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In this paper, we present One-key CBC MAC ( O M A C) and prove 

its seurity for arbitrary length messages. OMAC takes only one key, 

K (k bits) of a blok ipher E. Previously,  CBC requires three keys, 

(k +  n) bits in total, and TMAC requires two k eys, (k + n) bits in 

total, where n denotes the blok length of E. 

1 Introdution 

1.1 Bakground 

The CBC MAC [ ,  ]  i  s  a  w  ellknown method to generate a message authen
tiation ode (MAC) based on a blok ipher. Bellare, Kilian, and Rogaway 

proved the seurity of the CBC MAC for fxed message length mn, where n 

is the blok length of the underlying blok ipher E [1]. Howeve r , it is w ell 

known that the CBC MAC i s not seure unless the message length is fxed. 

Therefore, several variants of CBC MAC have been proposed for variable 

length messages. 

First Enrypted MAC ( E M A C) was proposed. It is obtained by enrypt
ing the CBC MAC v alue by E again with a new key K2. That is, 

EMACK� 

�K� 

(M) � EK� 

(CBCK� 

(M)) � 

where M is a message and K1 

is the key of the CBC MAC and CBCK� 

(M) is 

the CBC MAC v alue of M . E M A C w as originally developed for the RACE 
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projet [2]. Petrank and Rakof then proved that EMAC is seure if the 

message length is a multiple of n, that is, if the domain is ({0 1}n)+ [11] 

(Vaudenay s h o wed another proof by using deorrelation theory [14, 15]). 

Note that, however, EMAC requires two k ey shedulings of the underlying 

blok ipher E. 

Next Blak and Rogaway proposed XCBC whih requires only one key 

sheduling of the underlying blok ipher E [3]. XCBC takes three keys: 

one blok ipher key K1, and two nbit keys K2 

and K3. 

•	 If M E ({0 1})+ then XCBC omputes exatly the same as the CBC 

MAC, exept for XORing an nbit key K2 

before enrypting the last 

blok. 

•	 If M  E ({0 1})+ then 10i padding (i n-1-I M I mod n) is appended 

to M and XCBC omputes exatly the same as the CBC MAC for 

the padded message, exept for XORing another nbit key K3 

before  

enrypting the last blok. 

See Fig. 1. 
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Figure 1: Illustration of XCBC. 

A drawbak o f X CBC is, however, that it requires three keys, (k + 2 n) 

bits in total. 

Finally Kurosawa and Iwata proposed Twokey CBC MAC ( T M A C) 

[10]. TMAC takes two keys, (k + n) bits in total: a blok ipher key K1 

and an nbit key K2. T M A C is obtained from XCBC by replaing (K2 

�K 3) 

with (K2 

• u �K 2), where u is some onstant in GF(2n). 

1.2 Our Contribution 

In this paper, we present Onekey CBC MAC ( O M A C) and prove its seurity 

for arbitrary length messages. OMAC t a k es only one key, K of a blok ipher 

E. The key length, k bits, is the minimum beause the underlying blok 
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Table 1: Comparison of key length. 

XCBC [3] TMAC [ 1 0 ] OMAC (This paper) 

key length (k + 2 n) b i t s (k + n) bits k bits 

ipher must have a kbit key K anyway. S e e T able 1 for omparison with 

XCBC and TMAC. OMAC is obtained from XCBC by replaing (K2 

�K 3) 

with (L • u �L • u-1) for some onstant u in GF(2n), where L is given by 

L EK 

(0n) � 

L • u and L • u-1 an be omputed eÆiently from L by one shift and one 

onditional XOR. OMAC is desribed as follows (see Fig. 2). 

•	 If M E ({0 1})+ , t h e n O M A C omputes exatly the same as the CBC 

MAC, exept for XORing L • u before enrypting the last blok. 

•	 If M E ({0 1})+, then 10i padding (i n-1-IM I mod n) is appended 

to M and OMAC omputes exatly the same as the CBC MAC for 

the padded message, exept for XORing L • u-1 before enrypting the 

last blok. 

EK EK EK 

L · � 

EK EK 

� 

EK 

L · �
� 

T	 T 

Figure 2: Illustration of OMAC. Note that L EK 

(0n). 

Note that in TMAC, K2 

is a part of the key while in OMAC, L is not a 

part of the key and is generated from K. 

This saving of the key length makes the seurity proof of OMAC m uh 

harder than that of TMAC substantially as shown below. In Fig. 2, suppose 

that M [1] 0n . Then the output of the frst EK 

is L. The same L appears 

again at the last blok always. In general, suh reuse of L would get one 

into trouble in the seurity proof. Indeed, the seurity proof of OMAC i s 

substantially harder than the those of XCBC and TMAC due to this reuse 

of L. 
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(In OCB mode [13] and PMAC [ 5 ], L EK 

(0n) is also used as a key of a 

universal hash funtion. However, L appears as an output of some internal 

blok ipher only with negligible probability.) 

Nevertheless we prove that OMAC is as seure as XCBC, where the 

seurity analysis is in the onreteseurity paradigm [1]. Further OMAC 

has all other nie properties whih X CBC (and TMAC) has. That is, the 

domain of OMAC i s {0 1}*, it requires one key sheduling of the underlying 

blok ipher E and max{1 IIM I/nl} blok ipher invoations. 

1.3 Other Related Work 

Jaulmes, Joux and Valette proposed RMAC [9] whih is an extension of 

EMAC. RMAC enrypts the CBC MAC v alue with K2 

E R, w here R is an 

nbit random string and it is a part of the tag. That is, 

RMACK� 

�K� 

(M)� ( EK��f(CBCK� 

(M)) �R ) 

They showed that the seurity of R M A C is beyond the birthday paradox 

limit. 

2 Preliminaries 

2.1 Notation 

f
For a set A, x ! A means that x is hosen from A uniformly at random. 

If a� b E { 0 1}* are equallength strings then a E b is their bitwise XOR. If 

a� b E { 0 1}* are strings then aÆb denote their onatenation. For simpliity, 

we sometimes write ab for a Æ b if there is no onfusion. 

For an nbit string a an-1 

• • • a1ao 

E { 0 1}n , let a  1� an-2 

• • • a1ao0 

denote the nbit string whih is a left shift of a by 1 bit, while a  1� 

0an-1 

• • • a2a1 

denote the nbit string whih is a r ig h t shift of a by 1 bit. 

If a E { 0 1}* is a string then IaI denotes its length in bits. For any bit 

string a E { 0 1}* suh that IaI  n, we let  
a10n-lal-1 if IaI  n  ,

pad (a)� (1)n a if IaI n. 

Defne laln 

max{1 IIaI/nl}, where the empty string ounts as one 

blok. In pseudoode, we write "Partition M into M [1] • • • M [m]" as short
hand for "Let m lMln, and let M [1] M [m] be bit strings suh that 

M [1] • • • M [m]� M and IM [i]I n for 1  i  m  ." 
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2.2 CBC MAC 

The blok ip h er E is a funtion E : IE  {  0 1}n  {  0 1}n, where eah 

E(K� •)� EK 

(•) is a p erm utation on {0 1}n , IE 

is the set of possible keys 

and n is the blok length. 

The CBC MAC [ , ] is the simplest and most wellknown algorithm to 

make a M A C from a blok ipher E. Let M M [1] Æ M [2] Æ • • • Æ M [m] 

be a message string, where IM [1]I IM [2]I • • • IM [m]I n. Then 

CBCK 

(M), the CBC MAC o f M under key K, is defned as Y [m], where 

Y [i]� EK 

(M [i] E Y [i - 1]) 

for i �1 �m and Y [0] 0n . Bellare, Kilian and Rogaway p r o ved the 

seurity of the CBC MAC for fxed message length mnbits [1]. 

