
ADDENDUM

XCBC Encryption with Authentication and XECB Authentication

Modes

Submitter:

VDG Inc.

6009 Brookside Drive

Chevy Chase, Maryland 20815

tel. (301) 657-1959

fax. (301) 657-9021

Inventors:

Virgil D. Gligor and Pompiliu Donescu

Owner:

VDG Inc.

6009 Brookside Drive

Chevy Chase, Maryland 20815

March 28, 2001

1

In this Addendum, we present several of the modes discussed in the main submission paper "Fast En-

cryption and Authentication: The XCBC Encryption and XECB Authentication Modes," which can b e

found at http:jjcsrc.nist.govjencryptionjmodesj.) In particular, we summarize the properties of these

modes in the format suggested by NIST. While this Addendum contains additional information regarding

the proposed modes, it is not a substitute for the main submission paper, which also contains a detailed

discussion of, and motivation, for the proposed modes.

Specifcation of the Stateless Encryption with Authentication XCBC-
XOR Mode (XCBC$-XOR)

The encryption and decryption functions of the one-key stateless mode providing secrecy and authenticity,

E,	 X CBC $, X OR

FK (x) and D, X CBC $, X

function E, XCBC$-XORf (x)

l

y

r0 f 0; 1g

0

= f(r0); z0

= f(r0

+ 1)

if jxnj = l then f

Z = z0

and P = x g

else f

Z = z0

and P = P ad (x) g

Pn+1

= Z

for i = 1 ; ; n do f

Pn+1

= Pn+1

E Pi

g

for i = 1 ; ; n + 1 do f

zi

= f(Pi

E zi,1)

yi

= zi

+ i x r0

g

return y = y0jjy1y2 ynyn+1

OR	

FK (y), are defned as follows.

r

function D, XCBC$-XORf (y)

Parse y as y0jjy1 ynyn+1

0

= f,1(y0); z0

= f(r0

+ 1)

for i = 1 ; ; n + 1 do f

zi

= yi

, i x r0

Pi

= f,1(zi) E zi,1

g

g = 0

for i = 1 ; ; n do f

g = g E Pi

g

if g E z0

= Pn+1

f

x = P and

return x = x1x2 xn

g

else f

if g E z0

= Pn+1

f

x = Unpad(P) and

return x = x1x2 xn

g

else

return N ull g,

where N ull is an authenticity failure indicator. In this specifcation, P ad (x) = xjj10i where i = l , 1 ,

jxj mod l and jj is the concatenation operator; Unpad(x) means removing the pad of the form 10i from

the last block of string x. It is clear that the computation of Pn+1

at encryption and of g at decryption

can proceed in the same loop as the enciphering, or correspondently, deciphering of the frst n blocks.

An extended discussion of the properties of this mode, including its proof for the two-key variant, can be

found at: http:jjcsrc.nist.govjencryptionjmodesj.)

1.1 Summary of Properties:

1.	 Security Function

Authenticated encryption.

2.	 Error Propagation

1

http:jjcsrc.nist.govjencryptionjmodesj
http:jjcsrc.nist.govjencryptionjmodesj

The XCBC$-XOR mode does not allow the decryption, with non-negligible probability, of any ci-

phertext string where any bit change has been made. Without the authentication mechanism, the

XCBC$ mode has similar error propagation characteristics to those of CBC (viz., section 10 below).

3.	 Synchronization

The XCBC$-XOR mode does not allow the decryption, with non-negligible probability, of any ci-

phertext string where any bit change has been made. Without the authentication mechanism, the

XCBC$ mode has similar synchronization characteristics to those of CBC (viz., section 10 below).

4.	 Parallelizability

This mode is primarily intended for sequential operation. However, as specifed in the main paper, this

mode can be used in an interleaved-parallel manner. This enables incremental updates of encrypted

data and out-of-order processing of diferent plaintext and ciphertext segments (i.e., specifed sets of

sequential blocks), each segment potentially having a diferent length.

5.	 Keying Material

This mode requires a single key. However, in the main paper we illustrate a two-key version also. If

the block cipher is AES, then l = 128 and the key length jKj 2 f 128; 192; 256g.

6.	 Counter/IV/Nonce requirements

For its intended use, this mode requires an unpredictable IV, z0, that is generated anew for each

message encryption, whose value is not exported outside the mode (i.e., it is not output). This IV is

generated by enciphering a variant of a per-message secret random value r0

(i.e., enciphering r0

+ 1)

with the same key as that used for plaintext block enciphering. Both the secret random value and

the IV are of the same length as that of the block cipher (i.e., 128 bits for AES).

