftrightarrow 1)}{2^{l+1}} \\
& \frac{(n \Leftrightarrow i) \mu_{e}}{l 2^{l}}+\frac{n^{2} \Leftrightarrow i^{2}}{2^{l+1}} .
\end{aligned}
$$

Finally,

$$
\operatorname{Pr}\left[x_{n}=a\right] \quad \operatorname{Pr}\left[C_{n}\right]+\frac{1}{2^{l}} \quad \frac{(n \Leftrightarrow i) \mu_{e}}{l 2^{l}}+\frac{n^{2} \Leftrightarrow i^{2}}{2^{l+1}}+\frac{1}{2^{l}} \quad \frac{n \mu_{e}}{l 2^{l}}+\frac{n^{2}}{2^{l+1}} .
$$

Hence, by Fact 0 with $\frac{v}{l}=n$,

$$
\operatorname{Pr}_{f \stackrel{\mathcal{R}}{\leftarrow} P^{l}}\left[x_{n}=a\right] \quad \epsilon^{\prime} \stackrel{\text { def }}{=} \frac{n \mu_{e}}{l 2^{l}}+\frac{n^{2}}{2^{l+1}}+\frac{n(n \Leftrightarrow 1)}{2^{l+1}}=\frac{n \mu_{e}}{l 2^{l}}+\frac{n(2 n \Leftrightarrow 1)}{2^{l+1}} .
$$

Proof of Lemma 2

We have to show that for the IGE $\$-z_{0}$ encryption mode, whenever the adversary knows only valid ciphertext strings (by the definition of EF-CoA), any forgery y passes the integrity check with negligible probability. In CoA, the plaintext strings used for generating the valid ciphertexts the adversary sees are random strings.

The forged ciphertext that the adversary generates can fall into one of the following complementary classes:
(a) the forgery is a truncation of a known valid ciphertext string;
(b) the forgery is an extension of a known valid ciphertext string;
(c) the forgery is neither a truncation nor an extension of a known ciphertext string.

In case (c), the forged ciphertext y can be such that either (c1) $y_{0}=y_{0}^{p}$ for some $p, 1 \quad p \quad q_{e}$, or (c2) $y_{0} \neq y_{0}^{p}, \forall p, 1 \quad p \quad q_{e}$; in the former case, the forged ciphertext and ciphertext string y^{i} will differ from each other in at least one block $y_{k}, 1 \quad k \quad \min \left(n_{i}+1, n+1\right)$. Hence, case (c) can be further divided into two complementary subcases:
(c1) the forged ciphertext string has a common prefix with an existent ciphertext;
(c2) the forged ciphertext is different from any existent ciphertext starting with its first block (y_{0}).
We summarize these classes of forgeries and define them formally. The forged ciphertext y belongs to one of the following complementary classes defined as follows:
(a) $\exists i, 1 \quad i \quad q_{e}: n \quad n_{i}$ and $\forall j, 1 \quad j \quad n+1: y_{k}=y_{k}^{i}$; i.e., the forged ciphertext is a truncation of ciphertext y^{i};
(b) $\exists i, 1 \quad i \quad q_{e}: n>n_{i}$ and $\forall j, 1 \quad j \quad n_{i}+1: y_{k}=y_{k}^{i}$; i.e., the forged ciphertext is a extension of ciphertext y^{i};
(c1) $\exists i, 1 \quad i \quad q_{e}, \exists j, 1 \quad j \quad \min \left(n_{i}+1, n+1\right): \forall k, 1 \quad k \quad j: y_{k}=y_{k}^{i}$ and $y_{j} \neq y_{j}^{i}$; i.e., the forged ciphertext and ciphertext y^{i} have a common prefix;
(c2) $y_{0} \neq y_{0}^{i}, \forall i, 1 \quad i \quad q_{e}$; i.e., there is no previous ciphertext that has a common prefix with the forged ciphertext.
Now, we show that, for an arbitrary forgery in each of the complementary cases defined above, the probability of adversary's success is negligible. We determine upper bounds on $\operatorname{Pr} \underset{f \underset{\sim}{\mathcal{R}}}{ }\left[\left(\mathcal{D} \Leftrightarrow I G E S \Leftrightarrow z_{0}\right)(y) \neq\right.$ Null] and the maximum of these bounds is an upper bound for $\operatorname{Pr}_{f{ }_{f} \mathcal{R} F}\left[\left(\mathcal{D} \Leftrightarrow I G E S \Leftrightarrow z_{0}\right)(y) \neq N u l l\right]$ for any forgery type.

By using Fact 0, we have

$$
\operatorname{Pr}_{f}^{f \underset{F}{\mathcal{R}}}{ }^{[S u c c]} \quad \epsilon+\operatorname{Pr}_{f}^{\mathcal{R}^{\mathcal{R}} l}{ }^{[}[S u c c],
$$

where $\operatorname{Succ} \equiv\left(x_{n+1}=z_{0}\right)$. Hence, for the balance of this proof, we use the notation $\operatorname{Pr}[\cdot]=\operatorname{Pr}_{f{ }_{f}{ }^{\mathcal{R}}{ }_{P l}[\cdot] \text {, }}$ unless otherwise specified.

Upper bound for forgeries of type (a).
In this case, the forgery is a truncation of ciphertext i, and hence, the decrypted plaintext blocks are: $x_{k}=x_{k}^{i}, \forall k, 0 \quad k \quad n+1 \quad n_{i}+1$. Thus, the integrity condition $x_{n+1}=z_{0}$ becomes $x_{n+1}^{i}=z_{0}^{i}$ and hence, it happens with probability $1 / 2^{l}$; i.e.,

$$
\operatorname{Pr}\left[x_{n+1}=z_{0}\right]=\frac{1}{2^{l}},
$$

since x_{n+1}^{i} is random, uniformly distributed, and independent of anything else, by the definition of CoAs.

Upper bound for forgeries of type (b).
In this case, the forgery is a extension of ciphertext i, and hence, the decrypted plaintext blocks are: $x_{k}=x_{k}^{i}, \forall k, 0 \quad k \quad n_{i}+1 \quad+1 . \quad<n$

Since $n+1>n_{i}+1$, there must exist a ciphertext block $y_{n_{i}+2}$. To compute an upper bound on the probability of successful forgery, we condition on the event of collisions between $y_{n_{i}+2} \oplus x_{n_{i}+1}$ with $y_{k}^{p} \oplus$ $x_{k-1}^{p}, \forall p, k, 1 \quad p \quad q_{e}, 1 \quad k \quad n_{p}+1$. Let D be the event defining the collisions $y_{n_{i}+2} \oplus x_{n_{i}+1}=$ $y_{k}^{p} \oplus x_{k-1}^{p}, 1 \quad p \quad q_{e}, 1 \quad k \quad n_{p}+1$, or using the definition for set $S^{e}, y_{n_{i}+2} \oplus x_{n_{i}+1} \in S^{e}$; we obtain

$$
D: y_{n_{i}+2} \oplus x_{n_{i}+1} \in S^{e}
$$

By union bound,

$$
\operatorname{Pr}[D] \quad \sum_{p=1}^{q_{e}} \sum_{k=1}^{n_{p}+1} \operatorname{Pr}\left[y_{n_{i}+2} \oplus x_{n_{i}+1}=y_{k}^{p} \oplus x_{k-1}^{p}\right] .
$$

Since event D implies $y_{n_{i}+2} \oplus x_{n_{i}+1}=y_{k}^{p} \oplus x_{k-1}^{p}$, and since $x_{n_{i}+1}=x_{n_{i}+1}^{i}=z_{0}^{i}$, it follows that $y_{n_{i}+2} \oplus z_{0}^{i}=$ $y_{k}^{p} \oplus x_{k-1}^{p}$. In this equality, x_{k-1}^{p} is random and uniformly distributed because either $x_{k-1}^{p}=x_{0}^{p}$ when $k \Leftrightarrow 1=0$ or x_{k-1}^{p} is a random block due to the CoA attack when $k \Leftrightarrow 1 \quad 1$. Furthermore, since z_{0}^{i} is encrypted with key K^{\prime}, it follows that x_{k-1}^{p} and z_{0}^{i} are independent. Since $y_{n_{i}+2}$ and $y_{k}^{p}, 1 \quad p \quad q_{e}, 1 \quad k \quad n_{p}+1$ are chosen constants,

$$
\operatorname{Pr}\left[y_{n_{i}+2} \oplus z_{0}^{i}=y_{k}^{p} \oplus x_{k-1}^{p}\right]=\frac{1}{2^{l}}
$$

Thus, since $\frac{e}{l}$ includes all the ciphertext blocks $\left(y_{0}^{p}, y_{1}^{p}, \quad, y_{n+p+1}^{p}, 1 \quad p \quad q_{e}\right)$,

$$
\operatorname{Pr}[D] \quad \frac{\mu_{e}}{l 2^{l}}
$$

If D is false, then we can choose $n_{i}+2$ as the position of the first block that does not yield a collision with any element in S^{e}. Furthermore, by the Corollary to Lemma 1 [Main IGE Lemma] with $a=z_{0}$, we obtain,

$$
\operatorname{Pr}\left[x_{n+1}=z_{0} \mid \bar{D}\right] \quad \frac{(n+1) \mu_{e}}{l 2^{l}}+\frac{(n+1)^{2}}{2^{l+1}}
$$

Hence, by standard conditioning,

$$
\begin{array}{ll}
\operatorname{Pr}\left[x_{n+1}=z_{0}\right] \quad & \operatorname{Pr}\left[x_{n+1}=z_{0} \mid \bar{D}\right]+\operatorname{Pr}[D] \\
& \frac{(n+1) \mu_{e}}{l 2^{l}}+\frac{(n+1)^{2}}{2^{l+1}}+\frac{\mu_{e}}{l 2^{l}}=\frac{(n+2) \mu_{e}}{l 2^{l}}+\frac{(n+1)^{2}}{2^{l+1}} .
\end{array}
$$

Upper bound for forgeries of type (c1).
In a similar manner to the proof for the forgeries of type (b), we condition the probability of successful forgery on the event of collisions between $y_{j} \oplus x_{j-1}$ and $y_{k}^{p} \oplus x_{k-1}^{p}, 1 \quad p \quad q_{e}, 1 \quad k \quad n_{p}+1$. Let D_{j} the event defining these collisions. Formally,

$$
D_{j}: y_{j} \oplus x_{j-1} \in S^{e}
$$

By union bound,

$$
\operatorname{Pr}\left[D_{j}\right] \quad \sum_{p=1}^{q_{e}} \sum_{k=1}^{n_{p}+1} \operatorname{Pr}\left[y_{j} \oplus x_{j-1}=y_{k}^{p} \oplus x_{k-1}^{p}\right] .
$$

Consider the collisions $y_{j} \oplus x_{j-1}=y_{k}^{p} \oplus x_{k-1}^{p}$. Since j is the first index such that $y_{j} \neq y_{j}^{i}$, it follows that $x_{j-1}=x_{j-1}^{i}$. Hence, these collisions can be expressed as $y_{j} \oplus x_{j-1}^{i}=y_{k}^{p} \oplus x_{k-1}^{p}$. In this equality, x_{j-1}^{i}
is random, uniformly distributed and independent of any $x_{k}^{p}, y_{k}^{p}, 1 \quad p \quad q_{e}, 1 \quad k \quad n_{p}+1$, with the exception of x_{j-1}^{i}, by the definition of CoA. For $p=i, k=j$, we have $x_{j-1}^{i}=x_{k-1}^{p}$, but by the definition of $j\left(y_{j} \neq y_{j}^{i}\right), y_{j} \oplus x_{j-1}^{i} \neq y_{j}^{i} \oplus x_{j-1}^{i}$. Since $y_{j}, y_{k}^{p}, 1 \quad p \quad q_{e}, 1 \quad k \quad n_{p}+1$ are constants, then

$$
\operatorname{Pr}\left[y_{j} \oplus x_{j-1}^{i}=y_{k}^{p} \oplus x_{k-1}^{p}\right] \quad \frac{1}{2^{l}} .
$$