2.3 The Field with 2n Points 

The feld with 2n po  i  n  ts is denoted GF(2n). We i n terhangeably think of a 

point a in GF(2n) i n a n y of the following ways: 

1.	 as an abstrat point in a feld; 

2.	 as an nbit string an-1 

• • • a1ao 

E { 0 1}n; 

n-1 +3.	 as a formal polynomial a(u)� an-1u • • • + a1u + ao 

with binary 

oeÆients. 

To add two points in GF(2n), take their bitwise XOR. We denote this 

operation by a E b. 

Multipliation. To m ultiply two points, fx some irreduible polynomial 

f(u) h a ving binary oeÆients and degree n. To be onrete, hoose the 

lexiographially frst polynomial among the irreduible degree n polyno
mials having a minimu m n umber of oeÆients. We list some indiated 

polynomials.

  + uf(u)� u  + u3 + u + 1 for n 4, 

12  2f(u)� u + u + u + u + 1 for n 128, and 

2  + u1o + u + u2f(u)�	 + 1 for n �2 5 .u

To m ultiply two points a E GF(2n) and b E GF(2n), regard a and b as 

n-1 + 

n-1 +polynomials a(u)� an-1u • • • + a1u + ao 

and b(u)� bn-1u • • • + 
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b1u + bo, form their produt (u) where one adds and multiplies oeÆients 

in GF(2), and take the remainder when dividing (u) by f(u). 

Note that it is partiularly easy to multiply a point a E { 0 1}n by u. 

We show a method for n �1 28, w here f(u)� 

12 + u + u 

2 + u + 1. Thenu 

12 12multiplying a a12 • • • a1ao 

by u yields a produt a12 u + a12 +u

• • • + a1u 

2 + aou. T h us, if a12 0, then a • u a 1. If a12 1, then 

12 12we m ust add u to a 1. Sine u + u + u2 + u + 1 0 we have 

12 2 12 u u + u + u + 1, so adding u means to xor by 0 

12o10000111. In 

summary, when n �1 28, 

a 1 if a12 �0 , 

a • u (2)
(a 1) E 012o10000111 otherwise. 

Division. Also, note that it is easy to divide a point a E { 0 1}n by u, 

meaning that one multiplies a by the multipliative i n verse of u in the feld: 

a • u 

-1 . W e sh o w a method for n �1 28. T hen m ultiplying a a12 • • • a1ao 

12 12 -1by u 

-1 yields a produt a12 u + a12 u + • • • + a2u + a1 

+ aou . T hus, 

-1 -1if ao 

�0 , then a • u a 1. If ao 

�1 , then we must add u to a 1. 

12 2 + u 

12Sine u + u + u + 1 0 we have u u + u + 1+ 

-1, so adding u 

-1 12 u u + u + u + 1 means to xor by 1 0 

12o1000011. In summary, when 

n 128, 

a 1 if ao 

�0 , 

a • u 

-1 (3)
(a 1) E 1012o1000011 otherwise. 

3 Basi Constrution 

In this setion, we show a basi onstrution of OMACfamily. 

OMACfamily is defned by a b l o  k ipher E : IE  { 0 1}n  { 0 1}n , 

an nbit onstant Cst, a universal hash funtion H : {0 1}n X  { 0 1}n , 

and two distint onstants Cst1 

Cst2 

E X , where X is the fnite domain of 

H . 

H , Cst1 

and Cst2 

must satisfy the following onditions while Cst is 

arbitrary. W e write HL(•) for H(L� •). 

1. For any y E { 0 1}n, the numbe  r o f L E { 0 1}n suh that HL(Cst1)� y 

is at most E1 

• 2n for some suÆiently small E1. 

2. For any y E { 0 1}n, the numbe  r o f L E { 0 1}n suh that HL(Cst2)� y 

is at most E2 

• 2n for some suÆiently small E2. 



� �

� �
�   

� �
�   

� �

�   

 

�
� �

� �

� � � � �
�

�

 

3. For any y E { 0 1}n, the numbe  r of L E { 0 1}n suh that HL(Cst1) E 

HL(Cst2)� y is at most E3 

• 2n for some suÆiently small E3. 

4. For any y E { 0 1}n, the numbe  r of L E { 0 1}n suh that HL(Cst1) E 

L y is at most E • 2n for some suÆiently small E . 

5. For any y E { 0 1}n, the numbe  r of L E { 0 1}n suh that HL(Cst2) E 

L y is at most E • 2n for some suÆiently small E .

 .	 For any y E { 0 1}n, the numbe  r of L E { 0 1}n suh that HL(Cst1) E 

HL(Cst2) E L y is at most E • 2n for some suÆiently small E . 

Remark . Property 1 and 2 says that HL(Cst1) and HL(Cst2) are almost 

uniformly distributed. Property 3 is satisfed by AXU (almost XOR univer
sal) hash funtions [12]. Property 4, 5, are new requirements introdued 

here. 

The algorithm of OMACfamily is desribed in Fig. 3 and illustrated in 

Fig. 4, where padn(•) is defned in (1). 

The key spae I of OMACfamily is I IE. It ta k es a key K E I E 

and a message M E { 0 1}*, and returns a string in {0 1}n . 

4 Proposed Speifation 

In this setion, we s h o w our proposed speifation of OMACfamily. O u r 

nhoie is; Cst �0 , HL(x)� L • x, Cst1 

and Cst2 

u 

-1, where "•"u 

denotes multipliation over GF(2n). It is easy to see that the onditions in 

Se. 3 are satisfed for Ei 

�2 

-n for i �1  . 

Equivalently, L EK(0n), HL(Cst1)� L • u and HL(Cst2)� L • u 

-1 , 

where L • u and L • u 

-1 an be omputed eÆiently from L by one shift and 

one onditional XOR, respetively, as shown in (2) and (3). 

We all this algorithm OMAC speifally. O M A C is defned in Fig. 5 

and illustrated in Fig. 2. 

5 Seurit o    C 

5.1 Seurity Defnitions 

Let Perm(n) denote the set of all permutations on {0 1}n . W e sa y that P 

is a random permutation if P is randomly hosen from Perm(n). 
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Algorithm OMACfamilyK 

(M)
 

L ! EK 

(Cst)
 

Y [0] ! 0n
 

Partition M into M [1] • • • M [m]
 

for i ! 1 to m - 1 do
 

X [i] ! M [i] E Y [i - 1] 

Y [i] ! EK 

(X [i]) 

X [m] ! padn(M [m]) E Y [m - 1] 

if IM [m]I n then X [m] ! X [m] E HL(Cst1) 

else X [m] ! X [m] E HL(Cst2) 

T ! EK 

(X [m]) 

return T 

Figure 3: Defnition of OMACfamily. 

EK EK EK 

��(��� ) 

EK EK 

� 

EK 

��(��� ) 

T T 

Figure 4: Illustration of OMACfamily. 

Algorithm OMACK 

(M)
 

L ! EK 

(0n)
 

Y [0] ! 0n
 

Partition M into M [1] • • • M [m]
 

for i ! 1 to m - 1 do
 

X [i] ! M [i] E Y [i - 1] 

Y [i] ! EK 

(X [i]) 

X [m] ! padn(M [m]) E Y [m - 1] 

if IM [m]I n then X [m] ! X [m] E L • u 

-1else X [m] ! X [m] E L • u 

T ! EK 

(X [m]) 

return T 

Figure 5: Defnition of OMAC. 
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The seurity o f a b lo  k ipher E an be quantifed as Adv
PrP(t� q), the E 

maximum advantage that an adversary A an obtain when trying to distin
guish EK 

(•) (with a randomly hosen key K) from a random permutation 

P (•), when allowed omputation time t and q queries to an orale (whih i s 

either EK 

(•) or P (•)). This advantage is defned as follows. 