7.	 Memory Requirements

The XCBC$-XOR mode requires six blocks for holding the information specifc to this scheme, and

the necessary memory for the block cipher with one key. Namely, the mode requires:

• one block R for holding r0;

• one block E for holding the summation term E = i x r0;

•	 three blocks for performing the enciphering of plaintext block Pi, namely, one block X for Pi, one

block Z O

block Pi

L

m

D

ay

for zi,1

proceed

and one block Z

as follows:

N E W for zi. In this case, the algorithm for enciphering

Z

Z

Z

N

O

N

E

L

E

W

D

W

FK

(X

Z N E W

Z O L D

E Z O L

;

+ E;

D);

i.e., after the execution of this part, block Z N EW contains the value of the ciphertext block

yi

that is further output. These blocks can also be used at the initialization phase as follows:

Z OLD R + 1;

Z NEW FK

(Z O LD);

Z OLD Z N EW ;

Z NEW FK

(R);

2

where in the frst line we compute r0

+ 1 and store it in block Z O LD , then compute z0

=

FK

(r0

+ 1) in block Z N EW , then save z0

in Z O LD , and use Z N EW for y0

= FK

(r0) that

is further output;

•	 one block W for the value of function z0

E x1

E E xn+1.

The estimates provided herein are conservative, in the sense that standard optimization can b e

applied to reduce memory register requirements.

8.	 Pre-processing Capability

This mode requires a random value generator for creating the random value r0, and a block cipher

invocation for generating the IV (z0). A block cipher invocation is also required for enciphering r0

(i.e., to obtain the ciphertext y0

transmitted to the message receiver).

9.	 Message Length Requirements

This mode requires padding. A padding function that does not require an extra block cipher-

invocation for plaintext messages comprising an integer numb e r o f block, does not require an extra

enciphering key, and maintains the unpredictability o f the redundancy function g(x) representing a

mode-appended plaintext block, is specifed.

10. Ciphertext Expansion

The XCBC$-XOR outputs n+2 ciphertext blocks, where n is the number of plaintext blocks obtained

after padding.

11. Other Characteristics

•	 Alternatively, the computation of the ciphertext blocks yi

can be done as follows:

yi

= zi

E (i x r0):

•	 The related stateless encryption-only mode XCBC$ may also be considered, where the encryp-
tion and decryption functions of the one-key stateless mode,

E, X CBC $FK (x) and D, X CBC $FK (y), are defned as follows.

function E, XCBC$f (x)

l

y

r0 f 0; 1g

0

= f(r0); z0

= f(r0

+ 1)

for i = 1 ; ; n do f

zi

= f(xi

E zi,1)

yi

= zi

+ i x r0

g

return y = y0jjy1y2

yn

r

function D, XCBC$f (y)

Parse y as y0jjy1

yn

0

= f,1(y0); z0

= f(r0

+ 1)

for i = 1 ; ; n do f

zi

= yi

, i x r0

xi

= f,1(zi) E zi,1

g

return x = x1x2

xn

Error Propagation If used exclusively for encryption, namely without authentication, this

mode has similar error propagation properties to those of the basic CBC mode. At decryption,

a single bit error in ciphertext block yi

causes the of the corresponding hidden ciphertext block

zi

to contain one or more bit errors thereby afecting the deciphering of both ciphertext blocks

yi

and yi+1. Plaintext block xi

recovered from hidden ciphertext block zi

is totally random

(depending on the properties of the block cipher), whereas the recovered plaintext xi+1

contains

the bit errors exactly in the same bit positions where zi

did.

3

At encryption, a single bit error in plaintext block xi; i 2 1 causes alterations in all subsequent

ciphertext blocks.

Synchronization If used exclusively for encryption, namely without authentication, this mode

is self-synchronizing in the sense that if a bit error occurs (or bit errors occur) in ciphertext

block yi

and not in yi+1, ciphertext block yi+2

is correctly deciphered to xi+2, and all further

ciphertext blocks are deciphered correctly.

The XCBC$ is primarily intended for sequential operation, but can b e used in a parallel-

interleaved manner, in a similar way t o X CBC$-XOR.

The XCBC$ mode requires 5 blocks (i.e., the blocks needed by XCBC$-XOR without the one

storing the value of function z0

E x1

E E xn+1.

The XCBC$ mode requires padding. Industry-standard padding schemes can be used.

1.2 Test Vectors

Please see discussion in Appendix 1.

1.3 Performance estimates

The XCBC$-XOR mode requires n + 3 block cipher invocations, where n is the number of plaintext blocks

after padding.