Note that $\operatorname{Pr}\left[y_{j} \oplus x_{j-1}^{i}=y_{k}^{p} \oplus x_{k-1}^{p}\right]=0$ for $i=p, j=k$ from the definition of y_{j}. Hence, by the same arguments as for the case of forgeries of type (b),

$$
\operatorname{Pr}\left[D_{j}\right] \quad \frac{\mu_{e}}{l 2^{l}} .
$$

Furthermore, in a manner similar to that for the case of forgeries of type (b),

$$
\operatorname{Pr}\left[x_{n+1}=z_{0} \mid \overline{D_{j}}\right] \quad \frac{(n+1) \mu_{e}}{l 2^{l}}+\frac{(n+1)(2 n+1)}{2^{l+1}},
$$

by the Corollary to Lemma 1 [Main IGE Lemma] with $a=z_{0}$.
Upper bound for forgeries of type (c2).
In a similar manner to the proof for the forgeries of type (c1), we condition the probability of successful forgery on the event of collisions between $y_{1} \oplus x_{0}$ and $y_{k}^{p} \oplus x_{k-1}^{p}, 1 \quad p \quad q_{e}, 1 \quad k \quad n_{p}+1$. Hence, we define event D as for the case of forgeries of type (c1)

$$
D: y_{1} \oplus x_{0} \in S^{e} .
$$

By union bound,

$$
\operatorname{Pr}[D] \quad \sum_{p=1}^{q_{e}} \sum_{k=1}^{n_{p}+1} \operatorname{Pr}\left[y_{1} \oplus x_{0}=y_{k}^{p} \oplus x_{k-1}^{p}\right] .
$$

Thus, we consider the collision $y_{1} \oplus x_{0}=y_{k}^{p} \oplus x_{k-1}^{p}$. In this equality x_{k-1}^{p} is random and uniformly distributed since it is either r_{0}^{p} for $k \Leftrightarrow 1=0$ or is a random and uniformly distributed plaintext block in a CoA for $k \Leftrightarrow 1 \quad$ 1. Furthermore, $x_{0}=r_{0}=f^{\prime-1}\left(y_{0}\right)$ is the decryption of block $y_{0} \neq y_{0}^{p}, \forall p, 1 \quad p \quad q_{e}$ with a different key, hence x_{0} is independent of anything else, and hence, it si independent of x_{k-1}^{p}. Therefore,

$$
\operatorname{Pr}\left[y_{1} \oplus x_{0}=y_{k}^{p} \oplus x_{k-1}^{p}\right] \quad \frac{1}{2^{l}},
$$

and

$$
\operatorname{Pr}[D] \quad \frac{\mu_{e}}{l 2^{2}} .
$$

From here on, the computation of the upper bound for forgeries of type (c2) is similar with the computation for the upper bound for forgeries of type (c1) in which one chooses $j=1$.

Hence, for any forgery type

$$
\operatorname{Pr}\left[x_{n+1}=z_{0}\right] \quad \frac{(n+2) \mu_{e}}{l 2^{l}}+\frac{(n+1)(2 n+1)}{2^{l+1}},
$$

i.e., the probability that the integrity check passes, or equivalently that the EF-CoA adversary is successful, is

$$
\operatorname{Pr}\left[\left(\mathcal{D} \Leftrightarrow I G E \$ \Leftrightarrow z_{0}\right)(y) \neq N u l l\right] \quad \frac{(n+2) \mu_{e}}{l 2^{l}}+\frac{(n+1)(2 n+1)}{2^{l+1}}+\frac{1}{2^{l}},
$$

and, by Fact 0

$$
\operatorname{Pr}_{f \leftarrow F} \mathcal{R}_{\leftarrow}\left[\left(\mathcal{D} \Leftrightarrow I G E S \Leftrightarrow z_{0}\right)(y) \neq N u l l\right] \quad \epsilon+\frac{(n+2) \mu_{e}}{l 2^{l}}+\frac{(n+1)(2 n+1)}{2^{l+1}}+\frac{1}{2^{l}}
$$

i.e., this probability is negligible, and scheme IGE $\$-z_{0}$ is EF-CoA secure.

Proof of Lemma 3

We prove that scheme IGE $\$$-c is KPF-CPA secure. Hence, we must show that, for any forgery y,

$$
\operatorname{Pr}_{f \leftarrow F} \mathcal{R}_{F}[(\mathcal{D} \Leftrightarrow I G E S \Leftrightarrow c)(y) \neq \text { Null } \quad(\mathcal{D} \Leftrightarrow I G E S \Leftrightarrow c)(y)=x \text { is known }] \quad \lambda,
$$

where $1 \Leftrightarrow \lambda$ is negligible. By definition, $((\mathcal{D} \Leftrightarrow I G E S \Leftrightarrow c)(y) \neq$ Null $\quad(\mathcal{D} \Leftrightarrow I G E S \Leftrightarrow c)(y)=x$ is known $) \equiv$ $((\mathcal{D} \Leftrightarrow I G E S \Leftrightarrow c)(y)=$ Null or $(\mathcal{D} \Leftrightarrow I G E S \Leftrightarrow c)(y)=x$ is known $)$. Hence, we must show that

$$
\operatorname{Pr}_{f \mathcal{R}_{\leftarrow} \mathcal{R}}[(\mathcal{D} \Leftrightarrow I G E \$ \Leftrightarrow c)(y)=N \text { ull or }(\mathcal{D} \Leftrightarrow I G E S \Leftrightarrow c)(y)=x \text { is known }] \quad \lambda,
$$

where $1 \Leftrightarrow \lambda$ is negligible.
For the balance of this proof, we use the notation $\operatorname{Pr}[\cdot]=\operatorname{Pr}_{f \underset{\sim}{\mathcal{R}}}[\cdot[]$, unless otherwise specified.
To prove this lemma, we divide the space of all possible forgeries into two complementary classes: (a) forgeries that have at least a ciphertext block y_{i} such that $y_{i} \oplus x_{i-1}$ does not collide with any element of $S^{e}, y_{k}^{p} \oplus x_{k-1}^{p}, 1 \quad p \quad q_{e}, 1 \quad k \quad n_{p}+1$, and (b) forgeries for which any block leads to a collision with some element of $S^{e}, y_{k}^{p} \oplus x_{k-1}^{p}, 1 \quad p \quad q_{e}, 1 \quad k \quad n_{p}+1$.
Let y be an arbitrary forgery in class (a), and i the index of the first block such that $y_{i} \oplus x_{i-1}$ does not collide with any elements of $S^{e}, y_{k}^{p} \oplus x_{k-1}^{p}, 1 \quad p \quad q_{e}, 1 \quad k \quad n_{p}+1$. Then, since c is a constant, by Lemma 1 [Main IGE Lemma] with $a=c$,

$$
\operatorname{Pr}\left[x_{n+1}=c\right] \quad \frac{(n+1) \mu_{e}}{l 2^{l}}+\frac{(n+1)(2 n+1)}{2^{l+1}} .
$$

Hence, by the definition of event $(\mathcal{D} \Leftrightarrow I G E \$ \Leftrightarrow c)(y) \neq N u l l$:

$$
\operatorname{Pr}[(\mathcal{D} \Leftrightarrow I G E \$ \Leftrightarrow c)(y) \neq N u l l]=\operatorname{Pr}\left[x_{n+1}=c\right] \quad \frac{(n+1) \mu_{e}}{l 2^{l}}+\frac{(n+1)(2 n+1)}{2^{l+1}} .
$$

and, by Fact 0

$$
\begin{aligned}
\operatorname{Pr}_{f \mathcal{R}_{F}}[(\mathcal{D} \Leftrightarrow I G E S \Leftrightarrow c)(y) \neq N u l l] & =\operatorname{Pr}_{f f_{\mathcal{R}}}\left[x_{n+1}=c\right] 1 \Leftrightarrow \lambda \\
& =\epsilon+\frac{(n+1) \mu_{e}}{l 2^{l}}+\frac{(n+1)(2 n+1)}{2^{l+1}} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \operatorname{Pr}_{f \leftarrow F}^{\mathcal{R}}[(\mathcal{D} \Leftrightarrow I G E S \Leftrightarrow c)(y)=\text { Null } \text { or }(\mathcal{D} \Leftrightarrow I G E S \Leftrightarrow c)(y)=x \text { is known }] \\
& \left.\operatorname{Pr}_{f \leftarrow F}^{\mathcal{R}} F(\mathcal{D} \Leftrightarrow I G E S \Leftrightarrow c)(y)=N u l l\right]=1 \Leftrightarrow \operatorname{Pr}_{f f_{F}^{\mathcal{R}} F}[(\mathcal{D} \Leftrightarrow I G E S \Leftrightarrow c)(y) \neq N u l l] \quad \lambda
\end{aligned}
$$

where $1 \Leftrightarrow \lambda=\epsilon+\frac{(n+1) e}{l 2^{l}}+\frac{(n+1)(2 n+1)}{2^{l+1}}$ is negligible.

Let y be an arbitrary forgery in class (b); i.e., for any i a block, $y_{i} \oplus x_{i-1}$ collides with any element of $S^{e}, y_{k}^{p} \oplus x_{k-1}^{p}, 1 \quad p \quad q_{e}, 1 \quad k \quad n_{p}+1$. Hence, $x_{i}=f^{-1}\left(y_{i} \oplus x_{i-1}\right) \oplus y_{i-1}=x_{k}^{p} \oplus y_{k-1}^{p} \oplus y_{i-1}$ is known. If the last decrypted plaintext block leads to $x_{n+1}=c$, then the ciphertext decrypts correctly and the adversary knows the entire plaintext outcome of forgery. Hence event $((\mathcal{D} \Leftrightarrow I G E \$ \Leftrightarrow c)(y)=$ Null or $(\mathcal{D} \Leftrightarrow I G E S \Leftrightarrow c)(y)=x$ is known) is true. If the last decrypted plaintext block leads to $x_{n+1} \neq$ c, then the ciphertext does not decrypt correctly. Hence $(\mathcal{D} \Leftrightarrow I G E S \Leftrightarrow c)(y)=N u l l$, and thus event $((\mathcal{D} \Leftrightarrow I G E \$ \Leftrightarrow c)(y)=$ Null or $(\mathcal{D} \Leftrightarrow I G E \$ \Leftrightarrow c)(y)=x$ is known $)$ is still true. Thus, for any forgery in class (b)

$$
\operatorname{Pr}_{f \mathcal{R}_{F}}[(\mathcal{D} \Leftrightarrow I G E \$ \Leftrightarrow c)(y)=N \text { ull or }(\mathcal{D} \Leftrightarrow I G E \$ \Leftrightarrow c)(y)=x \text { is known }]=1 .
$$

Hence, for any forgery (either of class (a) or (b)),

$$
\operatorname{Pr}_{f \underset{ }{\mathcal{R}}}[(\mathcal{D} \Leftrightarrow I G E S \Leftrightarrow c)(y) \neq N \text { ull } \quad(\mathcal{D} \Leftrightarrow I G E S \Leftrightarrow c)(y)=x \text { is known }] \quad \lambda,
$$

where $1 \Leftrightarrow \lambda$ is negligible, and by the definition of security against known-plaintext forgeries, the IGE $\$$-c scheme is KPF-CPA secure.

Proof of Lemma 4

First, we prove that the IGE $\$-z_{0}$ and IGE $\$-c$ encryption modes are not secure against EF-CPA attacks, and then we prove that these schemes are not PI-CPA, PU-CPA, and NM-CPA secure. To prove the first part of the lemma, it is sufficient to provide counter-examples that show that an adversary can construct a forgery y that passes the integrity check provided by $x_{n+1}=z_{0}$ for IGE $\$-z_{0}$ and the integrity check $x_{n+1}=c$ for IGE $\$-c$ (and whose plaintext x is known to the adversary.)
We show that the adversary can choose a plaintext with certain properties, obtain the ciphertext, then, he can construct a forgery that yields some changes plaintext blocks only in the middle of the plaintext, and thus, the beginning and the ending of the plaintext are unmodified and, hence, the decrypted plaintext passes the integrity checks $x_{n+1}=z_{0}$ or $x_{n+1}=c$.