Adv
PrP � f
E 

(t� q) 

   � f
Adv

PrP
E 

(A) 

f f
I E 

: AEK 

( ·) �1 ) - Pr(P ! Perm(n) : AP ( ·)Pr(K 

�m ax 

!
 �1 )
 


Adv
PrP
E 

(A)
 


;

We s a y that a blok ipher E is seure if Adv
PrP(t� q) is suÆiently small. E 

Similarly, a M A C algorithm is a map F : IF  { 0 1}*  { 0 1}n, where 

IF 

is a set of keys and we write FK 

(•) for F (K� •). We s a y that an adversary 

AFK 

( ·) forges if A outputs (M� F K(M)) where A never queried M to its 

orale FK 

(•). Then we defne 

� f f
Adv}a(A) �P r( K ! I F 

: AFK 

( ·) forges)F 

� f
Adv}a(t� q f) �m ax {Adv}a(A)}F F

; 

where the maximu m i s o ver all adversaries who run in time at most t, m ake 

at most q queries, and eah query is at m ost fbits. We say that a MAC 

algorithm is seure if Adv}a(t� q f) is suÆiently small. F 

Let Rand(* �n ) denote the set of all funtions from {0 1}* to {0 1}n . 

This set is given a probability measure by asserting that a random element 

R of Rand(* �n ) assoiates to eah string M E { 0 1}* a random string 

R(M) E { 0 1}n . Then we defne 

� Prf � f
F 

(A) 

   

Pr(K ! 

f 

I F 

: AFK 

( ·) �1 )
Adv    


f
Af( ·)-Pr(R ! Rand(* �n ) : �1 )  

� Prf � f
F 

(t� q f) �m ax Adv
;

� Prf
F 

(A)Adv

where the maximu m i s o ver all adversaries who run in time at most t, m ake 

at most q queries, and eah query is at m ost fbits. We say that a MAC 

� Prfalgorithm is pseudorandom if AdvF 

(t� q f) is suÆiently small. 

Without loss of generality, adversaries are assumed to never ask a query 

outside the domain of the orale, and to never repeat a query. 

5.2 Theorem Statements 

We frst prove that OMAC is pseudorandom if the underlying blok ipher 

is a random permutation P (informationtheoreti result). 
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Lemma 5.1 (Main Lemma) Suppose that a random permutation P E 

Perm(n) is used i n O MA C as the underlying blok ipher. Let A be an 

adversary whih asks at most q queries, and eah query is at most nm-bits 

(m is the maximum number of bloks in eah query). Assume m 2n/4. 

Then 

f
AOMACp 

(·)Pr(P ! Perm(n) : �1 ) 

2 2 (4)
f

Af(·) 

(5m + 1) q
-Pr(R ! Rand(* �n ) : �1 ) 

2n 

A proof is given in the next setion. 

We next show that O M A C is pseudorandom if the underlying blok 

ipher E is seure. It is standard to pass to this omplexitytheoreti result 

from Lemma 5.1. For example, see [1, Setion 3.2] for the proof tehnique. 

Corollary 5.1 Let E : IE  { 0 1}n  { 0 1}n be the underlying blok ipher 

used in OMAC. Then 

(5m2 + 1) q2 

� Prf PrP 1AdvOMAC(t� q nm)
2n 

+ AdvE 

(t �q 

1) 

1where t1 t + O(mq) and q mq. 

Finally we s h o w that OMAC is seure as a MAC algorithm from Corol
lary 5.1 in the usual way. F or example, see [1, Proposition 2. ] for the proof 

tehnique. 

Theorem 5.1 Let E : IE  { 0 1}n  { 0 1}n be the underlying blok ipher 

used in OMAC. Then 

(5m2 + 1) q2 + 1 PrP 1Adv}a nm)
2n 

+ Adv (t �q 

1)OMAC(t� q E 

1 1where t t + O(mq) and q mq. 

5.3 Proof of Main Lemma 

For a random permutation P E Perm(n) and a random nbit string Rnd E 

{0 1}n, defne 

 f � f
Q1(x) P (x) E Rnd Q2(x) P (x E Rnd) E Rnd 

Q3(x)
� f 

P (x E Rnd E L • u) Q (x)
� f 

P (x E Rnd E L • u 

-1) 

(5) 

Q (x)
� f 

P (x E L • u) and Q (x)
� f 

P (x E L • u 

-1) 

10
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Q (X) Q (X) Q (X) Q (X) Q (X) Q (X) 

Figure  : Illustrations of Q1, Q2 

Q3, Q , Q and Q . Note that L P (Cst). 

where L P (Cst) and Cst �0 

n . See Fig. for illustrations. We frst 

show that Q1(•), Q2(•), Q3(•), Q (•), Q (•), Q (•) are indistinguishable from 

a pair of six independent random permutations P1(•), P2(•), P3(•), P (•), 

P (•), P (•). 

Lemma 5.2 Let A be an adversary whih asks at most q queries in total. 

Then 

f	 f 

: AQ � 

(·)�   �Q �(·)Pr(P ! Perm(n); Rnd ! { 0 1}n	 �1 ) 

f	

3q2 

AP � 

(·)�   �P � 

(·)-Pr(P1 

�P ! Perm(n) :	 �1 ) 

2n 

A proof is given in Appendix A. 

Next we defne MOMAC (Modifed OMAC). It uses six independent 

random permutations P1, P2, P3, P , P , P E Perm(n). The algorithm 

MOMACP �
(•) is desribed in Fig. and illustrated in Fig. 8 and Fig. 9. �   �P � 

We prove that MOMAC is pseudorandom. 

Lemma 5.3 Let A be an adversary whih asks at most q queries, and eah 

query is at most nm-bits. Assume m 2n /4. T hen 

f
AMOMACp� 

�����p� 

(·)Pr(P1 

�P	 ! Perm(n) : �1 ) 

f (2m2 + 1) q2 

Af (·)-Pr(R ! Rand(* �n ) : �1 ) 

2n 

A proof is given in Appendix B.
 

The next lemma shows that OMACP 

(•) and MOMACP �
(•) are in
�   �P � 

distinguishable. 
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Algorithm MOMACP� 

�P� 

�P� 

�P� 

�P� 

�P� 

(M) 

Partition M into M [1] • • • M [m] 

if m > 2 then 

X [1] ! M [1] 

Y [1] ! P1(X [1]) 

for i ! 2 to m - 1 do 

X [i] ! M [i] E Y [i - 1] 

Y [i] ! P2(X [i]) 

X [m] ! padn(M [m]) E Y [m - 1] 

if IM [m]I n then T ! P3(X [m]) 

else T ! P (X [m]) 

if m �1 then 

X [m] ! padn(M [m]) 

if IM [m]I n then T ! P (X [m]) 

else T ! P (X [m]) 

return T 

Figure  : Defnition of MOMAC. 

� 

T T 

Figure 8: Illustration of MOMAC f o r IM I  n . 

� 

T T 

Figure 9: Illustration of MOMAC f o r IM I n. 
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Lemma 5.. Let A be an adversary whih asks at most q queries, and eah 

query is at most nm-bits. Assume m 2n/4. T hen 

f
AOMACp 

(·)Pr(P ! Perm(n) : �1 ) 

f 3m2q2 

AMOMACp� 

(·)p�-Pr(P1 

�P ! Perm(n) :	 �1 ) 

2n 

Proof . Suppose that there exists an adversary A suh that 

f
AOMACp 

(·)Pr(P ! Perm(n) : �1 ) 

f 3m2q2 

AMOMACp� 

(·)p�-Pr(P1 

�P ! Perm(n) :	 �1 ) 

2n 

By using A, w e s h o w a onstrution of an adversary B; 

suh that: 

•	 B ; 

asks at most mq queries, and 

f
B

Q� 

(·) �Q� 

(·)
• Pr(P ! Perm(n) :	 �1 ); 

f	

3m2q2 

B
P� 

(·) �P� 

(·)
-Pr(P1 

�P ! Perm(n) :	 �1 ) ,; 2n 

whih ontradits Lemma 5.2. 