1.4 Intellectual Property Statement

Presented in Appendix 2.

2	 Specifcation of the Stateful-Sender Encryption with Authentication

XCBC-XOR Mode (XCBCC-XOR)

The encryption and decryption functions of the one-key stateful-sender mode, providing secrecy and au-

thenticity, E, X CBCC

FK (x; ctr) and D, X CBCC

FK (y), are defned as follows.

4

r

function E, XCBCC,X OR

f (x; ctr)

0

= f(ctr); z0

= f(r0

+ 1)

if jxnj = l then f

Z = z0

and P = x g

else f

Z = z0

and P = P ad (x) g

Pn+1

= Z

for i = 1 ; ; n do f

Pn+1

= Pn+1

E Pi

g

for i = 1 ; ; n + 1 do f

zi

= f(Pi

E zi,1)

yi

= zi

+ i x r0

g

ctr0 ctr + 1

y = ctrjjy1y2

ynyn+1

return y

r

function D, XCBCC,X OR

f (y)

Parse y as ctrjjy1

ynyn+1

0

= f(ctr); z0

= f(r0

+ 1)

for i = 1 ; ; n do f

zi

= yi

, i x r0

Pi

= f,1(zi) E zi,1

g

g = 0

for i = 1 ; ; n do f

g = g E Pi

g

if g E z0

= Pn+1

f

x = P and

return x = x1x2

else f

if g E z0

= Pn+1

f

x = Unpad(P) and

return x = x1x2

else

return N ull g,

where N ull is an authenticity failure indicator. In this specifcation, P

xn

g

xn

g

ad	 (x) = xjj10i where i = l , 1 ,

jxj mod l and jj is the concatenation operator; Unpad(x) means removing the pad of the form 10i from

the last block of string x. It is clear that the computation of Pn+1

at encryption and of g at decryption

can proceed in the same loop as the enciphering, or correspondently, deciphering of the frst n blocks.

An extended discussion of the properties of this mode, for the two-key variant, can be found at:

http:jjcsrc.nist.govjencryptionjmodesj.)

2.1 Summary of Properties:

1.	 Security Function

Authenticated encryption.

2.	 Error Propagation

Same as for the stateless XCBC-XOR mode (XCBC$-XOR).

3.	 Synchronization

Same as for the stateless XCBC-XOR mode (XCBC$-XOR).

4.	 Parallelizability

Same as for the stateless XCBC-XOR mode (XCBC$-XOR).

5.	 Keying Material

This mode requires a single key. However, in the main paper we illustrate a two-key version also. If

the block cipher is AES, then l = 128 and the key length jKj 2 f 128; 192; 256g.

6.	 Counter/IV/Nonce requirements

The sender maintains a counter ctr that is increased by one for each plaintext encryption.

5

http:jjcsrc.nist.govjencryptionjmodesj

7.	 Memory Requirements

This mode requires seven blocks for holding the information specifc to this scheme, and the necessary

memory for the block cipher with one key. This mode uses the six blocks shown for the XCBC$-XOR

mode and a block C for the counter.

If the counter is read and output immediately, then the memory requirements are the same as for

the stateless XCBC-XOR mode (XCBC$-XOR). To see this, we show an implementation of the

initialization phase, where the counter is frst stored in Z O LD :

R FK

(Z O L D);

Z O L D R + 1 ;

Z N E W FK

(Z O L D);

Z O L D Z N E W ;

Z N E W FK

(R);

where in the frst line we compute r0

= FK

(ctr), in the second line we compute r0

+ 1 and store it

in block Z O LD , then compute z0

= FK

(r0

+ 1) in block Z N EW , then save z0

in Z O LD , and use

Z N EW for y0

= FK

(r0). In this implementation, the counter that is initially in Z O LD is output

immediately after r0

is computed in R, and hence, block Z O LD can be reused.

The estimates provided herein are conservative, in the sense that standard optimization can b e

applied to reduce memory register requirements.

8.	 Pre-processing Capability

This mode requires maintaining a counter ctr and a block cipher invocation to create the random

value r0; also, a block cipher invocation is necessary for generating the IV (z0).

9.	 Message Length Requirements

Same as for the stateless XCBC-XOR mode (XCBC$-XOR).

10. Ciphertext Expansion

The XCBCC-XOR mode outputs the value of the counter ctr and n + 1 ciphertext blocks, where n

is the number of plaintext blocks obtained after padding.