Let an adversary submit for encryption the chosen plaintext
$x=x_{1} \quad x_{i-2} x_{i-1} x_{i} x_{i+1} \quad x_{m}$, where $x_{i-2}=x_{i}$ and $x_{i-1}=x_{i+1}$. That is, the adversary simply constructs a plaintext that replicates two consecutive blocks in the two positions that follow those blocks. The adversary obtains ciphertext $y=y_{1} \quad y_{i-2} y_{i-1} y_{i} y_{i+1} \quad y_{m}$, and constructs forgery (of equal length, m) as follows:

$$
y^{\prime}=y_{1}^{\prime} \quad y_{i-2}^{\prime} y_{i-1}^{\prime} y_{i}^{\prime} y_{i+1}^{\prime} \quad y_{m}^{\prime}
$$

where

$$
\begin{aligned}
& y_{1}^{\prime} \quad y_{i-2}^{\prime}=y_{1} \quad y_{i-2} \\
& y_{i-1}^{\prime}=y_{i+1} \\
& y_{i}^{\prime}=y_{i-2} \\
& y_{i+1}^{\prime} \quad y_{m}^{\prime}=y_{i+1} \quad y_{m} .
\end{aligned}
$$

In other words, the forgery $y^{\prime} \neq y$ is

$$
y^{\prime}=y_{1} \quad y_{i-2} y_{i+1} y_{i-2} y_{i+1} \quad y_{m}
$$

Next, we describe the attack outcome. The decryption of forgery y^{\prime}, namely x^{\prime}, will contain (1) the same plaintext blocks as those of the chosen plaintext x up to position $i \Leftrightarrow 2$; i.e., $x_{j}^{\prime}=x_{j}, \forall j, 1 \quad j \quad i \Leftrightarrow 2$; (2)
the same plaintext blocks as those of the chosen plaintext x from position $i+1$ to the end of the message; i.e., $x_{j}^{\prime}=x_{j}, \forall j, i+1 \quad j \quad m$; and (3) two modified plaintext blocks (both with a known/predictable modification) at position $i \Leftrightarrow 1$, i.e., $x_{i-1}^{\prime}=x_{i+1} \oplus y_{i} \oplus y_{i-2}$, and at position i; i.e., $x_{i}^{\prime}=x_{i} \oplus y_{i-1} \oplus y_{i+1}$.

To verify the outcome of this attack, we compute $x_{i-1}^{\prime}, x_{i}^{\prime}$, and x_{i-1}^{\prime}. That is,

$$
\begin{aligned}
x_{i-1}^{\prime} & =f^{-1}\left(y_{i-1}^{\prime} \oplus x_{i-2}^{\prime}\right) \oplus y_{i-2}^{\prime}=f^{-1}\left(y_{i+1} \oplus x_{i}\right) \oplus y_{i-2} \\
& =x_{i+1} \oplus y_{i} \oplus y_{i-2}
\end{aligned}
$$

which is known to the adversary.

$$
\begin{aligned}
x_{i}^{\prime} & =f^{-1}\left(y_{i}^{\prime} \oplus x_{i-1}^{\prime}\right) \oplus y_{i-1}^{\prime}=f^{-1}\left(y_{i-2} \oplus x_{i+1} \oplus y_{i} \oplus y_{i-2}\right) \oplus y_{i+1} \\
& =f^{-1}\left(x_{i-1} \oplus y_{i}\right) \oplus y_{i+1}=x_{i} \oplus y_{i-1} \oplus y_{i+1}
\end{aligned}
$$

which is known to the adversary.

$$
\begin{aligned}
x_{i+1}^{\prime} & =f^{-1}\left(y_{i+1}^{\prime} \oplus x_{i}^{\prime}\right) \oplus y_{i}^{\prime}=f^{-1}\left(y_{i+1} \oplus x_{i} \oplus y_{i-1} \oplus y_{i+1}\right) \oplus y_{i-2} \\
& =f^{-1}\left(x_{i} \oplus y_{i-1}\right) \oplus y_{i-2}=f^{-1}\left(x_{i-2} \oplus y_{i-1}\right) \oplus y_{i-2}=x_{i-1}=x_{i+1}
\end{aligned}
$$

which means that the plaintext at position $i+1$ remains unmodified.

$$
x_{i+2}^{\prime}=f^{-1}\left(y_{i+2}^{\prime} \oplus x_{i+1}^{\prime}\right) \oplus y_{i+1}^{\prime}=f^{-1}\left(y_{i+2} \oplus x_{i+1}\right) \oplus y_{i+1}=x_{i+2}
$$

which means that the plaintext at position $i+2$ also remains unmodified. From this point on, all remaining plaintext blocks remain unmodified to the end of the message.

Hence, the integrity conditions $x_{n+1}^{\prime}=z_{0}$ for the IGE $\$-z_{0}$ or $x_{n+1}^{\prime}=c$ for the IGE $\$-c$ are verified with probability 1 (one), i.e., neither scheme is secure against EF-CPA.
The same counter-example as that given above is sufficient to show that the IGE $\$-z_{0}$ and IGE $\$-\mathrm{c}$ are not PU-CPA, and PI-CPA secure. (The actual proof for PI-CPA security involves the event that there are no collisions in the inputs to function f; i.e., includes the bound δ_{R} defined in the proof of Lemma 6 , Fact 1 below.) A similar example can be used to prove that these schemes are not NM-CPA secure, also. For instance, construct a forgery in which all but the last two blocks of the plaintext outcome contain all 1's, and the last two blocks contain the known but garbled data produced by the exclusive-or operations with ciphertext blocks obtained at encryption. Modify the plaintext outcome of the forgery as follows: divide (i.e., by integer division) the plaintext outcome of the forgery by $2^{2 l}$, where l is the block size, thereby shifting the garbled blocks out of the message and zero-filling its first two blocks. The relationship $\mathcal{R} \stackrel{\text { def }}{=}$ holds among the modified plaintext outcome and the similarly modified (but unknown) plaintext of the challenge ciphertexts.

Proof of Lemma 5

To prove this lemma, we partition all possible forgeries into successively smaller classes, and demonstrate that, for each class of forgery, either the integrity check fails or the plaintext outcome of forgery includes an unknown block.

We note that all forgeries can be created in the following three complementary ways. That is, a forgery $y^{\prime}=y_{0}^{\prime} y_{1}^{\prime} \quad y_{n}^{\prime} y_{n+1}^{\prime}$ can be:
(1) a truncation of a ciphertext message y_{k}^{p} of length $n_{p}+1$ obtained at encryption, namely, $y_{j}^{\prime}=y_{j}^{p}, \forall j, 0$
$j \quad n+1 \quad p+1 ; \quad<n$
(2) an extensions of a ciphertext message y^{p} of length $n_{p}+1$ obtained at encryption, namely, $y_{j}^{\prime}=y_{j}^{p}, \forall j, 0$
j $n_{p}+1 \quad+1$; and
(3) in neither class (1) nor (2). That is, the forgery is a ciphertext message such that there exists index $s \quad \min \left\{n+1, n_{p}+1\right\}: y_{s}^{\prime} \neq y_{s}^{p}$ whose ciphertext block differs from block s of a ciphertext message y^{p} of length $n_{p}+1$ obtained at encryption. We denote by j be the minimum of these indices s.

It is easy to see that for forgeries of types (1) and (2) the lemma is proved, since for case (1) the integrity check passes with only negligible probability whereas for case (2) plaintext block $x_{n_{p}+1}^{\prime}$, which contains random block z_{0}^{p}, is unknown, and hence could not be chosen by the adversary. That is, for any forgery of type (1), $x_{n+1}^{\prime}=x_{n+1}^{p}$ is a constant since $n \quad n_{p}$, and z_{0}^{\prime} is a random variable. Thus

$$
\begin{aligned}
& \operatorname{Pr}_{f \leftarrow \mathbb{R}^{\mathcal{R}}}\left[z_{0}^{\prime}=x_{n+1}^{\prime}\right]=\operatorname{Pr}_{f, f^{\prime} \underset{\sim}{\mathcal{R}}{ }^{l} l}\left[z_{0}^{\prime}=x_{n+1}^{\prime}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =A d v_{\mathcal{D}}\left(P^{l}, R^{l, l}\right)+\frac{1}{2^{l}},
\end{aligned}
$$

where $\operatorname{Adv} v_{\mathcal{D}}\left(P^{l}, R^{l, l}\right)$ is the advantage of an adversary \mathcal{D} in distinguishing between $f^{\prime \mathcal{R}} P^{l}$ from $f^{\prime \mathcal{R}} R^{l, l}$ using an encryption oracle for f^{\prime} in the process of implementing the IGE $\$$ scheme. Also, since random variable z_{0}^{\prime} is uniformly distributed when $f^{\prime \mathcal{R}} R^{l, l}$ and since x_{n+1}^{\prime} is a constant, it follows that $\operatorname{Pr}_{f}^{f^{\mathcal{R}} P^{l}, f^{\prime} \mathfrak{R} R_{p}^{l,},}\left[z_{0}^{\prime}=x_{n+1}^{\prime}\right]=1 / 2^{l}$. However, by the bound of the birthday attack, $\operatorname{Adv}\left(P^{l}, R^{l, l}\right) \quad \frac{q_{e}\left(q_{e}-1\right)}{2^{+1}}$ since $z_{0}^{\prime}=z_{0}^{p}=f^{\prime}\left(r_{0}^{p}+1\right)$ and $1 \quad p \quad q_{e}$. Hence,

$$
\begin{aligned}
& \operatorname{Pr}_{f{\underset{\sim}{\mathcal{R}}}^{\mathcal{R}}{ }^{l}\left[\left(\left(D^{F_{K}} \text { o } g\right)\left(y^{\prime}\right) \neq N \text { ull } \text { and }\left(\left(D^{F_{K}} \text { o } g\right)\left(y^{\prime}\right)=x \neq x^{i}, 1 \quad i \quad q_{e} \text {, is chosen }\right]\right.\right.} \\
& \operatorname{Pr}_{f{\underset{f}{\mathcal{R}}}_{\mathcal{R}^{l}}\left[\left(\left(D^{F_{K}} \text { og } g\right)\left(y^{\prime}\right) \neq N u l l\right]=\operatorname{Pr}_{f \mathcal{R}_{\mathcal{R}^{l}}}\left[z_{0}^{\prime}=x_{n+1}^{\prime}\right]=\frac{1}{2^{l}}+\frac{q_{e}\left(q_{e} \Leftrightarrow 1\right)}{2^{l+1}} .\right.}
\end{aligned}
$$

For any forgery of type (2), $x_{n_{p}+1}^{\prime}=x_{n_{p}+1}^{p}=z_{0}^{p}$, which is random. Hence, event $x_{n_{p}+1}^{\prime}=x_{n_{p}+1}$ has the same distribution as z_{0}^{p} and happens with probability $\frac{1}{2^{l}}+\frac{q_{e}\left(q_{e}-1\right)}{2^{l+1}}$ whenever $f^{\prime \mathcal{R}} P^{l}$ (by the same argument as in case (1)). Hence,

$$
\begin{aligned}
& \operatorname{Pr}_{f \mathcal{R}_{P_{l}}}\left[\left(\left(D^{\left.F_{K} O g\right)}\left(y^{\prime}\right) \neq N u l l \text { and }\left(\left(D^{F_{K}} o g\right)\left(y^{\prime}\right)=x \neq x^{i}, 1 \quad i \quad q_{e} \text {, is chosen }\right]\right.\right.\right. \\
& \operatorname{Pr}_{f}^{\mathcal{R}_{\mathcal{L}} l}{ }^{[}\left[x_{n_{p}+1}^{\prime}=x_{n_{p}+1}\right]=\operatorname{Pr}_{f}^{\underset{\sim}{\mathcal{R}}{ }_{L} l}\left[x_{n_{p}+1}=z_{0}^{p}\right]=\operatorname{Pr}_{f^{\prime} \underset{\leftarrow}{\mathcal{R}} P}\left[x_{n_{p}+1}=z_{0}^{p}\right] \\
& =\frac{1}{2^{l}}+\frac{q_{e}\left(q_{e} \Leftrightarrow 1\right)}{2^{l+1}} .
\end{aligned}
$$