Let 01(•) 0 (•) be B;'s orales. The onstrution of B; 

is given in 

Fig. 10. 

Algorithm Bo� 

o� 

1: When A 

; 

asks its r-th query M (r): 

2: T 

(r) ! MOMACo� 

o� 

(M (r)) 

3: return T 

(r) 

4: When A halts and outputs b: 

5: output b 

Figure 10: Algorithm B;. Note that for 1 i  , 0i 

is either Pi 

or Qi 

When A asks M (r), then B; 

omputes T 

(r) �M OM ACo� 

o� 

(M (r)) 

as if the underlying random permutations are 01 

0 , and returns T 

(r). 

When A halts and outputs b, then B; 

outputs b. 

Now w e see that: 

•	 B ; 

asks at most mq queries to its orales, sine A asks at most q 

queries, and eah query is at most nmbits. 

13 
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• Pr(P1 

�P 

f
! Perm(n) : B

P� 

(·) 

; 

�P� 

(·) 

�1 ) 

�P r ( P1 

�P 

f
! Perm(n) : AMOMACp� 

p� 

(·) 1), 

sine B; 

gives A a perfet simulation of MOMACP� 

�P� 

(•) i f 0i(•)� 

Pi(•) f o r 1 i  . 

• Pr(P 

f
! Perm(n) : B

Q� 

(·) 

; 

�Q� 

(·) 

�1 ) 

�P r ( P 

f
! Perm(n) : AOMACp 

(·) 1), 

sine B; 

gives A a perfet simulation of OMACP 

(•) i f 0i(•)� Qi(•) for 

1 i  . See Fig. 11 and Fig. 12 for illustrations of B;'s omputation. 

Note that Rnd is aneled in Fig. 11. 

��� 

��� ��� ��� ��� 

fL · � fL · �
� 

��� ��� ��� 

� 

T T 

Figure 11: Computation of B; 

when 0i 

Qi 

for 1 i  , and IM I  n . 

L · � L · �
� 

T T 

Figure 12: Computation of B; 

when 0i 

Qi 

for 1 i  , and IM I n. 

This onludes the proof of the lemma. Q.E.D. 

We fnally give a proof of Main Lemma. 

Proof (of Lemma 5.1). By the triangle inequality, the left hand side of (4) 

is at most 

Pr(P1 

P 

f
! Perm(n) : AMOMACp� 

�p� 

(·) �1 ) 

-Pr(R 

f
! Rand(* �n ) : Af(·) �1 ) 

( ) 

+ Pr(P 

f
! Perm(n) : AOMACp 

(·) �1 ) 

-Pr(P1 

P 

f
! Perm(n) : AMOMACp� 

�p� 

(·) �1 ) 

( ) 

14 
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Lemma 5.3 gives us an upper bound on ( ) and Lemma 5.4 give s u s a n u p p e r 

bound on ( ). Therefore the bound follows sine 

2 2 2 2 2 2(2m + 1) q 3m q (5m + 1) q
+ 

2n 2n 2n 

6 Disussions 

6.1 Summary of Properties 

We g i v e a summary of properties of OMAC i n T able 2. 

Table 2: Summary of properties of OMAC. 

Q.E.D.
 

Seurity funtion Message authentiation ode.
 

Error propagation Not appliable.
 

Synhronization Not appliable.
 

Parallelizability Sequential.
 

Keying material Single blok ipher key.
 

Ctr/IV/None requirements No ounter/IV/none is used.
 

Memory requirements Very modest.
 

Preproessing apability L EK 

(Cst), L • u and L • u 

-1
 

an be preproessed. 

Messagelength requirements Arbitrarily length. 

Ciphertext expansion Not appliable. 

6.2 Advantages 

Minimum key length. The key length of OMAC i s kbits, while the key 

length of XCBC is (k+2 n)bits and the key length of TMAC i s ( k+n)
bits. 

Arbitrarily length messages. The domain of OMAC i s {0 1}* and IM I 

need not be a multiple of the blok length n. 

Optimal numbe  r o f b l o  k ipher invoations. To generate a tag for 

any nonempty m essage M E { 0 1}* , O M A C requires IIM I/nl blok 

ipher invoations (The empty string is an exeption, and it requires 

one blok ipher invoation). 

15 
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Optimal numbe  r o f b l o  k ipher key shedulings. OMAC needs only 

one blok ipher key sheduling. 

Provable seurity. We prove t h a t O M A C is a v ariable input length pseu
dorandom funtion (VIPRF) with fxed output length assuming that 

the underlying blok ipher is a pseudorandom permutation (PRP). 

No deryption. As for any C B C M A C variant, OMAC does not use de
ryption of the blok ipher. 

Simpliity. Beause OMAC is simple, it is easily implemented in both 

software and hardware. 

6.3 Limitations 

Sequential blok ipher invoations. The CBC MAC and its variants, 

inluding OMAC, are not parallelizable. 

Limited pre-proessing apability. For OMAC, key sheduling of the 

underlying blok ipher, L EK 

(Cst), L • u and L • u 

-1 an be pre
proessed. Additional preproessing is not possible. 

6.. Design Rationale 

Our hoie for OMAC i s Cst �0 

n , HL(x)� L • x, Cst1 

u and Cst2 

-1 ,u 

where "•" denotes multipliation over GF(2n). Or equivalently, L EK(0n), 

HL(Cst1)� L • u and HL(Cst2)� L • u 

-1 . B e l o w, we list reasons of this 

hoie. 

•	 We adopted multipliations in GF(2n) sine it is simple, easy to un
derstand, and easy to implement for appropriate onstants. 

-1	 -1•	 We adopted u and u as onstants, sine L • u and L • u an be 

omputed eÆiently from L by one shift and one onditional XOR, 

respetively, a s s h o wn in (2) and (3). 

•	 One might try to use Cst1 

1 instead of Cst1 

In this ase, the u. 

fourth ondition in Se. 3 is not satisfed, and in fat, the sheme an be 

easily attaked. Similarly, if one uses Cst2 

1 instead of Cst2 

u 

-1 , 

the ffth ondition in Se. 3 is not satisfed, and the sheme an be 

easily attaked. Therefore, we an not use "1" as a onstant. 

1 
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6.5 On Standard Key Separation Tehnique 

For XCBC, assume that we w ant to use a single key K of E, where E is the 

AES. 

Then the following key separation tehnique is suggested in [4]. Let K 

be  a  kbit AES key. Then 

K1 

the frst k bits of AESK 

(C1a) Æ AESK 

(C1b), 

K2 

�A ES K 

(C2) and 

K3 

�A ES K 

(C3) 

for some distint onstants C1a, C1b, C2 

and C3. W e all it X CBC+kst (key 

separation tehnique). XCBC+kst uses one kbit key. H o wever, it requires 

additional one key sheduling of AES and additional 3 or 4 AES invoations 

during the preproessing time. 

Similar disussion an be applied to TMAC. For example, we an let 

K1 

the frst k bits of AESK 

(C1a) Æ AESK 

(C1b), and 

K2 

�A ES K 

(C2) 

for some distint onstants C1a, C1b 

and C2. W e all it TM AC+kst. 

We note that OM AC does not need suh a k ey separation tehnique sine 

its key length is k bits in its own form (without using any k ey separation 

tehnique). This saves storage spae and preproessing time ompared to 

XCBC+kst and TMAC+kst. 

6.6 Comparison 

Let E : {0 1}k  { 0 1}n  { 0 1}n be a blok ipher, and M E { 0 1}* be  a  

message. We s h o w a omparison of CBC MAC and its variants in Table 3, 

where 

•	 "K len." denotes the key length. 

•	 "#K she." denotes the number of blok ipher key shedulings. For 

RMAC, it requires one blok ipher key sheduling eah time generat
ing a tag. 