11. Other Characteristics

•	 Alternatively, the computation of the ciphertext blocks yi

can be done as follows:

yi

= zi

E (i x r0):

•	 The related stateful-sender encryption mode XCBCC may also b e considered, where the en-

cryption and decryption functions of the one-key stateful-sender mode,

E, X CBCC

FK (x; ctr) and D, X CBCC

FK (y), are defned as follows.

6

r

function E, XCBCCf (x; ctr)

0

= f(ctr); z0

= f(r0

+ 1)

for i = 1 ; ; n do f

zi

= f(xi

E zi,1)

yi

= zi

+ i x r0

g

ctr0 ctr + 1

y = ctrjjy1y2

yn

return y

r

function D, XCBCCf (y)

Parse y as ctrjjy1

yn

0

= f(ctr); z0

= f(r0

+ 1)

for i = 1 ; ; n do f

zi

= yi

, i x r0

xi

= f,1(zi) E zi,1

g

return x = x1x2

xn

This mode provides encryption only.

2.2 Test Vectors

Please see discussion in Appendix 1.

2.3 Performance estimates

When used with its specifed authentication function, this encryption mode requires n + 3 block cipher

invocations, where n is the number of plaintext blocks after padding.

2.4 Intellectual Property Statement

Presented in Appendix 2.

3	 Specifcation of the Stateful Encryption with Authentication XCBC-
XOR Mode (XCBCS-XOR)

Let IV be a random and uniformly distributed variable that is part of the keying state shared by the sender

and receiver. The encryption and decryption functions of the one-key stateful mode providing secrecy and

authenticity, E, X CBCS , X OR

FK (x) and D, X CBCS , X OR

FK (y), are defned as follows.

7

function E, XCBCS-XORf (x)

l

y

r0 f 0; 1g

0

= f(r0); z0

= IV + r0

if jxnj = l then f

Z = z0

and P = x g

else f

Z = z0

and P = P ad (x) g

Pn+1

= Z

for i = 1 ; ; n do f

Pn+1

= Pn+1

E Pi

g

for i = 1 ; ; n + 1 do f

zi

= f(Pi

E zi,1)

yi

= zi

+ i x r0

g

return y = y0jjy1y2

ynyn+1

r

function D, XCBCS-XORf (y)

Parse y as y0jjy1

ynyn+1

0

= f,1(y0); z0

= IV + r0

for i = 1 ; ; n + 1 do f

zi

= yi

, i x r0

Pi

= f,1(zi) E zi,1

g

g = 0

for i = 1 ; ; n do f

g = g E Pi

g

if g E z0

= Pn+1

f

x = P and

return x = x1x2

xn

g

else f

if g E z0

= Pn+1

f

x = Unpad(P) and

return x = x1x2

xn

g

else

return N ull g,

where N ull is an authenticity failure indicator. In this specifcation, P ad (x) = xjj10i where i = l , 1 ,

jxj mod l and jj is the concatenation operator; Unpad(x) means removing the pad of the form 10i from

the last block of string x. It is clear that the computation of Pn+1

at encryption and of g at decryption

can proceed in the same loop as the enciphering, or correspondently, deciphering of the frst n blocks.

An extended discussion of the properties of this mode can be found at:

http:jjcsrc.nist.govjencryptionjmodesj.)

3.1 Summary of Properties:

1.	 Security Function

Authenticated encryption.

2.	 Error Propagation

Same as for the stateless XCBC mode (XCBC$).

3.	 Synchronization

Same as for the stateless XCBC-XOR mode (XCBC$-XOR).

4.	 Parallelizability

Same as for the stateless XCBC-XOR mode (XCBC$-XOR).

5.	 Keying Material

This mode requires a single key. If the block cipher is AES, then l = 128 and the key length

jKj 2 f 128; 192; 256g.

6.	 Counter/IV/Nonce requirements

8

http:jjcsrc.nist.govjencryptionjmodesj

For its intended use, this mode requires an unpredictable z0, that is generated anew for each message

encryption, whose value is not exported outside the mode (i.e., it is not output). z0

is generated by

adding to a per-key random number IV a per-message secret random value r0. The per-key random

numb e r IV is secret and shared b e t ween the sender and the receiver, or can b e derived from the

secret shared key using well-known key separation techniques. Both r0

and z0

are of the same length

as that of the block cipher (i.e., 128 bits for AES).

7.	 Memory Requirements

This mode requires seven blocks for holding the information specifc to this scheme, and the necessary

memory for the block cipher with one key. This mode uses the six blocks shown for the XCBC$-XOR

mode and a block C for IV.

The estimates provided herein are conservative, in the sense that standard optimization can b e

applied to reduce memory register requirements.