To complete the proof of the lemma, we partition forgeries of type (3) further. We first distinguish the case whereby there exists a ciphertext block position $j, 0 \quad j \quad n+1$, such that the input to f^{-1} at that block position does not collide with any of possible inputs to f used during encryption. That is, $y_{0}^{\prime} \neq y_{0}^{p}, \forall p, 1 \quad p \quad q_{e}$ or $y_{j}^{\prime} \oplus x_{j-1}^{\prime} \notin S^{e}$. Then, by the Corollary to the Main IGE Lemma (Lemma 1),

$$
\operatorname{Pr}_{f \leftarrow \mathcal{R}^{\mathcal{R}}}\left[x_{n+1}^{\prime}=z_{0}^{\prime}\right] \quad \frac{(n+1) \mu_{e}}{l 2^{l}}+\frac{(n+1)(2 n+1)}{2^{l+1}} .
$$

Hence,

$$
\begin{aligned}
& \operatorname{Pr}_{f f_{\leftarrow}^{\mathcal{R}} P^{l}}\left[\left(\left(D^{F_{K}} \operatorname{Og}\right)\left(y^{\prime}\right) \neq N u l l\right]=\operatorname{Pr}_{f{\underset{S}{\mathcal{R}}}^{\mathcal{R}}}\left[x_{n+1}^{\prime}=z_{0}^{\prime}\right] \quad \frac{(n+1) \mu_{e}}{l 2^{l}}+\frac{(n+1)(2 n+1)}{2^{l+1}} .\right.
\end{aligned}
$$

The lemma is proven for this case also.
In all remaining type (3) cases, all inputs to f^{-1} during decryption collide with some inputs to f used during encryption. That is, $y_{0}^{\prime}=y_{0}^{p}$, for some $p, 1 \quad p \quad q_{e}$ or all $y_{j}^{\prime} \oplus x_{j-1}^{\prime} \in S^{e}, \forall j, 1 \quad j \quad n$.
Let a type (3) forgery y^{\prime} differ from any of the q_{e} encrypted messages at block position $j, 1 \quad j \quad n+1$; i.e., the adversary chooses $x_{i}^{\prime}=x_{i}^{p}, \forall i, 1 \quad i \quad j \Leftrightarrow 1$. We show that plaintext obtained at position j during the decryption of the forgery y^{\prime}, namely x_{j}^{\prime}, can be chosen only with negligible probability, or that the integrity condition happens with negligible probability. This completes the proof since the maximum of all the probabilities of passing the integrity check and choosing all the plaintext of the forgery decryption is negligible.

If the adversary chooses $x_{i}^{\prime}=x_{i}^{p}$, the chosen plaintext blocks could be obtained up to position j of the forgery decryption. Now, we show that the chosen plaintext can be obtained at position j with only negligible probability. We have two complementary cases to analyze: (a) $j \quad n$ and (b) $j=n+1$.
(a) For $j \quad n$, we compute an upper bound on the probability of the integrity condition $x_{j}^{\prime}=x_{j}$, where x_{j} is the chosen value. However, by definition, $x_{j}^{\prime}=f^{-1}\left(y_{j}^{\prime} \oplus x_{j-1}^{\prime}\right) \oplus y_{j-1}^{\prime}$, and by hypothesis, $y_{j}^{\prime} \oplus x_{j-1}^{\prime} \in$ $S^{e}, \forall j, 1 \quad j \quad n$. Thus, a collision $y_{j}^{\prime} \oplus x_{j-1}^{\prime}=y_{t}^{s} \oplus x_{t-1}^{s}$ must take place for some $s, t, 1 \quad t \quad n_{s}+1,1$ $s q_{e}$.

If $y_{j}^{\prime} \oplus x_{j-1}^{\prime}=y_{t}^{s} \oplus x_{t-1}^{s}, 1 \quad s \quad q_{e}, 1 \quad t \quad n_{s}+1$, then, since $x_{j}^{\prime}=f^{-1}\left(y_{j}^{\prime} \oplus x_{j-1}^{\prime}\right) \oplus y_{j-1}^{\prime}$ and $y_{j-1}^{\prime}=y_{j-1}^{p}$ by the definition of block position j, we obtain $x_{j}^{\prime}=x_{t}^{s} \oplus y_{t-1}^{s} \oplus y_{j-1}^{\prime}=x_{t}^{s} \oplus y_{t-1}^{s} \oplus y_{j-1}^{p}$. Now note that $(s, t) \neq(p, j) \Leftrightarrow(s, t \Leftrightarrow 1) \neq(p, j \Leftrightarrow 1)$ by the definition of block position j. This means that $x_{j}^{\prime}=x_{j} \Leftrightarrow x_{t}^{s} \oplus y_{t-1}^{s}=x_{j} \oplus y_{j-1}^{p}$. However, the two sides of the equation $x_{t}^{s} \oplus y_{t-1}^{s}=x_{j} \oplus y_{j-1}^{p}$ are random because x_{t}^{s}, x_{j} are chosen constants and y_{t-1}^{s}, y_{j-1}^{p} are random since $f^{\mathcal{R}} P^{l}$. The two sides of the equation are also independent of each other whenever y_{t-1}^{s} and y_{j-1}^{p} are distinct (i.e., do not collide with each other). To compute the probability that y_{t-1}^{s} and y_{j-1}^{p} are distinct, we define D (Distinct) to be the event that all inputs to function $f=F_{K}$ used during the q_{e} encryptions are distinct. Fact 1 provides a bound for the probability of \bar{D}.

Fact 1

Let D Distinct denote the event at all inputs to function $f=F_{K}$ used during the q_{e} encryptions $y_{k}^{p}=$ $f\left(x_{k}^{p} \oplus y_{k-1}^{p}\right) \oplus x_{k-1}^{p}, 1 \quad p \quad q_{e}, 1 \quad k \quad n_{p}$, are distinct. Then,

$$
\operatorname{Pr}_{f \underset{f}{\mathcal{R}} R^{l, l}}[\bar{D}] \quad \delta_{R} \stackrel{\text { def }}{=} \frac{1}{2^{l+1}}\left(\frac{\mu_{e}^{2}}{l^{2}} \Leftrightarrow \frac{\mu_{e}}{l}\right)
$$

and

$$
\operatorname{Pr}_{f \leftarrow P l}^{\mathcal{R}}[\bar{D}] \quad \delta_{P} \stackrel{\text { def }}{=} \delta_{R}+\frac{\mu_{e}\left(\mu_{e} \Leftrightarrow l\right)}{l^{2} 2^{l+1}}=\frac{\mu_{e}\left(\mu_{e} \Leftrightarrow l\right)}{l^{2} 2^{l}} .
$$

Then, the probability of event $x_{j}^{\prime}=x_{j} \Leftrightarrow x_{t}^{s} \oplus y_{t-1}^{s}=x_{j} \oplus y_{j-1}^{p}$ can be bound by using standard conditioning and Fact 1.

However, by the same argument as that used in (1), we obtain

$$
\operatorname{Pr}_{f \mathcal{R}_{P^{l}}}\left[x_{j}^{\prime}=x_{j} \mid D\right]=\operatorname{Adv}_{\mathcal{D}}\left(P^{l}, R^{l, l}\right)+\operatorname{Pr}_{f f_{R^{l}, l}}\left[x_{j}^{\prime}=x_{j} \mid D\right],
$$

or

$$
\operatorname{Pr}_{f \leftarrow P^{\mathcal{R}}}\left[x_{j}^{\prime}=x_{j} \mid D\right] \quad \frac{\mu_{e}\left(\mu_{e} \Leftrightarrow l\right)}{l^{2} 2^{l+1}}+\frac{1}{2^{l}},
$$

since, when $f^{\mathcal{R}} R^{l, l}$ and event D is true, y_{t-1}^{s} and y_{j-1}^{p} where $(s, t \Leftrightarrow 1) \neq(p, j \Leftrightarrow 1)$, are random, uniformly distributed, and independent, and thus $\operatorname{Pr}_{f \underbrace{}_{R^{l, l}}}\left[x_{j}^{\prime}=x_{j} \mid D\right]=1 / 2^{l}$. Hence,

$$
\operatorname{Pr}_{f \mathcal{R}_{\leftarrow}^{\mathcal{R}}}\left[x_{j}^{\prime}=x_{j}\right] \quad \frac{3 \mu_{e}\left(\mu_{e} \Leftrightarrow l\right)}{l^{2} 2^{l+1}}+\frac{1}{2^{l}},
$$

which shows that $\operatorname{Pr}_{f \leftarrow \mathcal{R}^{l}}\left[x_{j}^{\prime}=x_{j}\right]$ is negligible.
(b) For $j=n+1$, we compute an upper bound for the probability of the integrity condition $x_{j}^{\prime}=z_{0}^{\prime}$. (The proof of the negligible upper bound for this case is almost identical to that for case $j n$. We repeat it here for completeness.) However, by definition $x_{j}^{\prime}=f^{-1}\left(y_{j}^{\prime} \oplus x_{j-1}^{\prime}\right) \oplus y_{j-1}^{\prime}$, and by hypothesis $y_{j}^{\prime} \oplus x_{j-1}^{\prime} \in S^{e}$. Hence, a collision $y_{j}^{\prime} \oplus x_{j-1}^{\prime}=y_{t}^{s} \oplus x_{t-1}^{s}$ must take place for some $s, t, 1 \quad t \quad n_{s}+1,1 \quad s \quad q_{e}$.
If $y_{j}^{\prime} \oplus x_{j-1}^{\prime}=y_{t}^{s} \oplus x_{t-1}^{s}, 1 \quad s \quad q_{e}, 1 \quad t \quad n_{s}+1$, then, since $x_{j}^{\prime}=f^{-1}\left(y_{j}^{\prime} \oplus x_{j-1}^{\prime}\right) \oplus y_{j-1}^{\prime}$ and $y_{j-1}^{\prime}=y_{j-1}^{p}$ by the definition of of block position j, we obtain $x_{j}^{\prime}=x_{t}^{s} \oplus y_{t-1}^{s} \oplus y_{j-1}^{\prime}=x_{t}^{s} \oplus y_{t-1}^{s} \oplus y_{j-1}^{p}$. Note that $(s, t) \neq(p, j) \Leftrightarrow(s, t \Leftrightarrow 1) \neq(p, j \Leftrightarrow 1)$ by the definition of block position j.
The integrity condition $x_{j}^{\prime}=z_{0}^{\prime} \Leftrightarrow x_{t}^{s} \oplus y_{t-1}^{s}=z_{0}^{p} \oplus y_{j-1}^{p}$, where the right hand side is random and independent of the left hand side. This is the case because z_{0}^{p} is random and independent of y_{t-1}^{s} and y_{j-1}^{p}, since it is generated using function f^{\prime} with key $K^{\prime} \neq K$, and $x_{t}^{s} \neq x_{j}^{p}=z_{0}^{p}$, since block position $(s, t) \neq(p, j), j=n+1$, and x_{t}^{s} is a chosen constant. Using the same arguments as in case (a), we obtain an upper bound for the probability of $x_{j}^{\prime}=z_{0}^{\prime}$, as follows:

$$
\operatorname{Pr}_{f \mathfrak{R}_{P}(\underline{\mathcal{R}}}\left[x_{j}^{\prime}=z_{0}^{\prime}\right]=\operatorname{Pr}_{f^{\prime} \mathfrak{R} P}\left[x_{j}^{\prime}=z_{0}^{\prime}\right] \quad \frac{1}{2^{l}}+\frac{q_{e}\left(q_{e} \Leftrightarrow 1\right)}{2^{l+1}} .
$$