•	 "#M" denotes the number messages whih the sender has MACed. 

•	 "#E invo." denotes the number of blok ipher invoations to generate 

a tag for a message M , assuming IM I 0. 

1 
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•	 "#E pre." denotes the numbe  r o f b l o  k ipher invoations during 

the preproessing time. These blok  i p h e r i n voations an be done 

without the message. For XCBC+kst and TMAC+kst, the blok 

ipher is assumed to be the AES. 

Table 3: A omparison of CBC MAC and its variants. 

Name Domain K len. #K she. #E invo. #E pre. 

CBC MAC ({ , }�)� k I I/n 

EMAC ({ , }�)+ k �+ I I/n 

RMAC { , }� k �+ # �+ I(I I+� ) /nl 

CBC { , }� k + n II I/nl 

TMAC { , }� k + n II I/nl 

CBC+��� { , }� k II I/nl �o r  
TMAC+��� { , }� k II I/nl  o r 

OMAC { , }� k II I/nl 

6.7 MAC T runation 

It is possible to redue the output length by trunating the value of OMACK 

(M). 

That is, let 

OMAC[T ]K 

(M) the frst T bits of OMACK 

(M) 

Then we an prove a seurity bound similar to Theorem 5.1. 

Corollary 6.1 Let E : IE  { 0 1}n  { 0 1}n be the underlying blok ipher 

used in OMAC[T ]. T hen 

(5m2 + 1) q2 1 PrP 1Adv}a nm)	 + + Adv (t �q 

1)OMAC[T ](t� q	 E2n 2T 

where t1 t + O(mq) and q1 mq. 

(Lemma 5.1 and Corollary 5.1 for OMAC also hold for OMAC[T ].) 
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Proo o Lemma 5.2 

If A is a fnite multiset then #A denotes the number of elements in A. 

Let {a� b� � } be  a  f  n  i  t  e  m  ultiset of bit strings. That is, a E { 0 1}* �b E 

{0 1}* � E { 0 1}* hold. We say " {a� b� � } are distint" if there exists 

no element ours twie or more. Equivalently, {a� b� � } are distint if 

any t wo elements in {a� b� � } are distint. 

Before proving Lemma 5.2, we need the following lemma. 

Lemma A.1 Let q1 

�q 2 

�q 3 

�q �q �q be six non-negative integers. For 1 

(1) (qi)	 (1) (qi)i	 , let x �x be fxed n-bit strings suh that {x x } are i i	 i i 

(1) (qi)distint. Similarly, for 1 i , let yi 

y i 

be fxed n-bit strings suh 

(1) (q�) (1) (q�)	 (1) (q�)that	 {y �y } { y �y } are distint, and {y �y }1 1 2 2	 3 3 

(1) (q�) (1) (q�) (1) (q�){y �y }  {  y �y }  {  y �y } are distint. Let P E 
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Perm(n) and Rnd E { 0 1}n . Then the number of (P� Rnd) whih satisfes 

Q1(x
(i) 

1 

)� y
(i) 

1 

for 1 

vi q1, 

Q2(x
(i) 

2 

)� y
(i) 

2 

for 1 

vi q2, 

Q3(x
(i) 

3 

)� 

Q (x
(i)
)� 

y
(i) 

3 

y
(i) 

for 1 

for 1 

vi 

vi 

q3, 

q , 

(8) 

Q (x
(i)
)� y

(i) 

for 1 

vi q and 

Q (x
(i)
)� y

(i) 

for 1 

vi q 

is at least (2n - 2q - q2) • (2n - q)!, w here q q1 

+ • • • + q .
 

Proof (of Lemma A.1). At the top level, we onsider two ases: Cst E
 

(1) (q�) (1) (q�){x �x } and Cst E { x �x }.1 1 1 1 

(1) (q�)Case 1: Cst E { x1 

�x 1 

}. Let  be a unique integer suh that 1 

 q1 

and Cst x1
() 

. Let l be  an  nbit variable. First, observe that: 

#{l I 1 

0i q1 

1 

0j q2 

�x 

(i) 

1 

x
(j) 

2 

E y
() 

1 

E l} q1q2, 

#{l I 1 

0i q1 

1 

0j q3 

�x 

(i) 

1 

x
(j) 

3 

E y
() 

1 

E l E l • u} q1q3, 

#{l I 1 

0i q1 

1 

0j q �x 

(i) 

1 

x
(j) 

E y
() 

1 

E l E l • u 

-1} q1q , 

#{l I 1 

0i q1 

1 

0j q �x 

(i) 

1 

x
(j) 

E l • u} q1q , 

#{l I 1 

0i q1 

1 

0j q �x 

(i) 

1 

x
(j) 

E l • u 

-1} q1q , 

#{l I 1 

0i q2 

1 

0j q3 

�x 

(i) 

2 

x
(j) 

3 

E l • u} q2q3, 

#{l I 1 

0i q2 

1 

0j q �x 

(i) 

2 

x
(j) 

E l • u 

-1} q2q , 

#{l I 1 

0i q2 

1 

0j q �x 

(i) 

2 

E y
() 

1 

E l x
(j) 

E l • u} q2q , 

#{l I 1 

0i q2 

1 

0j q �x 

(i) 

2 

E y
() 

1 

E l x
(j) 

E l • u 

-1} q2q , 

#{l I 1 

0i q3 

1 

0j q �x 

(i) 

3 

E l • u x
(j) 

E l • u 

-1} q3q , 

#{l I 1 

0i q3 

1 

0j q �x 

(i) 

3 

E y
() 

1 

E l x
(j)

} q3q , 

#{l I 1 

0i q3 

1 

0j q �x 

(i) 

3 

E y
() 

1 

E l E l • u x
(j) 

E l • u 

-1} q3q , 

#{l I 1 

0i q 1 

0j q �x 

(i) 

E y
() 

1 

E l E l • u 

-1 x
(j) 

E l • u} q q , 

#{l I 1 

0i q 1 

0j q �x 

(i) 

E y
() 

1 

E l x
(j)

} q q , 

#{l I 1 

0i q 1 

0j q �x 

(i) 

E l • u x
(j) 

E l • u 

-1} q q , 

#{l I 1 

0i q1 

1 

0j q3 

�y 

(i) 

1 

E y
() 

1 

E l y
(j) 

3 

} q1q3, 

#{l I 1 

0i q1 

1 

0j q �y 

(i) 

1 

E y
() 

1 

E l y
(j)

} q1q , 

#{l I 1 

0i q1 

1 

0j q �y 

(i) 

1 

E y
() 

1 

E l y
(j)

} q1q , 
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#{l I 1 

0i q1 

1 

0j q �y 

(i) 

1 

E y
() 

1 

E l y
(j)

} q1q , 

#{l I 1 

0i q2 

1 

0j q3 

�y 

(i) 

2 

E y
() 

1 

E l y
(j) 

3 

} q2q3, 

#{l I 1 

0i q2 

1 

0j q �y 

(i) 

2 

E y
() 

1 

E l y
(j)

} q2q , 

#{l I 1 

0i q2 

1 

0j q �y 

(i) 

2 

E y
() 

1 

E l y
(j)

} q2q , a n d 

#{l I 1 

0i q2 

1 

0j q �y 

(i) 

2 

E y
() 

1 

E l y
(j)

} q2q . 

Here we used the fat that we are working in a feld (We w i l l  o n tinue 

to use this without mention). 

We now fx any l whih i s not inluded in any of the above t wentythree 

sets. We h a ve at least (2n - (q1q2 

+ 2 q1q3 

+ 2 q1q + 2 q1q + 2 q1q + 2 q2q3 

+ 

2q2q + 2 q2q + 2 q2q + q3q + q3q + q3q + q q + q q + q q )) > (2n - q2) 

hoie of suh l. 