8.	 Pre-processing Capability

This mode requires a random value generator for creating the random value r0. A block cipher

invocation is also required for enciphering r0

(i.e., to obtain the ciphertext y0

transmitted to the

message receiver).

9.	 Message Length Requirements

Same as for the stateless XCBC-XOR mode (XCBC$-XOR).

10.	 Ciphertext Expansion

Same as for the stateless XCBC-XOR mode (XCBC$-XOR).

11.	 Other Characteristics

•	 Alternatively, the computation of the ciphertext blocks yi

can be done as follows:

yi

= zi

E (i x r0):

•	 Let IV be a random and uniformly distributed variable that is part of the keying state shared

by the sender and receiver.

E, X CBCS

FK (x) and D, X CBCS

FK (y), are defned as follows.

function E, XCBCSf (x)

l

y

r0 f 0; 1g

0

= f(r0); z0

= IV + r0

for i = 1 ; ; n do f

zi

= f(xi

E zi,1)

yi

= zi

+ i x r0

g

return y = y0jjy1y2

yn

3.2 Test Vectors

Please see discussion in Appendix 1.

r

function D, XCBCSf (y)

Parse y as y0jjy1

yn

0

= f,1(y0); z0

= IV + r0

for i = 1 ; ; n do f

zi

= yi

, i x r0

xi

= f,1(zi) E zi,1

g

return x = x1x2

xn

9

3.3 Performance estimates

When used with its specifed authentication function, this encryption mode requires n + 2 block cipher

invocations, where n is the number of plaintext blocks after padding.

3.4 Intellectual Property Statement

Presented in Appendix 2.

4	 Specifcation of the Stateful Encryption with Authentication XECB-
XOR Mode (XECBS-XOR)

Let R;R

� b e t wo random, uniformly distributed and independent blocks that are part of the keying state

shared by the sender and receiver. The encryption and decryption functions of the one-key stateful mode

providing secrecy and authenticity, E, X ECBS , X OR

FK (x) and D, X ECBS , X OR

FK (y), are defned

as follows.

function E, XECBS-XORf (x)

if jxnj = l then f

Z = R and P = x g

else f

Z = R and P = P ad (x) g

for i = 1 ; ; n do f

zi

= f(Pi

+ ctr x R + i x R�)

yi

= zi

+ ctr x R + i x R� g

Pn+1

= 0

for i = 1 ; ; n do f

Pn+1

= Pn+1

E Pi

g

zn+1

= f(Pn+1

+ ctr x Z)

yn+1

= zn+1

+ ctr x R + (n + 1) x R� g

ctr0 ctr + 1

return y = y1y2

ynyn+1

function D, XECBS-XORf (y)

Parse y as ctrjjy1

ynyn+1

if ctr > qe

then return N ull

for i = 1 ; ; n do f

zi

= yi

, ctr x R , i x R�

Pi

= f,1(zi) , ctr x R , i x R� g

zn+1

= yn+1

, ctr x R , (n + 1) x R�

Pn+1

= f,1(zn+1) , ctr x R g

g = 0

for i = 1 ; ; n do f

g = g E Pi

g

if g = Pn+1

f

x = Unpad(P) and

return x = x1x2

xn

g

else f

if g + ctr x R , ctr x R = Pn+1

f

x = P and

return x = x1x2

xn

g

else

return N ull g,

where N ull is an authenticity failure indicator. In this specifcation, P ad (x) = xjj10i where i = l , 1 ,

jxj mod l and jj is the concatenation operator; Unpad(x) means removing the pad of the form 10i from the

last block o f string x. The counter ctr is initialized to 1 and increased by 1 on every message encryption

up to the maximum allowable number of message encryptions qe. R is the bitwise complement o f R.

An extended discussion of the properties of this mode can be found at:

http:jjcsrc.nist.govjencryptionjmodesj.)

10

http:jjcsrc.nist.govjencryptionjmodesj

4.1 Summary of Properties:

1.	 Security Function

Authenticated encryption.

2.	 Error Propagation

None.

3.	 Synchronization

The XECB-XOR mode does not allow the decryption, with non-negligible probability, o f a n y cipher-

text string where any bit change has been made.

4.	 Parallelizability

Fully parallel.

5.	 Keying Material

This mode requires a single key. If the block cipher is AES, then l = 128 and the key length

jKj 2 f 128; 192; 256g.

6.	 Counter/IV/Nonce requirements

The sender maintains a counter ctr that is increased by one for each plaintext encryption and is

initialized to 1. The per-key values R and R� are secret, random, independent, and are shared by the

sender and the receiver, or can be derived from the secret shared key using well-known key separation

techniques. Both R and R� are of the same length as that of the block cipher (i.e., 128 bits for AES).