Finally, for any possible forgery, the probability of success is bounded by the maximum of the probabilities obtained for cases (1)-3(a)(b); i.e.,

$$
\begin{aligned}
& \operatorname{Pr}_{f \mathcal{R}_{\mathcal{R}_{l}}}\left[\left(\left(D^{F_{K}} o g\right)\left(y^{\prime}\right) \neq \text { Null and }\left(\left(D^{F_{K}} o g\right)\left(y^{\prime}\right)=x \neq x^{i} \text { is chosen, } 1 \quad i \quad q_{e}\right]\right.\right. \\
& \max \left\{\frac{(n+1) \mu_{e}}{l 2^{l}}+\frac{(n+1)(2 n+1)}{2^{l+1}}, \frac{3 \mu_{e}\left(\mu_{e} \Leftrightarrow l\right)}{l^{2} 2^{l+1}}+\frac{1}{2^{l}}, \frac{1}{2^{l}}+\frac{q_{e}\left(q_{e} \Leftrightarrow 1\right)}{2^{l+1}}\right\} .
\end{aligned}
$$

Hence, when the scheme is implemented with the SPRP family F,

$$
\begin{aligned}
& \operatorname{Pr}_{f} \mathcal{R}_{\leftarrow}\left[\left(\left(D^{F_{K}} \operatorname{og}\right)\left(y^{\prime}\right) \neq N u l l \text { and }\left(\left(D^{F_{K}} o g\right)\left(y^{\prime}\right)=x \neq x^{i}, 1 \quad i \quad q_{e} \text { is chosen }\right] \quad \epsilon^{\prime} \stackrel{\text { def }}{=}\right.\right. \\
& \max \left\{\frac{(n+1) \mu_{e}}{l 2^{l}}+\frac{(n+1)(2 n+1)}{2^{l+1}}, \frac{3 \mu_{e}\left(\mu_{e} \Leftrightarrow l\right)}{l^{2} 2^{l+1}}+\frac{1}{2^{l}}, \frac{1}{2^{l}}+\frac{q_{e}\left(q_{e} \Leftrightarrow 1\right)}{2^{l+1}}\right\}+\epsilon,
\end{aligned}
$$

and ϵ^{\prime} is negligible.

Proof of Lemma 6

This proof is based first on replacing SPRP family F with the family of random functions G_{S}, i.e., $f, \bar{f} \mathcal{R}$ G_{S}. Next, we use the idea that if the inputs to function \bar{f} in the reverse pass of the decryption are different from all the quantities obtained at encryption (either from the unknown plaintext of the challenges or the plaintext the adversary chooses to encrypt), and if they are different (i.e., do not collide among themselves), the plaintext outcome of the forgery is random, uniformly distributed, and independent of anything else
(since, for these input, $\bar{f}=v$ and $v^{\mathcal{R}} R^{l, l}$). Hence, for the most part, the proof focuses on determining upper bounds for these events.

Let $q_{e}=q_{1}+q_{2}$ with q_{1}, q_{2} defined in the NM-CPA, and define the following sets (encompassing both the unknown plaintexts corresponding to the ciphertext challenges, and the plaintexts chosen by the adversary):

$$
\left.\begin{array}{rl}
S^{e} & =\left\{z_{k}^{p} \oplus x_{k-1}^{p}, 1\right.
\end{array} \begin{array}{lllll}
p & q_{e}, 1 & k & n_{p}+1
\end{array}\right\}
$$

If the elements of the set S^{d} do not collide with each other (i.e., the set S^{e} is collision-free) and $S^{e} \cap S^{d}=\phi$ (i.e., the empty set), then the inputs to the functions \bar{f} at decryption are new, and hence the quantities $\bar{f}\left(z_{s} \oplus x_{s-1}\right)=v\left(z_{s} \oplus x_{s-1}\right)$ are random, uniformly distributed, and mutually independent and independent of anything else. Furthermore, all plaintexts $x_{s}=\bar{f}\left(z_{s} \oplus x_{s-1}\right) \oplus z_{s-1}$ are random, uniformly distributed, and mutually independent and independent of anything else. Hence, there is no relationship among the decrypted plaintext and the challenge plaintexts.

Let us define the following events:

$$
\begin{array}{lll}
D & : & T^{e} \text { is collision-free } \\
A & : & S^{e} \cap S^{d}=\phi \\
B & : & S^{d} \text { is collision-free. }
\end{array}
$$

Event D is the event Distinct from Fact 1, hence

$$
\operatorname{Pr}_{f f^{\mathcal{R}} P_{l} l}[\bar{D}] \quad \delta_{P} \stackrel{\operatorname{def}}{=} \frac{\mu_{e}\left(\mu_{e} \Leftrightarrow l\right)}{l^{2} 2^{l}} .
$$

In the following we consider $\operatorname{Pr}[]=.\operatorname{Pr}_{f_{\leftarrow}^{\mathcal{R}} G_{S}}[$.$] and drop the subscript.$
If both the events A and B are true, then the event $\mathcal{R}\left(x^{1}, \quad, x^{q_{2}},\left(D^{F_{K}} o g\right)(y)\right)$ is false, i.e., there does not exist any relationship between the decrypted plaintext and the challenge plaintexts. Hence, the following implication is true: $\mathcal{R}\left(x^{1}, \quad, x^{q_{2}},\left(D^{\left.\left.F_{K} o g\right)(y)\right) \quad \bar{A} \text { and } B} \equiv \bar{A}\right.\right.$ or \bar{B}. Hence,

$$
\left(D^{F_{K}} O g\right)(y) \neq \text { Null and } \mathcal{R}\left(x^{1}, \quad, x^{q_{2}},\left(D^{F_{K}} O g\right)(y)\right) \quad\left(D^{F_{K}} O g\right)(y) \neq N u l l \text { and }(\bar{A} \text { or } \bar{B})
$$

Hence,

$$
\begin{aligned}
& \operatorname{Pr}\left[\left(D^{F_{K}} o g\right)(y) \neq N \text { ull and } \mathcal{R}\left(x^{1}, \quad, x^{q_{2}},\left(D^{F_{K}} o g\right)(y)\right)\right] \\
& \quad \operatorname{Pr}\left[\left(\left(D^{F_{K}} o g\right)(y) \neq \text { Null and }(\bar{A} \text { or } \bar{B})\right] \quad \operatorname{Pr}[\bar{A} \text { or } \bar{B}] .\right.
\end{aligned}
$$

Now, we compute an upper bound for the probability of event \bar{A} or \bar{B}.
Let us define the following set:

$$
S_{i}^{d}=\left\{z_{s} \oplus x_{s-1}, 1 \quad s \quad i\right\}
$$

and events:

$$
\begin{aligned}
& A_{i}: S^{e} \cap S_{i}^{d}=\phi \\
& B_{i}: \\
& : \\
& S_{i}^{d} \text { is collision-free. }
\end{aligned}
$$

Hence, event $A=A_{n+1}$ and event $B=B_{n+1}$. For any index i, we obtain, by standard conditioning,

$$
\operatorname{Pr}\left[\overline{A_{i+1}} \text { or } \overline{B_{i+1}}\right] \quad \operatorname{Pr}\left[\overline{A_{i+1}} \text { or } \overline{B_{i+1}} \mid A_{i} \text { and } B_{i}\right]+\operatorname{Pr}\left[\overline{A_{i}} \text { or } \overline{B_{i}}\right],
$$

and, using standard conditioning repeatedly, we obtain

$$
\begin{aligned}
\operatorname{Pr}[\bar{A} \text { or } \bar{B}]= & \operatorname{Pr}\left[\overline{A_{n+1}} \text { or } \overline{B_{n+1}}\right] \\
& \operatorname{Pr}\left[\overline{A_{n+1}} \text { or } \overline{B_{n+1}} \mid A_{n} \text { and } B_{n}\right]+\operatorname{Pr}\left[\overline{A_{n}} \text { or } \overline{B_{n}}\right] . \\
& \operatorname{Pr}\left[\overline{A_{1}} \text { or } \overline{B_{1}}\right]+\sum_{i=1}^{n} \operatorname{Pr}\left[\overline{A_{i+1}} \text { or } \overline{B_{i+1}} \mid A_{i} \text { and } B_{i}\right] .
\end{aligned}
$$

First, we determine an upper bound for $\operatorname{Pr}\left[\overline{A_{i+1}}\right.$ or $\overline{B_{i+1}} \mid A_{i}$ and $\left.B_{i}\right]$. By union bound,

$$
\begin{aligned}
& \operatorname{Pr}\left[\overline{A_{i+1}} \text { or } \overline{B_{i+1}} \mid A_{i} \text { and } B_{i}\right] \quad \operatorname{Pr}\left[\overline{A_{i+1}} \mid A_{i} \text { and } B_{i}\right]+\operatorname{Pr}\left[\overline{B_{i+1}} \mid A_{i} \text { and } B_{i}\right] \\
&= \operatorname{Pr}\left[z_{i+1} \oplus x_{i} \in S^{e} \mid A_{i} \text { and } B_{i}\right]+\operatorname{Pr}\left[z_{i+1} \oplus x_{i} \in S_{i}^{d} \mid A_{i} \text { and } B_{i}\right] .
\end{aligned}
$$

To see this, note that if event A_{i} is true, then $S^{e} \cap S_{i}^{d}=\phi$. Hence, since $S_{i+1}^{d}=S_{i}^{d} \cup\left\{z_{i+1} \oplus x_{i}\right\}$, then, for $S^{e} \cap S_{i+1}^{d} \neq \phi, z_{i+1} \oplus x_{i}$ must be in S^{e}. Hence, $\operatorname{Pr}\left[\overline{A_{i+1}} \mid A_{i}\right.$ and $\left.B_{i}\right]=\operatorname{Pr}\left[z_{i+1} \oplus x_{i} \in S^{e} \mid A_{i}\right.$ and $\left.B_{i}\right]$. Similarly, if event B_{i} is true, i.e., S_{i}^{d} is collision-free, then for B_{i+1} to be false, $z_{i+1} \oplus x_{i}$ must be in S_{i}^{d}. Hence, $\operatorname{Pr}\left[\overline{B_{i+1}} \mid A_{i}\right.$ and $\left.B_{i}\right]=\operatorname{Pr}\left[z_{i+1} \oplus x_{i} \in S_{i}^{d} \mid A_{i}\right.$ and $\left.B_{i}\right]$.