()
Now we let L ! l and Rnd ! l E y1 

. Then we h a ve 

(1) (q�){x1 

�x 1 

(1) (q�)x E Rnd �x E Rnd2 2 

(1) (q�)x E Rnd E L • u �x E Rnd E L • u3 3 

(1) -1 (q�) -1x E Rnd E L • u �x E Rnd E L • u 

(1) (q�)x E L • u x E L • u 

(1) (q�)x E L • u 

-1 �x E L • u 

-1} 

(whih are inputs to P ) are distint. Also, the orresponding outputs 

(1) (q�){y1 

E Rnd �y 1 

E Rnd 

(1) (q�)y2 

E Rnd �y 2 

E Rnd 

(1) (q�)y �y3 3 

(1) (q�)y �y 

(1) (q�)y �y 

(1) (q�)y �y } 

are distint. In other words, for P , the above q1 

+q2 

+q3 

+q +q +q input
output pairs are determined. The remaining 2n - (q1 

+ q2 

+ q3 

+ q + q + q ) 

inputoutput pairs are undetermined. Therefore we h a ve ( 2 

n -(q1 

+q2 

+q3 

+ 

q + q + q ))! (2n - q)! possible hoie of P for any suh fxed ( L� Rnd). 

(1) (q�)Case 2: Cst E { x1 

�x 1 

}. In this ase, we ount the numbe  r o f Rnd 

and L independently. Then similar to Case 1, observe that: 
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#{Rnd I 1 

0i q2 

Cst x
(i) 

2 

E Rnd} q2, 

#{Rnd I 1 

0i q1 

1 

0j q2 

�x 

(i) 

1 

x
(j) 

2 

E Rnd} q1q2, 

#{Rnd I 1 

0i q3 

1 

0j q �x 

(i) 

3 

E Rnd x
(j)

} q3q , 

#{Rnd I 1 

0i q 1 

0j q �x 

(i) 

E Rnd x
(j)

} q q , 

#{Rnd I 1 

0i q1 

1 

0j q3 

�y 

(i) 

1 

E Rnd y
(j) 

3 

} q1q3, 

#{Rnd I 1 

0i q1 

1 

0j q �y 

(i) 

1 

E Rnd y
(j)

} q1q , 

#{Rnd I 1 

0i q1 

1 

0j q �y 

(i) 

1 

E Rnd y
(j)

} q1q , 

#{Rnd I 1 

0i q1 

1 

0j q �y 

(i) 

1 

E Rnd y
(j)

} q1q , 

#{Rnd I 1 

0i q2 

1 

0j q3 

�y 

(i) 

2 

E Rnd y
(j) 

3 

} q2q3, 

#{Rnd I 1 

0i q2 

1 

0j q �y 

(i) 

2 

E Rnd y
(j)

} q2q , 

#{Rnd I 1 

0i q2 

1 

0j q �y 

(i) 

2 

E Rnd y
(j)

} q2q , and 

#{Rnd I 1 

0i q2 

1 

0j q �y 

(i) 

2 

E Rnd y
(j)

} q2q . 

We fx any Rnd whih i s not inluded in any of the above t welve sets. 

We h a ve at least (2n - (q2 

+ q1q2 

+ q3q + q q + q1q3 

+ q1q + q1q + q1q + 

q2q3 

+ q2q + q2q + q2q )) > (2n - q - q2/2) hoie of suh Rnd. 

Next we see that: 

#{L I 1 

0i q3 

Cst x
(i) 

E Rnd E L • u} q3,3 

(i) -1#{L I 1 

0i q Cst x E Rnd E L • u } q , 

#{L I 1 

0i q Cst x
(i) 

E L • u} q , 

-1#{L I 1 

0i q Cst x
(i) 

E L • u } q , 

(i) (j)
#{L I 1 

0i q1 

1 

0j q3 

�x 1 

x3 

E Rnd E L • u} q1q3, 

(i) (j)
#{L I 1 

0i q1 

1 

0j q �x 1 

x E Rnd E L • u 

-1} q1q , 

(i) (j)
#{L I 1 

0i q1 

1 

0j q �x 1 

x E L • u} q1q , 

(i) (j)
#{L I 1 

0i q1 

1 

0j q �x 1 

x E L • u 

-1} q1q , 

(i) (j)#{L I 1 

0i q2 

1 

0j q3 

�x x E L • u} q2q3,2 3 

(i) (j) -1#{L I 1 

0i q2 

1 

0j q �x 2 

x E L • u } q2q , 

(i) (j)
#{L I 1 

0i q2 

1 

0j q �x 2 

E Rnd x E L • u} q2q , 

(i) (j) -1#{L I 1 

0i q2 

1 

0j q �x 2 

E Rnd x E L • u } q2q , 

(i) (j)
#{L I 1 

0i q3 

1 

0j q �x 3 

E L • u x E L • u 

-1} q3q , 

(i) (j) -1#{L I 1 

0i q3 

1 

0j q �x 3 

E Rnd E L • u x E L • u } q3q , 

(i) -1 (j)
#{L I 1 

0i q 1 

0j q �x E Rnd E L • u x E L • u} q q , 

(i) (j)
#{L I 1 

0i q 1 

0j q �x E L • u x E L • u 

-1} q q , 

#{L I 1 

0i q1 

�L y
(i) 

E Rnd} q1,1 
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#{L I 1 

0i q2 

�L y
(i) 

2 

E Rnd} q2, 

#{L I 1 

0i q3 

�L y
(i) 

3 

} q3, 

#{L I 1 

0i q �L y
(i)

} q , 

#{L I 1 

0i q �L y
(i)

} q , and 

#{L I 1 

0i q �L y
(i)

} q . 

We now fx any L whih i s not inluded in any of the above t wentytwo 

sets. We h a ve at least (2n-(q1q3+q1q +q1q +q1q +q2q3+q2q +q2q +q2q + 

q3q + q3q + q q + q q + q1 

+ q2 

+2 q3 

+2 q +2 q +2 q )) > (2n - 2q - q2/2) 

hoie of suh L. 

Then we h a ve 

{Cst 

(1) (q�)x �x1 1 

(1) (q�)x E Rnd �x E Rnd2 2 

(1) (q�)x E Rnd E L • u �x E Rnd E L • u3 3 

(1) -1 (q�) -1x E Rnd E L • u �x E Rnd E L • u 

(1) (q�)x E L • u x E L • u 

(1) (q�)x E L • u 

-1 �x E L • u 

-1} 

(whih are inputs to P ) are distint. Also, the orresponding outputs 

{L� 

(1) (q�)y1 

E Rnd �y 1 

E Rnd 

(1) (q�)y2 

E Rnd �y 2 

E Rnd 

(1) (q�)y �y3 3 

(1) (q�)y �y 

(1) (q�)y �y 

(1) (q�)y �y } 

are distint. In other words, for P , the above 1 + q1+q2+q3+q +q +q input
output pairs are determined. The remaining 2n -(1+q1 

+q2 

+q3 

+q +q +q ) 

inputoutput pairs are undetermined. Therefore we h a ve ( 2 

n - (1 + q1 

+ q2 

+ 

q3 

+ q + q + q ))! (2n - (1 + q))! possible hoie of P for any su h fxed 

(L� Rnd). 

Completing the Proof. In Case 1, we h a ve at least (2n - q2) • (2n - q)! 

hoie of (P� Rnd) whih satisfes (8). 
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In Case 2, we h a ve at least (2n -q -q2/2) • (2n -2q -q2/2) • (2n -(1+q))! 

hoie of (P� Rnd) whih satisfes (8). This bound is at least (2n - 2q - q2) • 

(2n - q)!. 

This onludes the proof of the lemma.	 Q.E.D. 

We n o w prove Lemma 5.2. 

Proof (of Lemma 5.2). For 1 i  , let 0i 

be either Qi 

or Pi. The 

adversary A has orale aess to 01 

0 . Sine A is omputationally 

unbounded, there is no loss of generality to assume that A is deterministi. 