7.	 Memory Requirements

This mode requires ten blocks for holding the information specifc to this scheme, and the necessary

memory for the block cipher with one key, namely:

• one block for holding ctr;

• one block for holding R;

• one block for holding R�;

• one block for holding Z;

•	 two blocks for the terms ctr x R and i x R� (note that the block holding ctr x R can be used

to hold ctr x Z for the last block encryption);

•	 four blocks for performing the enciphering of plaintext block Pi, namely, one block for Pi, one

block for Pi

+ ctr x R + i x R� ; one block for zi, and one block for yi.

The estimates provided herein are conservative, in the sense that standard optimization can b e

applied to reduce memory register requirements.

8.	 Pre-processing Capability

This mode requires maintaining a counter ctr.

9.	 Message Length Requirements

This mode requires padding. A padding function that does not require an extra block cipher-
invocation for plaintext messages comprising an integer numb e r of block, and does not require an

extra enciphering key, is specifed.

11

10. Ciphertext Expansion

The XCBC$-XOR outputs n + 1 ciphertext blocks and the counter ctr where n is the numb er of

plaintext blocks obtained after padding.

11. Other Characteristics

Other variants of the stateful XECB-XOR mode can b e obtained by using other formulae for the

encryption of the redundancy block, such as:

yn+1

= f(xn+1

+ ctr x Z + (n + 1) x R�) + ctr x R;

where Z = R for unpadded messages and Z = R for padded messages.

Stateless architecture-independent parallel modes and stateful-sender architecture-independent par-

allel modes can be specifed in the same manner as those for the XCBC modes; for example, R and

R� can be derived from the l-bit random numb e r n umb e r r0

(e.g., R = r(r0

+ 1) and R� = f(r0

+ 2)),

and, in the stateful-sender r0

= f(ctr) where ctr is an l-bit counter initialized to a constant such a s

,1.

4.2 Test Vectors

Please see discussion in Appendix 1.

4.3 Performance estimates

When used with its specifed authentication function, this encryption mode requires n + 1 block cipher

invocations, where n is the numb e r of plaintext blocks after padding, and one block-cipher invocation

throughput.

4.4 Intellectual Property Statement

Presented in Appendix 2.

5	 Specifcation of the Stateless XECB Authentication Mode (XECB$-
MAC)

The signing and authentication functions of the one-key stateless mode, are as follows:

Stateless XECB-MAC Mode (XECB$-MAC)

12

function Sign-XECB$-MACf (x)

l

y

r0 f 0; 1g

0

= f(r0); z 0

= f(r0

+ 1)

if jxnj = l then

Z = z0

and P = x

else

Z = z0

and P = P ad (x)

Pn+1

= Z

for i = 1 ; ; n + 1 do f

yi

= f(Pi

+ i x y0) g

w = y1

E E yn

E yn+1

return (r0; w)

y

function Verify-XECB$-MACf (x; r0; w)

0

= f(r0); z 0

= f(r0

+ 1)

if jxnj = l then

Z = z0

and P = x

else

Z = z0

and P = P ad (x)

Pn+1

= Z

for i = 1 ; ; n + 1 do f

yi

= f(Pi

+ i x y0) g

w

0 = y1

E E yn

E yn+1

if w = w

0 then return 1

else return 0.

In this specifcation, P ad (x) = xjj10i where i = l , 1 , j xj mod l and jj is the concatenation operator.

An extended discussion of the properties of this mode for the two-key variant can be found at:

http:jjcsrc.nist.govjencryptionjmodesj.)

5.1 Summary of Properties:

1.	 Security Function

Authentication.

2.	 Error Propagation

Not applicable.

3.	 Synchronization

Not applicable.

4.	 Parallelizability

This mode is intended to be used for either sequential or parallel implementation.

5.	 Keying Material

This mode requires a single key. However, in the main paper we illustrate a two-key version also. If

the block cipher is AES, then l = 128 and the key length jKj 2 f 128; 192; 256g.

6.	 Counter/IV/Nonce requirements

For its intended use, this mode requires an unpredictable z0, that is generated anew for each message

encryption, whose value is not exported outside the mode (i.e., it is not output). This z0

is generated

by enciphering a variant of a per-message secret random value r0

(i.e., enciphering r0

+ 1) with the

same key as that used for the enciphering of the randomized plaintext block, namely Pi

+ i x y0.

Both y0

and z0

are of the same length as that of the block cipher (i.e., 128 bits for AES).