Furthermore, by union bound,

$$
\begin{array}{ll}
\operatorname{Pr}\left[z_{i+1} \oplus x_{i} \in S^{e} \mid A_{i} \text { and } B_{i}\right] & \sum_{p=1}^{q_{e}} \sum_{k=1}^{n_{p}+1} \operatorname{Pr}\left[z_{i+1} \oplus x_{i}=z_{k}^{p} \oplus x_{k-1}^{p} \mid A_{i} \text { and } B_{i}\right] \\
\operatorname{Pr}\left[z_{i+1} \oplus x_{i} \in S_{i}^{d} \mid A_{i} \text { and } B_{i}\right] & \sum_{j=1}^{i} \operatorname{Pr}\left[z_{i+1} \oplus x_{i}=z_{j} \oplus x_{j-1} \mid A_{i} \text { and } B_{i}\right] .
\end{array}
$$

Whenever A_{i} and B_{i} are true, element $z_{i} \oplus x_{i-1}$ has never been seen before, and hence $\bar{f}\left(z_{i} \oplus x_{i-1}\right)=$ $v\left(z_{i} \oplus x_{i-1}\right)$ is random, uniformly distributed and independent of anything else. Thus, $x_{i}=\bar{f}\left(z_{i} \oplus x_{i-1}\right) \oplus z_{i-1}$ is random, uniformly distributed, and independent of anything else, and each of the events $z_{i+1} \oplus x_{i}=$ $z_{k}^{p} \oplus x_{k-1}^{p}$ and $z_{i+1} \oplus x_{i}=z_{j} \oplus x_{j-1}$ happens with probability $1 / 2^{l}$. Hence,

$$
\begin{array}{ll}
\operatorname{Pr}\left[z_{i+1} \oplus x_{i} \in S^{e} \mid A_{i} \text { and } B_{i}\right] & \sum_{p=1}^{q_{e}} \sum_{k=1}^{n_{p}+1} \operatorname{Pr}\left[z_{i+1} \oplus x_{i}=z_{k}^{p} \oplus x_{k-1}^{p} \mid A_{i} \text { and } B_{i}\right]=\sum_{p=1}^{q_{e}} \sum_{k=1}^{n_{p}+1} \frac{1}{2^{l}} \frac{\mu_{e}}{l 2^{l}} \\
\operatorname{Pr}\left[z_{i+1} \oplus x_{i} \in S_{i}^{d} \mid A_{i} \text { and } B_{i}\right] & \sum_{j=1}^{i} \operatorname{Pr}\left[z_{i+1} \oplus x_{i}=z_{j} \oplus x_{j-1} \mid A_{i} \text { and } B_{i}\right]=\sum_{j=1}^{i} \frac{1}{2^{l}}=\frac{i}{2^{l}} .
\end{array}
$$

Then

$$
\operatorname{Pr}\left[\overline{A_{i+1}} \text { or } \overline{B_{i+1}} \mid A_{i} \text { and } B_{i}\right] \quad \frac{\mu_{e}}{l 2^{l}}+\frac{i}{2^{l}} .
$$

Second, we find an upper bound for $\operatorname{Pr}\left[\overline{A_{1}}\right.$ or $\left.\overline{B_{1}}\right] . S_{1}^{d}=\left\{z_{1} \oplus x_{0}\right\}$ has only one element, and hence it is collision free. Therefore, event B_{1} is always true. Hence, we find an upper bound for $\operatorname{Pr}\left[\overline{A_{1}}\right]$. We introduce event

$$
C: z_{0} \neq z_{0}^{p} \text { and } z_{0} \neq y_{0}^{p}, \quad \forall p, 1 \quad p \quad q_{e} .
$$

By standard conditioning,

$$
\operatorname{Pr}\left[\overline{A_{1}}\right] \quad \operatorname{Pr}\left[\overline{A_{1}} \mid C\right]+\operatorname{Pr}[\bar{C}] .
$$

By union bound,

$$
\operatorname{Pr}\left[\overline{A_{1}} \mid C\right] \quad \sum_{p=1}^{q_{e}} \sum_{k=1}^{n_{p}+1} \operatorname{Pr}\left[z_{1} \oplus x_{0}=z_{k}^{p} \oplus x_{k-1}^{p} \mid C\right]
$$

Now, let us assume event C is true. In this case, z_{0} has never been the input to $\overline{f^{\prime}}$, and hence $x_{0}=\overline{f^{\prime}}\left(z_{0}\right)=$ $v^{\prime}\left(z_{0}\right), v^{\prime \mathcal{R}} R^{l, l}$ is random, uniformly distributed, and independent of anything else, hence

$$
\operatorname{Pr}\left[z_{1} \oplus x_{0}=z_{k}^{p} \oplus x_{k-1}^{p} \mid C\right]=\frac{1}{2^{l}}
$$

Thus,

$$
\sum_{p=1}^{q_{e}} \sum_{k=1}^{n_{p}+1} \operatorname{Pr}\left[z_{1} \oplus x_{0}=z_{k}^{p} \oplus x_{k-1}^{p} \mid C\right] \quad \sum_{p=1}^{q_{e}} \sum_{k=1}^{n_{p}+1} \frac{1}{2^{l}} \quad \frac{\mu_{e}}{l 2^{l}}
$$

and

$$
\operatorname{Pr}\left[\overline{A_{1}}\right] \quad \frac{\mu_{e}}{l 2^{l}}+\operatorname{Pr}[\bar{C}]
$$

Now, we find an upper bound for $\operatorname{Pr}[\bar{C}]$. Using the conditioning on the event $D($ Distinct $)$ and standard conditioning, we obtain:

$$
\operatorname{Pr}[\bar{C}] \quad \operatorname{Pr}[\bar{C} \mid D]+\operatorname{Pr}[\bar{D}]
$$

where, by Fact 1 and the fact that $f^{\mathcal{R}} G_{S}$ means that $f, f^{\prime}, f^{\prime \prime} \mathcal{R}^{\prime} P^{l}$, we have

$$
\operatorname{Pr}[\bar{D}]=\operatorname{Pr}_{f \mathcal{F}_{\leftarrow}^{\mathcal{R}} P^{l}}[\bar{D}] \quad \delta_{P} \stackrel{\text { def }}{=} \frac{\mu_{e}\left(\mu_{e} \Leftrightarrow l\right)}{l^{2} 2^{l}} .
$$

Next, we use the following claim (whose proof is at the end of this Lemma).

Claim

$$
\operatorname{Pr}[\bar{C} \mid D] \quad \frac{2(n+1) \mu_{e}}{l 2^{l}}+\frac{(n+1)^{2}}{2^{l}}+\frac{\mu_{e}\left(\mu_{e}+l\right)}{l^{2} 2^{l+1}}
$$

Thus,

$$
\operatorname{Pr}[\bar{C}] \quad \delta_{P}+\frac{2(n+1) \mu_{e}}{l 2^{l}}+\frac{(n+1)^{2}}{2^{l}}+\frac{\mu_{e}\left(\mu_{e}+l\right)}{l^{2} 2^{l+1}}
$$

Hence,

$$
\operatorname{Pr}\left[\overline{A_{1}} \text { or } \overline{B_{1}}\right] \quad \frac{\mu_{e}}{l 2^{l}}+\delta_{P}+\frac{2(n+1) \mu_{e}}{l 2^{l}}+\frac{(n+1)^{2}}{2^{l}}+\frac{\mu_{e}\left(\mu_{e}+l\right)}{l^{2} 2^{l+1}}
$$

Furthermore,

$$
\begin{array}{ll}
\operatorname{Pr}[\bar{A} \text { or } \bar{B}] \quad & \operatorname{Pr}\left[\overline{A_{1}} \text { or } \overline{B_{1}}\right]+\sum_{i=1}^{n} \operatorname{Pr}\left[\overline{A_{i+1}} \text { or } \overline{B_{i+1}} \mid A_{i} \text { and } B_{i}\right] \\
& \delta_{P}+\frac{\mu_{e}}{l 2^{l}}+\frac{\mu_{e}\left(\mu_{e}+l\right)}{l^{2} 2^{l+1}}+\frac{2(n+1) \mu_{e}}{l 2^{l}}+\frac{(n+1)^{2}}{2^{l}}+\sum_{i=1}^{n}\left(\frac{\mu_{e}}{l 2^{l}}+\frac{i}{2^{l}}\right) \\
& \delta_{P}+\frac{\mu_{e}}{l 2^{l}}+\frac{\mu_{e}\left(\mu_{e}+l\right)}{l^{2} 2^{l+1}}+\frac{2(n+1) \mu_{e}}{l 2^{l}}+\frac{(n+1)^{2}}{2^{l}}+\frac{n \mu_{e}}{l 2^{l}}+\frac{n^{2}}{2^{l+1}} \\
& \delta_{P}+\frac{\mu_{e}\left(\mu_{e}+l\right)}{l^{2} 2^{l+1}}+\frac{3(n+1) \mu_{e}}{l 2^{l}}+\frac{3(n+1)^{2}}{2^{l+1}} .
\end{array}
$$

Finally,

$$
\begin{aligned}
& \operatorname{Pr}\left[\left(D^{F_{K}} o g\right)(y) \neq N \text { ull and } \mathcal{R}\left(x^{1}, \quad, x^{q_{2}},\left(D^{F_{K}} \text { og } g\right)(y)\right)\right] \\
& \quad \operatorname{Pr}\left[\left(\left(D^{F_{K}} o g\right)(y) \neq N u l l \text { and }(\bar{A} \text { or } \bar{B})\right] \quad \operatorname{Pr}[\bar{A} \text { or } \bar{B}]\right. \\
& \quad \delta_{P}+\frac{\mu_{e}\left(\mu_{e}+l\right)}{l^{2} 2^{l+1}}+\frac{3(n+1) \mu_{e}}{l 2^{l}}+\frac{3(n+1)^{2}}{2^{l+1}} .
\end{aligned}
$$

Hence, when the scheme is implemented with the pseudo-random family F, by Fact 0 (with $\mu_{v} / l=2(n+1)$), we have

$$
\begin{aligned}
& \operatorname{Pr}_{f \leftarrow F}^{\mathcal{R}}\left[(D ^ { F _ { K } } o g) (y) \neq N \text { ull } \text { and } \mathcal { R } \left(x^{1}, \quad, x^{q_{2}},\left(D^{\left.\left.\left.F_{K} o g\right)(y)\right)\right]}\right.\right.\right. \\
& \delta_{P}+\frac{\mu_{e}\left(\mu_{e}+l\right)}{l^{2} 2^{l+1}}+\frac{3(n+1) \mu_{e}}{l 2^{l}}+\frac{3(n+1)^{2}}{2^{l+1}}+\frac{2(n+1)(2 n+1)}{2^{l+1}}+\epsilon ;
\end{aligned}
$$

i.e., the scheme is NM-CPA secure.

Proof of Claim

We introduce the set of all inputs to function $\overline{f^{\prime \prime}}$ at decryption in the reversed direction, namely

$$
R^{e}=\left\{y_{k}^{p} \oplus z_{n_{p}-k+2}^{p}, 1 \quad p \quad q_{e}, 1 \quad k \quad n_{p}+1\right\} .
$$

Note that z_{0}^{p} does not appear in the definition of set R^{e}.
To compute $\operatorname{Pr}[\bar{C} \mid D]$ we divide the choice of ciphertext forgeries into several complementary classes, then compute the probability for each class of forgeries. The forged ciphertext that the adversary generates can fall into one of the following complementary classes:
(a) the forgery is a truncation of a known valid ciphertext string;
(b) the forgery is an extension of a known valid ciphertext string;
(c) the forgery is neither a truncation nor an extension of a known ciphertext string. Case (c) can be further divided into two complementary subcases:
(c1) the forged ciphertext string has a common prefix with an existent ciphertext;
(c2) the forged ciphertext is different from any existent ciphertext starting with its first block $\left(y_{0}\right)$.
For each classes of forgery we find an upper bound the probability that z_{0} collides with some z_{0}^{p} or y_{0}^{p}.
(a) If the forgery is a truncation of a valid ciphertext, then there exists $s, 1 \quad s \quad q_{e}: y=y_{0} y_{1} \quad y_{n+1}, y_{k}=$ $y_{k}^{s}, \forall k, 0 \quad k \quad n+1 \quad n_{s}+1$. Then $z_{0}=z_{n_{s}-n}^{s}$ by the definition of the BIGE $\$$ decryption. ${ }^{4}$ Then, we have the collision between $z_{n_{s}-n}^{s}$ and z_{0}^{p}, or between $z_{n_{s}-n}^{s}$ and $y_{0}^{p}, 1 \quad p \quad q_{e}$, where z_{0}^{p} and y_{0}^{p} are computed by enciphering with a different key. Furthermore, $\operatorname{Pr}[\bar{C} \mid D]=\operatorname{Pr}{ }_{f} \mathcal{R}_{G_{S}}[\bar{C} \mid D]$, (based on our notation), then $f, f^{\prime}, f^{\prime \prime}{ }^{\mathcal{R}} P^{l}$. Hence, an adversary can distinguish between $f^{\prime \mathcal{R}} P^{l}$ and $f^{\prime \mathcal{R}} R^{l, l}$ in the computation of z_{0}^{p} or $y_{0}^{p}, 1 \quad p \quad q_{e}$. Hence,

$$
\begin{aligned}
& \operatorname{Pr}[\bar{C} \mid D]=\operatorname{Pr}_{f{ }_{f}^{\mathcal{R}} G_{S}}[\bar{C} \mid D] \stackrel{\operatorname{def}}{=} \operatorname{Pr}_{\bar{f}, \overline{f^{\prime}}, \overline{f^{\prime \prime}} \mathcal{R}_{\leftarrow} G_{S}, f, f^{\prime}, f^{\prime \prime} \mathcal{R}^{\mathcal{R}}}[\bar{C} \mid D]
\end{aligned}
$$