There are six types of queries A an make: (0j 

�x ) whih denotes the 

query "what is 0j 

(x)?" For the ith query A makes to 0j 

, defne the query
(i) (i)	 (i)

answer pair (x �y ) E { 0 1}n  { 0 1}n, where A's query was (0j 

�x )j j j 

and the answer it got was yj 

(i) 

. 

Suppose that we r u n A with orales 01 

0 . F or this run, assume 

that A made qj 

queries to 0j 

(•), where q1 

+ • • • + q q. F or this run, we 

defne view v of A as 

 f (1) (q�) (1) (q�) (1) (q�)v  (y1 

y 1 

) (y2 

y 2 

) (y3 

�y 3 

) 

(9)(1) (q�) (1) (q�) (1) (q�)(y y ) (y y ) (y �y ) 

For this view, we a l w ays have: 

(1) 

(q;)For 1 j  , {yj 

�y j 

} are distint. 

We note that sine A never repeats a query, for the orresponding queries, 

we have: 

(1) 

(q;)For 1 j  , {xj 

�x j 

} are distint. 

Sine A is deterministi, the ith query A makes is fully determined by the 

frst i - 1 queryanswer pairs. This implies that if we f x s o m e qn bit string 

V and return the ith nbit blok as the answer for the ith query A makes 

(instead of the orales), then 

•	 A 's queries are uniquely determined, 

•	 q1 

�q are uniquely determined, 

•	 the parsing of V into the format defned in (9) is uniquely determined, 

and 

•	 the fnal output of A (0 or 1) is uniquely determined. 
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Let �Vne 

be a set of all qn bit strings V suh that A outputs 1. We le t 

Vne
� f 

Vne. Also, let � q�# � VVVd 

be a set of all n bit strings V suh that: 

For 1 

vi vj q, the ith nbit blok o f V the jth nbit blok o f V . 

Note that if V E �VVVd 

then the orresponding parsing v satisfes: 

(1) (q�) (1) (q�)• { y �y } { y �y } are distint, and 1 1 2 2 

(1) (q�) (1) (q�) (1) (q�) (1) (q�)• { y3 

�y 3 

} { y �y } { y �y } { y �y } 

are distint. 

Now observe that the numbe  r o f h is VVVd 

is at mostV whi not in the set �  
2
q 2

2

  

 . Therefore, we h a ve   
2qnq

#{V I V E (� VVVd)} > (10)Vne 

n � NVne 

-
2 2n 

Evaluation of Prand. We f rst evaluate 

 f f
� 

(·) �P� 

(·)Prand Pr(P1 

�P ! Perm(n) : AP �1 ) 

P� 

(·) �P� 

(·)#{(P1 

�P ) I A �1 } 

{(2n)!} 

For eah V E �Vne, the number of ( P1 

�P ) su h that 

(i) (i)
For 1 j  , Pj(xj 

)� yj 

for 1 

vi qj , (11) 

 
is exatly (2n - qj)!, whih is at most (2n - q)! • { (2n)!} . Therefore,1<j< 

we have 

 #{(P1 

�P ) I (P1 

�P ) satisfying (11)}
Prand

{(2n)!}
VE�Vne  (2n - q)!
 

(2n)!


VE�Vne 

(2n - q)!
NVne 

• 

(2n)! 

2 
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Evaluation of Preal. We next evaluate 

 f f f 

� 

(·) �Q� 

(·)Preal Pr(P ! Perm(n); Rnd ! { 0 1}n : AQ �1 ) 

Q� 

(·) �Q� 

(·)#{(P� Rnd) I A �1 } 

(2n)! • 2n 

Then from Lemma A.1, we h a ve 

P
# {(P� Rnd) I (P� Rnd) satisfying (8)} 

real 

> 

(2n)! • 2n 

VE(�Vne �VVVd 

) 

(2n - q)! 2q + q2 

> • 1 -
(2n)! 2n 

VE(�Vne �VVVd 

) 

Completing the Proof. From (10) we h a ve 

2qn  2q (2n - q)! 2q + q
Preal 

> NVne 

- • • 1 -
2 2n (2n)! 2n 

2qn  2q (2n - q)! 2q + q
> Prand 

- • • 1 - (12)
2 2n (2n)! 2n 

(2 -q)tSine 2qn  • > 1, from (12), we h a ve (2 )t 

  
P

q(q - 1) 2q + q2 

real 

> Prand 

- • 1 -
2 • 2n 2n 

3q2 + 3 q
> Prand 

-
2 • 2n 

3q2 

> Prand 

- (13)
2n 

Applying the same argument t o 1 - Preal 

and 1 - Prand 

yields that 

3q2 

1 - Preal 

> 1 - Prand 

- (14)
2n 

3q 

� 

Finally, (13) and (14) give IPreal 

- PrandI 2 

. Q.E.D. 
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B Proo o Lemma 5.3 

Let S and S1 be distint bit strings suh that ISI sn for some s > 1, 

 f f
and IS1I s1n for some s1 > 1. Defne Vn(S� S

1) �P r( P2 

! Perm(n) : 

CBCP� 

(S)� CBC P� 

(S1)). Then the following proposition is known [3]. 

Proposition B.1 (Blak and Rogaway  3 )  Let S and S1 be distint bit 

strings suh that ISI sn for some s > 1, and IS1I s1n for some s1 > 1. 

Assume that s� s1 2n/4. T hen 

(s + s1)2 

Vn(S� S
1)

2n 

Now let M and M 1 be distint bit strings suh that IM I mn for 

M 1I 

1 1 1)some m > 2, and I m n for some m > 2. Defne Wn(M�M 

 f 

f
Pr(P1 

�P ! Perm(n) : M OM ACP� 

�P� 

(M) �M OMACP�   �P � 

(M 1)). 

We note that P and P are irrelevant i n t h e e v ent MOMACP�   �P � 

(M)� 

MOMACP� 

�P� 

(M 1) sine M and M 1 are both longer than nbits. Also, P 

is irrelevant in the above e v ent sine IM I and IM 1I are both multiples of n. 

Further, P3 

is irrelevant in the above e v ent s i n  e i t i s i n vertible, and thus, 

there is a ollision if and only if there is a ollision at the input to the last 

enryption. 

We show the following lemma. 

Lemma B.1 (MOMAC Collision Bound) Let M and M 1 be distint bit 

M 1I 

1strings suh that IM I mn for some m > 2, and I m n for some 

m1 > 2. Assume that m�m1 2n/4. T hen 

(m + m1)2 

Wn(M�M 

1) 

2n 

Proof . Let M [1] • • •M [m] and M 1[1] • • •M 1[m1] be partitions of M and M 1 

respetively. W e onsider two  a s e s : M [1] M 1[1] and M [1] M 1[1]. 

Case 1: M [1] M 1[1]. In this ase, Let P1 

be  any perm utation in 

Perm(n), and let S ! (P1(M [1]) E M [2]) ÆM [3] Æ • • • Æ M [m] and S1 ! 

(P1(M 1[1])EM 1[2])ÆM 1[3]Æ• • •ÆM 1[m1]. Observe that MOMACP�   �P � 

(M)� 

MOMACP� 

�P� 

(M 1) if and only if CBCP� 

(S)� CBC P� 

(S1), sine we m ay 

ignore the last enryptions in CBCP� 

(S) and CBCP� 

(S1). Therefore 

(m + m1 - 2)2 

Wn(M�M 

1) Vn(S� S
1)

2n 
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Case 2: M [1] M 1[1]. In this ase, we split into two ases: P1(M [1]) E 

M [2] P1(M
1[1]) E M 1[2] and P1(M [1]) E M [2] P1(M

1[1]) E M 1[2]. The 

former event will our with probability at most 1. The later one will our 

with probability at most 

1 , whih is at m ost 

2 . Then it is not hard to 2 -1 2 

see that 

2 (m + m - 2)2 2 (m + m1)2 

Wn(M�M 

1) 1 • Vn(S� S
1) + + 

2n 2n 2n 2n 

by applying the similar argument a s i n C a s e 1 . Q.E.D. 