7.	 Memory Requirements

The XECB$-MAC mode requires eight blocks for holding the information specifc to this scheme,

and the necessary memory for the block cipher with one key. Namely, the mode requires:

13

http:jjcsrc.nist.govjencryptionjmodesj

• one block for holding r0;

• one block for holding y0;

• one block for holding z0

and later the variable Z;

• one block for holding the term i x y0;

•	 three blocks for performing the enciphering of plaintext block Pi, namely, one block for Pi, one

block for Pi

+ i x y0

and one block for yi.

• one block for storing the tag y1

E yn+1.

The estimates provided herein are conservative, in the sense that standard optimization can b e

applied to reduce memory register requirements.

8.	 Pre-processing Capability

This mode requires a random value generator for creating the random value r0, and two block cipher

invocations for generating y0

and z0.

9.	 Message Length Requirements

This mode requires padding. A padding function that does not require an extra block cipher-

invocation for plaintext messages comprising an integer numb e r of block and does not require an

extra enciphering key, is specifed.

10.	 Ciphertext Expansion

Not applicable.

11.	 Other Characteristics

• An alternative to the computation of the tag w uses the addition modulo 2L , 1, i.e.,

w = y1

+ + yn

+ yn+1

mod 2L , 1:

•	 Another alternative to the computation of the tag w uses the subtraction modulo 2L , 1, i.e.,

w = y1

, , yn

, yn+1

mod 2L , 1

5.2 Test Vectors

Please see discussion in Appendix 1.

5.3 Performance estimates

This authentication mode requires n + 3 block cipher invocations, where n is the numb e r of plaintext

blocks after padding. The throughput of the stateless XECB mode (XECB$-MAC) is equivalent to three

sequential block-cipher invocations (to compute y0; z 0

and yn+1

that takes as input Pn+1

+ (n + 1) x y0).

5.4 Intellectual Property Statement

Presented in Appendix 2.

14

6 Specifcation of the Stateful-Sender XECB Authentication Mode (XECBC-
MAC)

The signing and authentication functions of the one-key stateful-sender mode, are as follows:

Stateful-Sender XECB-MAC Mode (XECBC-MAC)

y

function Sign-XECBC-MACf (ctr; x)

0

= f(ctr); z 0

= f(y0

+ 1)

if jxnj = l then

Z = z0

and P = x

else

Z = z0

and P = P ad (x)

Pn+1

= Z

for i = 1 ; ; n + 1 do f

yi

= f(Pi

+ i x y0) g

w = y1

E E yn

E yn+1

ctr0 ctr + 1

return (ctr; w)

y

function Verify-XECBC-MACf (x; ctr; w)

0

= f(ctr); z 0

= f(y0

+ 1)

if jxnj = l then

Z = z0

and P = x

else

Z = z0

and P = P ad (x)

Pn+1

= Z

for i = 1 ; ; n + 1 do f

yi

= f(Pi

+ i x y0) g

w

0 = y1

E E yn

E yn+1

if w = w

0 then return 1

else return 0.

Note that ctr0 represents the updated ctr value.

In this specifcation, P ad (x) = xjj10i where i = l , 1 , j xj mod l and jj is the concatenation operator.

An extended discussion of the properties of this mode, including its proof for the two-key variant, can be

found at: http:jjcsrc.nist.govjencryptionjmodesj.)

6.1 Summary of Properties:

1.	 Security Function

Authentication.

2.	 Error Propagation

Not applicable.

3.	 Synchronization

Not applicable.

4.	 Parallelizability

This mode is intended to be used for either sequential or parallel implementation.

5.	 Keying Material

This mode requires a single key. However, in the main paper we illustrate a two-key version also. If

the block cipher is AES, then l = 128 and the key length jKj 2 f 128; 192; 256g.

6.	 Counter/IV/Nonce requirements

15

http:jjcsrc.nist.govjencryptionjmodesj

The sender maintains a counter ctr that is increased by one for each plaintext authentication. The

counter is used to generate a per-message secret random value y0

with the same key as that used for

plaintext block enciphering.

For its intended use, this mode requires an unpredictable z0, that is generated anew for each message

encryption, whose value is not exported outside the mode (i.e., it is not output). This z0

is generated

by enciphering a variant of a per-message secret random value y0

(i.e., enciphering y0

+ 1) with the

same key as that used for the enciphering of the randomized plaintext block, namely Pi

+ i x y0.

Both y0

and z0

are of the same length as that of the block cipher (i.e., 128 bits for AES).