[^4]where the advantage refers to distinguishing between $f^{\prime \mathcal{R}} P^{l}$ and $f^{\prime \mathcal{R}} R^{l, l}$. Since there are $2 q_{e}$ queries to f^{\prime}, it follows that
$$
A d v_{\mathcal{D}}\left(P^{l}, R^{l, l}\right) \quad \frac{2 q_{e}\left(2 q_{e} \Leftrightarrow 1\right)}{2^{l+1}}=\frac{q_{e}\left(2 q_{e} \Leftrightarrow 1\right)}{2^{l}}
$$

We introduce the notation $\operatorname{Pr}^{\prime}[\bar{C} \mid D] \stackrel{\text { def }}{=} \operatorname{Pr}_{\bar{f}, \overline{f^{\prime}}, f^{\prime \prime}} \mathcal{R}_{\leftarrow} G_{S}, f, f^{\prime \prime} \underset{\leftarrow}{\mathcal{R}} P^{l}, f^{\prime} \not \mathcal{F}^{\mathcal{R}} R^{l, l}[\bar{C} \mid D]$, and we compute an upper bound for $\operatorname{Pr}^{\prime}[\bar{C} \mid D]$. By union bound,

$$
\operatorname{Pr}^{\prime}[\bar{C} \mid D] \quad \sum_{p=1}^{q_{e}}\left(\operatorname{Pr}^{\prime}\left[z_{0}=z_{0}^{p} \mid D\right]+\operatorname{Pr}^{\prime}\left[z_{0}=y_{0}^{p} \mid D\right]\right)
$$

Since $z_{0}^{p}=f^{\prime}\left(r_{0}^{p}\right)$ and $y_{0}^{p}=f^{\prime}\left(z_{n_{p}+1}^{p}\right)$ are encrypted with a different key than the one used to obtain $z_{n_{s}-n}^{s}, n_{s} \Leftrightarrow n \quad 1$, then z_{0}^{p} and y_{0}^{p} are random, uniformly distributed, and independent of $z_{n_{s}-n}^{s}$ since $f^{\prime \mathcal{R}} R^{l, l}$. Hence,

$$
\begin{aligned}
& \operatorname{Pr}^{\prime}\left[z_{0}=z_{0}^{p} \mid D\right]=\operatorname{Pr}^{\prime}\left[z_{n_{s}-n}^{s}=z_{0}^{p} \mid D\right]=\frac{1}{2^{l}} \\
& \operatorname{Pr}^{\prime}\left[z_{0}=y_{0}^{p} \mid D\right]=\operatorname{Pr}^{\prime}\left[z_{n_{s}-n}^{s}=y_{0}^{p} \mid D\right]=\frac{1}{2^{l}}
\end{aligned}
$$

Hence, by union bound,

$$
\operatorname{Pr}^{\prime}[\bar{C} \mid D] \quad \frac{2 q_{e}}{2^{l}} .
$$

Hence,

$$
\operatorname{Pr}[\bar{C} \mid D] \quad \frac{q_{e}\left(2 q_{e} \Leftrightarrow 1\right)}{2^{l}}+\frac{2 q_{e}}{2^{l}}=\frac{q_{e}\left(2 q_{e}+1\right)}{2^{l}} .
$$

(b) If $y=y_{0}^{i} y_{1}^{i} \quad y_{n_{i}+1}^{i} \quad y_{n+1}$ where $n>n_{i}$, then we show that $y_{n_{i}+2} \oplus z_{n-n_{i}} \in R^{e}$ with low probability, and this enables us to show that events $z_{0}=z_{0}^{p}$ or $z_{0}=y_{0}^{p}$ occur with low probability in a manner similar to the Main IGE Lemma. Hence, by standard conditioning we have

$$
\operatorname{Pr}[\bar{C} \mid D] \quad \operatorname{Pr}\left[\bar{C} \mid D \text { and } y_{n_{i}+2} \oplus z_{n-n_{i}} \notin R^{e}\right]+\operatorname{Pr}\left[y_{n_{i}+2} \oplus z_{n-n_{i}} \in R^{e} \mid D\right] .
$$

If $y_{n_{i}+2} \oplus z_{n-n_{i}} \notin R^{e}$ and $f^{\mathcal{R}} G_{S}$, then $z_{0}=z_{0}^{p}$ happens with probability $\frac{(n+1) e}{l 2^{l}}+\frac{(n+1)^{2}}{2^{l+1}}$ in a manner similar to the Corollary to the Main IGE Lemma, since z_{0}^{p} is obtained by encrypting with a different key. The same conclusion is reached for the collisions $z_{0}=y_{0}^{p}$. Hence,

$$
\operatorname{Pr}\left[\bar{C} \mid D \text { and } y_{n_{i}+2} \oplus z_{n-n_{i}} \notin R^{e}\right] \quad \frac{2(n+1) \mu_{e}}{l 2^{l}}+\frac{2(n+1)^{2}}{2^{l+1}}=\frac{2(n+1) \mu_{e}}{l 2^{l}}+\frac{(n+1)^{2}}{2^{l}} .
$$

Now, we compute an upper bound for $\operatorname{Pr}\left[y_{n_{i}+2} \oplus z_{n-n_{i}} \in R^{e} \mid D\right]$. For the extension forgery, we have $z_{n-n_{i}}=z_{0}^{i}=f^{\prime}\left(r_{0}^{i}\right)$ by the definition of the decryption of the BIGES scheme. (The argument is similar to the one used in case (a).) Hence, we use the same argument as in case (a) for the computing an upper bound for the probability when $f^{\mathcal{R}} G_{S}$. We use the advantage of an adversary in making the distinction between $f^{\prime \mathcal{R}} P^{l}$ and $f^{\prime \mathcal{R}} R^{l, l}$ in computing z_{0}^{i}

$$
\begin{aligned}
& \operatorname{Pr}\left[y_{n_{i}+2} \oplus z_{n-n_{i}} \in R^{e} \mid D\right]=\operatorname{Pr}_{f \mathcal{R}_{G_{S}}}\left[y_{n_{i}+2} \oplus z_{n-n_{i}} \in R^{e} \mid D\right] \\
& =\operatorname{Pr}_{\bar{f}, \overline{f^{\prime}}, \overline{f^{\prime \prime}} \mathcal{R}_{\mathcal{R}_{S}}, f, f^{\prime}, f^{\prime \prime} \mathbb{R}^{l} P^{l}}\left[y_{n_{i}+2} \oplus z_{n-n_{i}} \in R^{e} \mid D\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Leftrightarrow \operatorname{Pr}_{\bar{f}, \overline{f^{\prime}}, \overline{f^{\prime \prime}} \stackrel{\mathcal{R}}{\leftarrow} G_{S}, f, f^{\prime \prime} \underset{\leftarrow}{\mathbb{R}} P^{l}, f^{\prime} \mathcal{R}^{\mathcal{R}} R^{l, l},}\left[y_{n_{i}+2} \oplus z_{n-n_{i}} \in R^{e} \mid D\right]
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Adv}_{\mathcal{D}}\left(P^{l}, R^{l, l}\right)+\operatorname{Pr}_{\bar{f}, \overline{f^{\prime}}, \overline{f^{\prime \prime}} \mathbb{R}_{\leftarrow}^{\mathcal{R}}}^{G_{S}, f, f^{\prime \prime}}{ }^{\mathcal{R}}{ }^{P^{l}, f^{\prime} \not \mathcal{R}^{\mathcal{R}}} R^{l, l}\left[y_{n_{i}+2} \oplus z_{n-n_{i}} \in R^{e} \mid D\right] .
\end{aligned}
$$

In a manner similar to case (a),

$$
A d v_{\mathcal{D}}\left(P^{l}, R^{l, l}\right) \quad \frac{q_{e}\left(2 q_{e} \Leftrightarrow 1\right)}{2^{l}} .
$$

 $\operatorname{Pr}^{\prime}[$.$] ; i.e., we compute an upper bound for \operatorname{Pr}^{\prime}\left[y_{n_{i}+2} \oplus z_{n-n_{i}} \in R^{e} \mid D\right]$. Since $z_{0}^{i}=f^{\prime}\left(r_{0}^{i}\right), f^{\prime \mathcal{R}} R^{l, l}$ is computed with a different key, it follows that z_{0}^{i} is random and uniformly distributed, and since it does not appear in R^{e}, then z_{0}^{i} is independent of any terms in R^{e}. Hence, since $y_{n_{i}+2}$ is a constant, it follows that $y_{n_{i}+2} \oplus z_{n-n_{i}}=y_{n_{i}+2} \oplus z_{0}^{i}$ is random uniformly distributed, and independent of any element of R^{e}. Hence

$$
\operatorname{Pr}^{\prime}\left[y_{n_{i}+2} \oplus z_{n-n_{i}} \in R^{e} \mid D\right] \quad \frac{\left|R^{e}\right|}{2^{l}} \quad \frac{\mu_{e}}{l 2^{l}} .
$$

Hence,

$$
\operatorname{Pr}\left[y_{n_{i}+2} \oplus z_{n-n_{i}} \in R^{e} \mid D\right] \quad \frac{q_{e}\left(2 q_{e} \Leftrightarrow 1\right)}{2^{l}}+\frac{\mu_{e}}{l 2^{l}},
$$

and, by standard conditioning,

$$
\begin{array}{ll}
\operatorname{Pr}[\bar{C} \mid D] \quad & \operatorname{Pr}\left[\bar{C} \mid D \text { and } y_{n_{i}+2} \oplus z_{n-n_{i}} \notin R^{e}\right]+\operatorname{Pr}\left[y_{n_{i}+2} \oplus z_{n-n_{i}} \in R^{e} \mid D\right] \\
& \frac{2(n+1) \mu_{e}}{l 2^{l}}+\frac{(n+1)^{2}}{2^{l}}+\frac{q_{e}\left(2 q_{e} \Leftrightarrow 1\right)}{2^{l}}+\frac{\mu_{e}}{l 2^{l}} .
\end{array}
$$

(c1) Let j be the index of the first block where $y_{j} \neq y_{j}^{i}, 1 \quad j \quad \min \left\{n+1, n_{i}+1\right\}$. By standard conditioning,

$$
\operatorname{Pr}[\bar{C} \mid D] \quad \operatorname{Pr}\left[\bar{C} \mid D \text { and } y_{j} \oplus z_{n-j+2} \notin R^{e}\right]+\operatorname{Pr}\left[y_{j} \oplus z_{n-j+2} \in R^{e} \mid D\right] .
$$

In a similar manner to the proof for the forgeries of type (b) (using the Corollary to the Main IGE Lemma), we have

$$
\operatorname{Pr}\left[\bar{C} \mid D \text { and } y_{j} \oplus z_{n-j+2} \notin R^{e}\right] \quad \frac{2(n+1) \mu_{e}}{l 2^{l}}+\frac{(n+1)^{2}}{2^{l}}
$$