Let m be an integer suh that m 2n/4. We onsider the following four 

sets. 

D1
� f 

{M I M E { 0 1}* , n IM I mn and IM I is a multiple of n} 

D2
� f 

{M I M E { 0 1}* , n IM I mn and IM I is not a multiple of n} 

 f
D3 {M I M E { 0 1}* and IM I n} 

 f
D {M I M E { 0 1}* and IM I  n } 

We next show the following lemma. 

Lemma B.2 Let q1 

�q 2 

�q 3 

�q be four non-negative integers. For 1 i 4, 

(1) (qi) (j)
let M �M be fxed bit strings suh that M E Di 

for 1 j qi 

andi i i 

(1) (qi) (1) (qi){M �M } are distint. Similarly, for 1 i 4, let T �T be i i i i 

(1) (qi)fxed n-bit strings suh that {Ti 

�T i 

} are distint. Then the number 

of P1 

�P E Perm(n) suh that 

(i) (i)
MOMACP� 

(M )� T for 1 

vi q1,�P� 1 1 

(i) (i)
MOMACP� 

�P� 

(M2 

)� T2 

for 1 

vi q2, 

(15)(i) (i)MOMACP� 

(M )� T for 1 

vi and�P� 3 3 

q3 

(i) (i)
MOMACP� 

�P� 

(M )� T for 1 

vi q   
2q 

� m� 

is at least {(2n)!} 1 - 2 • 2
1 , w here q q1 

+ • • • + q . 

(1) (q�)Proof . W e frst onsider M1 

�M 1 

. The numbe  r of ( P1 

�P 2) su h that 

(i) (j) 0MOMACP�   �P � 

(M1 

) �M OMACP� 

�P� 

(M1 

) for 1 i 0j q1 

m� 

is at most {(2n)!}2 • 

q
2 

� • 2 

from Lemma B.1. Note that P3 

�P are 

irrelevant in the above e v ent. 
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(1) (q�)We next onsider M2 

�M 2 

. The number of ( P1 

�P 2) su h that 

(i) (j) 0MOMACP�   �P � 

(M2 

) �M OMACP� 

�P� 

(M2 

) for 1 i 0j q2 

is at most {(2n)!}2 • 

q
2 

� • 2 

m 

� 

from Lemma B.1. 

Now we fx any ( P1 

�P 2) whih is not like the above. We have at least 

q� 

m q� 

m{(2n)!}2 1 - • 

� 

- • 

� 

hoie. 2 2 2 2 

Now P1 

and P2 

are fxed in suh a w ay that the inputs to P3 

are 

distint and the inputs to P are distint. Also, the orresponding out
(1) (q�) (1) (q�)puts {T3 

�T 3 

} are distint, and {T �T } are distint. We 

know that the inputs to P are distint, and the orresponding outputs 

(1) (q�){T3 

�T 3 

} are distint. Also, the inputs to P are distint, and and 

(1) (q�)the orresponding outputs {T �T } are distint. Therefore, we h a ve 

q� 

m q� 

mat least {(2n)!}2 1 - • 

� 

- • 

� 

• (2n -q1)! • (2n -q2)! • (2n -q3)! •2 2 2 2 

(2n - q )! hoie of P1 

�P whih satisfes (15). This bound is at least 

2q 

� m 

� 1 

(2 )t {(2n)!} 1 - • sine (2n - qi)! > .2 2 2 

i 

This onludes the proof of the lemma. Q.E.D. 

We n o w prove Lemma 5.3. 

Proof (of Lemma 5.3). Let 0 be either MOMACP� 

�P� 

or R. Sine A is 

omputationally unbounded, there is no loss of generality to assume that A 

is deterministi. 

For the query A makes to the orale 0, defne the queryanswer pair 

(i) (i) (i)
(M �T ) E Dj  { 0 1}n , w here A's ith query in Dj 

was M E Dj 

andj j j 

the answer it got was Tj 

(i) 

E { 0 1}n . 

Suppose that we r u n A with the orale. For this run, assume that A 

made qj 

queries in Dj 

, where 1 j 4 and q1 

+ • • • + q q. F or this run, 

we defne view v of A as 

 f (1) (q�) (1) (q�)v (T �T ) (T �T )1 1 2 2 (1 ) (1) (q�) (1) (q�)(T3 

�T 3 

) (T �T ) 

Sine A is deterministi, the ith query A makes is fully determined by the 

frst i - 1 queryanswer pairs. This implies that if we f x s o m e qn bit string 

V and return the ith nbit blok as the answer for the ith query A makes 

(instead of the orale), then 

• A 's queries are uniquely determined, 
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• q1 

�q are uniquely determined, 

•	 the parsing of V into the format defned in (1 ) is uniquely determined, 

and 

N

• the fnal output of A (0 or 1) is uniquely determined. 

Let �Vne 

be a set of all qn bit strings V suh that A outputs 1. We le t 

Vne
� f 

�# �Vne 

. Also, let �VVVd 

be a set of all qn bit strings V suh that: 

For 1 

vi vj q, the ith nbit blok o f V the jth nbit blok o f V . 

Note that if V E �VVVd 

, then the orresponding parsing v satisfes that: 

(1) (q�) (1) (q�)	 (1) (q�){T �T } are distint, {T �T } are distint, {T �T }1 1 2 2	 3 3 

(1) (q�)are distint and {T T } are distint. Now observe that the numbe  r 

of V whih i s not in the set �VVVd 

is at most 2 

q 2
2 

. Therefore, we h a ve 

2qnq
#{V I V E (�Vne 

n �VVVd 

)} > NVne 

-
2n 

(1 )
2 

Evaluation of Prand. We f rst evaluate 

 f f	 (·) 

P

Prand Pr(R ! Rand(* �n ) : Af �1 ) 

Then it is not hard to see 

1 NVne 

rand 

2qn  2qn  

VE�Vne 

Evaluation of Preal 

. We next evaluate 

 f	 f
AMOMACp� 

(·)Preal Pr(P1 

�P ! Perm(n) : 

p� �1 ) 

MOMACp� 

(·)#{(P1 

�P ) I A 

�p� �1 } 

{(2n)!}
 

Then from Lemma B.2, we h a ve
 

# {(P1 

�P ) I (P1 

�P ) satisfying (15)}
Preal 

> 

{(2n)!}
VE(�Vne 

�VVVd 

) 

2q2m2 1 

>	 1 - • 

2n 2qn  

VE(�Vne 

�VVVd 

) 
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Completing the Proof. From (1 ) we h a ve 

Preal 

> NVne 

-
q 

2 

2qn  

2n 

• 1 -
2q2m2 

2n 

• 

1 

2qn  

Prand 

-
q 

2 

1 

2n 

• 1 -
2q2m2 

2n 

> Prand 

-
q 

2 

1 

2n 

-
2q2m2 

2n 

> Prand 

-
2q2m2 + q2 

2n 

(18) 

Applying the same argument t o 1 - Preal 

and 1 - Prand 

yields that 

2q2m2 + q2 

1 - Preal 

> 1 - Prand 

- (19)
2n 

Finally, (18) and (19) give IPreal 

- PrandI 
2q� m

2 

� +q� 

.	 Q.E.D. 

C Doument Histor 

•	 November 25, 2002. First version of the OMAC d o  u m e n t submitted 

to IACR ePrint [8]. 

•	 Deember 20, 2002. Seond version of the OMAC doument submitted 

to NIST. Setion  , Appendix C and Appendix D are added. 

D Intelletual Propert Statement 

We d o n o t h a ve a n y i n telletual property laims related to OMAC. 
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