Now, we find an upper bound for collisions between $y_{j} \oplus z_{n-j+2}$ and $y_{k}^{p} \oplus z_{n_{p}-k+2}^{p}, 1 \quad p \quad q_{e}, 1 \quad k \quad n_{p}+1$. Let D_{j} the event defining these collisions. Formally,

$$
D_{j}: y_{j} \oplus z_{n-j+2} \in R^{e}
$$

Since j is the first index such that $y_{j} \neq y_{j}^{i}$, it follows that $z_{n-j+2}=z_{n_{i}-j+2}^{i}=f\left(x_{n_{i}-j+2}^{i} \oplus z_{n_{i}-j+1}^{i}\right) \oplus x_{n_{i}-j+1}^{i}$, i.e., they are the image through $f{ }^{\mathcal{R}} P^{l}$. Hence, as in case (b) an adversary can distinguish between $f{ }^{\mathcal{R}} P^{l}$ and $f^{\mathcal{R}} R^{l, l}$ and

$$
\begin{aligned}
& \operatorname{Pr}\left[D_{j} \mid D\right]=\operatorname{Pr}_{\bar{f}, \overline{f^{\prime}}, \overline{f^{\prime \prime}} \underset{\leftarrow}{\mathcal{R}} G, f, f^{\prime}, f^{\prime \prime} \stackrel{\mathcal{R}}{\leftarrow} P^{l}}\left[D_{j} \mid D\right] \\
& =\operatorname{Pr}_{\bar{f}, \overline{f^{\prime}}, \overline{f^{\prime \prime}} \underset{\leftarrow}{\mathbb{R}}{ }_{G}, f, f^{\prime}, f^{\prime \prime} \underset{\leftarrow}{\mathbb{R}} P^{l}}\left[D_{j} \mid D\right] \Leftrightarrow \operatorname{Pr}_{\bar{f}, \overline{f^{\prime}}, \overline{f^{\prime \prime}} \stackrel{\mathcal{R}}{\leftarrow} G, f^{\prime}, f^{\prime \prime} \underset{\leftarrow}{\mathbb{R}} P^{l}, f f^{\mathcal{R}} R^{l}, l}\left[D_{j} \mid D\right]
\end{aligned}
$$

$$
\begin{aligned}
& A d v_{\mathcal{D}}\left(P^{l}, R^{l, l}\right)+\operatorname{Pr}_{\bar{f}, \overline{f^{\prime}}, f^{\bar{\prime}} \mathcal{R}_{\leftarrow}, f^{\prime}, f^{\prime \prime} \underset{\leftarrow}{\mathbb{R}} P^{l}, f f_{\leftarrow}^{\mathcal{R}} R^{l, l}}\left[D_{j} \mid D\right]
\end{aligned}
$$

where the advantage of the distinguisher takes into account that f sees $\frac{e}{l}$ blocks, i.e.,

$$
A d v_{\mathcal{D}}\left(P^{l}, R^{l, l}\right) \quad \frac{\mu_{e}\left(\mu_{e} \Leftrightarrow l\right)}{l^{2} 2^{l+1}}
$$

Hence, we compute an upper bound for $\operatorname{Pr}^{\prime}\left[D_{j} \mid D\right] \stackrel{\text { def }}{=} \operatorname{Pr}_{\bar{f}, \overline{f^{\prime}}, \overline{f^{\prime \prime}} \underset{\leftarrow}{\leftarrow} G, f^{\prime}, f^{\prime \prime} \mathbb{R} P^{l}, f f^{\mathcal{R}} R^{l, l}}\left[D_{j} \mid D\right]$. By union bound we have

$$
\operatorname{Pr}^{\prime}\left[D_{j} \mid D\right] \quad \sum_{p=1}^{q_{e}} \sum_{k=1}^{n_{p}+1} \operatorname{Pr}^{\prime}\left[y_{j} \oplus z_{n-j+2}=y_{k}^{p} \oplus z_{n-k+2}^{p} \mid D\right] .
$$

Since j is the first index such that $y_{j} \neq y_{j}^{i}$, it follows that $z_{n-j+2}=z_{n_{i}-j+2}^{i}$. Hence, these collisions can be expressed as $y_{j} \oplus z_{n_{i}-j+2}^{i}=y_{k}^{p} \oplus z_{n_{p}-k+2}^{p}$. For $i \neq p$ or $j \neq k$, since D is true, $z_{n_{i}-j+2}^{i}$ and $z_{n_{p}-k+2}^{p}$ are random, uniformly distributed, and mutually independent (since $f^{\mathcal{R}} R^{l, l}$); hence, the collision happens with probability $1 / 2^{l}$. If $i=p, j=k$, the collision would reduce to $y_{j}=y_{j}^{i}$, which would be impossible by the definition of index j. Thus,

$$
\operatorname{Pr}^{\prime}\left[D_{j} \mid D\right] \quad \frac{\left|R^{e}\right|}{2^{l}}=\frac{\mu_{e}}{l 2^{l}}
$$

Hence,

$$
\operatorname{Pr}\left[D_{j} \mid D\right] \quad \frac{\mu_{e}\left(\mu_{e} \Leftrightarrow l\right)}{l^{2} 2^{l+1}}+\frac{\mu_{e}}{l 2^{l}}=\frac{\mu_{e}\left(\mu_{e}+l\right)}{l^{2} 2^{l+1}} .
$$

Thus, by standard conditioning,

$$
\begin{array}{ll}
\operatorname{Pr}[\bar{C} \mid D] \quad & \operatorname{Pr}\left[\bar{C} \mid D \text { and } \overline{D_{j}}\right]+\operatorname{Pr}\left[D_{j} \mid D\right] \\
& \frac{2(n+1) \mu_{e}}{l 2^{l}}+\frac{(n+1)^{2}}{2^{l}}+\frac{\mu_{e}\left(\mu_{e}+l\right)}{l^{2} 2^{l+1}}
\end{array}
$$

(c2) If $y_{0} \neq y_{0}^{p}, \forall p, 1 \quad p \quad q_{e}$, then z_{n+1} is random, uniformly distributed, and independent of any z_{k}^{p} since it is encrypted with a different key. The same argument as in case (c 1) is applied to $y_{1} \oplus z_{n+1}$. Hence,

$$
\operatorname{Pr}[\bar{C} \mid D] \quad \frac{2(n+1) \mu_{e}}{l 2^{l}}+\frac{(n+1)^{2}}{2^{l}}+\frac{\mu_{e}\left(\mu_{e}+l\right)}{l^{2} 2^{l+1}}
$$

Thus, for any forgery type,

$$
\operatorname{Pr}[\bar{C} \mid D] \quad \frac{2(n+1) \mu_{e}}{l 2^{l}}+\frac{(n+1)^{2}}{2^{l}}+\frac{\mu_{e}\left(\mu_{e}+l\right)}{l^{2} 2^{l+1}}
$$

Proof of Lemma 7

This proof is similar to the Proof of Lemma 6. Let $\operatorname{Pr}[]=.\operatorname{Pr}_{f_{\leftarrow}{ }_{\llcorner } G_{S}}$ [.]. Let y be any forgery, $y \neq y^{p}, 1$ $p \quad q_{e}$. If the events A and B that are defined in the proof of Lemma 6 are true, then the resulting plaintext is random and uniformly distributed (since $\bar{f}, \overline{f^{\prime}}, \overline{f^{\prime \prime}} \mathcal{R} G_{S}$ and we have inputs to \bar{f} that have not been seen before). Thus, the condition $x_{n+1}=0$ happens with probability $1 / 2^{l}$. Hence, by standard conditioning,

$$
\begin{array}{ll}
\operatorname{Pr}\left[x_{n+1}=0\right] \quad & \operatorname{Pr}\left[x_{n+1}=0 \mid A \text { and } B\right]+\operatorname{Pr}[(\bar{A} \text { or } \bar{B})] \\
& \frac{1}{2^{l}}+\delta_{P}+\frac{\mu_{e}\left(\mu_{e}+l\right)}{l^{2} 2^{l+1}}+\frac{3(n+1) \mu_{e}}{l 2^{l}}+\frac{3(n+1)^{2}}{2^{l+1}} .
\end{array}
$$

Hence, when the scheme is implemented with the SPRP family F, we have by Fact 0 ,

$$
\operatorname{Pr}_{f \leftarrow \mathcal{R}^{\mathcal{R}}}\left[x_{n+1}=0\right] \quad \delta_{P}+\frac{\mu_{e}\left(\mu_{e}+l\right)}{l^{2} 2^{l+1}}+\frac{3(n+1) \mu_{e}}{l 2^{l}}+\frac{3(n+1)^{2}}{2^{l+1}}+\frac{2(n+1)(2 n+1)}{2^{l+1}}+\epsilon .
$$

Finally, the integrity condition passes with probability

$$
\begin{aligned}
& \operatorname{Pr}_{f}^{\underset{\mathcal{R}}{\mathcal{R}} F}\left[x_{n+1} \neq 0\right]=1 \Leftrightarrow \operatorname{Pr}_{f \leftarrow F}^{\mathcal{R}}\left[x_{n+1}=0\right] \\
& \left.1 \Leftrightarrow \delta_{P}+\frac{\mu_{e}\left(\mu_{e}+l\right)}{l^{2} 2^{l+1}}+\frac{3(n+1) \mu_{e}}{l 2^{l}}+\frac{3(n+1)^{2}}{2^{l+1}}+\frac{2(n+1)(2 n+1)}{2^{l+1}}+\epsilon\right),
\end{aligned}
$$

i.e., this probability is not negligible, and hence the scheme is not EF-CPA secure.

Since any forgery that passes the integrity check of scheme BIGE $\$$-nzg includes at least a random block with non-negligible probability, the scheme BIGE\$, which is not EF-CPA secure, cannot be KPF-CPA and PI-CPA secure.

Proof of Fact 1

It is clear that if all inputs to $f=F_{K}$ are distinct, then the ciphertext blocks obtained at encryption are random, uniformly distributed, and mutually independent. Let $y_{k}^{p}=f\left(x_{k}^{p} \oplus y^{p_{k-1}}\right) \oplus y_{k-1}^{p}$ with all distinct inputs to f. It follows that $f\left(x_{k}^{p} \oplus y^{p_{k-1}}\right)$ is random, uniformly distributed, and independent of anything else, and hence y_{k}^{p} is random, uniformly distributed, and independent of anything else.

To bound the probability of the event defining collisions in the input to f, namely \bar{D}, we use the same proof idea used by Bellare et al. [2] in their proof of the Main CBC Lemma. The only difference is that, in this case, the collisions include only the given plaintext strings and there is no notion of left or right plaintext strings. Hence, following the proof of the Main CBC Lemma, the size of the prohibited set in this case is half of the size obtained by Bellare et al.; viz., their Claim 4 [2].

Up to now, we have considered $f=F_{K}$ a random function. When f is a random permutation, the bound changes by adding the term $\frac{1}{2^{+1+1}} \frac{e}{l}\left(\frac{e}{l} \Leftrightarrow 1\right)$.

[^0]: *This work was performed in part while this author was on sabbatical leave from the University of Maryland, Department of Electrical and Computer Engineering, College Park, Maryland 20742.

[^1]: ${ }^{1}$ This method has been used in commercial systems such as Kerberos V5 [22, 23] and DCE [21, 23], among many others. Note that other methods for protecting the integrity of encrypted messages exist; e.g., encrypting the message with a secret key and then taking the keyed MAC of the ciphertext with a separate key [19, 7].

[^2]: ${ }^{2}$ This goal is somewhat similar to the goal of "plaintext awareness" [1, 4], except that it is independent of the random-oracle model.

[^3]: ${ }^{3}$ In this attack, the adversary can be given an oracle that performs all the q_{e} encryption queries before all the q_{v} forgery verification queries. Alternatively, the adversary can be given an encryption-only oracle whose use preceds that of a forgeryverification oracle, the order of use being enforced by a state variable

[^4]: ${ }^{4}$ Since $y_{0}=y_{0}^{s}$, then $z_{n+1}=z_{n_{s}+1}^{s}$; furthermore, if $y_{1}=y_{1}^{s}$ then $z_{n}=f^{\prime-1}\left(y_{1} \oplus z_{n+1}\right) \oplus y_{0}=f^{\prime-1}\left(y_{1}^{s} \oplus z_{n_{s}+1}^{s}\right) \oplus y_{0}^{s}=z_{n_{s}}^{s}$; etc.