7.	 Memory Requirements

The XECBC-MAC mode requires eight blocks for holding the information specifc to this scheme,

and the necessary memory for the block cipher with one key. Namely, the mode requires:

• one block for holding ctr;

• one block for holding z0;

• one block for holding z0

and later Z;

• one block for holding the term i x y0;

•	 three blocks for performing the enciphering of plaintext block Pi, namely, one block for Pi, one

block for Pi

+ i x y0

and one block for yi.

• one block for storing the tag y1

E yn+1.

The estimates provided herein are conservative, in the sense that standard optimization can b e

applied to reduce memory register requirements.

8.	 Pre-processing Capability

y

This mode requires maintaining a counter ctr and and two block cipher invocations for generating

0

and z0.

9.	 Message Length Requirements

This mode requires padding. A padding function that does not require an extra block cipher-

invocation for plaintext messages comprising an integer numb e r of block and does not require an

extra enciphering key, is specifed.

10.	 Ciphertext Expansion

Not applicable.

11.	 Other Characteristics

• An alternative to the computation of the tag w uses the addition modulo 2L , 1, i.e.,

w = y1

+ + yn

+ yn+1

mod 2L , 1:

•	 Another alternative to the computation of the tag w uses the subtraction modulo 2L , 1, i.e.,

w = y1

, , yn

, yn+1

mod 2L , 1

6.2 Test Vectors

Please see discussion in Appendix 1.

16

6.3 Performance estimates

This authentication mode requires n+3 block cipher invocations, where n is the number of plaintext blocks

after padding. The throughput of the stateful-sender XECB mode (XECBC-MAC) is equivalent to three

sequential block-cipher invocations (to compute y0; z 0

and yn+1

that takes as input Pn+1

+ (n + 1) x y0).

6.4 Intellectual Property Statement

Presented in Appendix 2.

7	 Specifcation of the Stateful XECB Authentication Mode (XECBS-
MAC)

The signing and authentication functions of the one-key stateful mode, are as follows:

Stateful XECB-MAC Mode (XECBS-MAC)

Let R;R

� b e t wo random, uniformly distributed and independent blocks that are part of the keying state

shared by the sender and receiver.

function Sign-XECBS-MACf (ctr; x)

if jxnj = l then f

Z = R and P = x g

else f

Z = R and P = P ad (x) g

for i = 1 ; ; n do f

yi

= f(Pi

+ ctr x Z + i x R�) g

w = y1

E E yn

ctr0 ctr + 1

return (ctr; w)

function Verify-XECBS-MACf (x; ctr; w)

if ctr > qs

then return 0

if jxnj = l then f

Z = R and P = x g

else f

Z = R and P = P ad (x) g

for i = 1 ; ; n do f

yi

= f(Pi

+ ctr x Z + i x R�) g

w

0 = y1

E E yn

if w = w

0 then return 1

else return 0.

Note that ctr0 represents the updated ctr value. In this specifcation, P ad (x) = xjj10i where i = l , 1 ,

jxj mod l and jj is the concatenation operator. R is the bitwise complement o f R.

An extended discussion of the properties of this mode, including its proof, can be found at:

http:jjcsrc.nist.govjencryptionjmodesj.)

7.1 Summary of Properties:

1.	 Security Function

Authentication.

2.	 Error Propagation

Not applicable.

17

http:jjcsrc.nist.govjencryptionjmodesj

3.	 Synchronization

Not applicable.

4.	 Parallelizability

This mode is intended to be used for either sequential or parallel implementation.

5.	 Keying Material

This mode requires a single key. If the block cipher is AES, then l = 128 and the key length

jKj 2 f 128; 192; 256g.

6.	 Counter/IV/Nonce requirements

The sender maintains a counter ctr that is increased by one for each plaintext encryption and is

initialized to 1. The per-key values R and R� are secret, random, independent, and are shared by the

sender and the receiver, or can be derived from the secret shared key using well-known key separation

techniques. Both R and R� are of the same length as that of the block cipher (i.e., 128 bits for AES).

7.	 Memory Requirements

The XECBS-MAC mode requires ten blocks for holding the information specifc to this scheme, and

the necessary memory for the block cipher with one key. Namely, the mode requires:

• one block for holding ctr;

• one block for holding R;

• one block for holding R�;

• one block for holding Z;

•	 two blocks for the terms ctr x Z and i x R�;

•	 three blocks for performing the enciphering of plaintext block Pi, namely, one block for Pi, one

block for Pi

+ ctr x Z + i x R�; one block for yi.

• one block for storing the tag y1

E yn+1.

The estimates provided herein are conservative, in the sense that standard optimization can b e

applied to reduce memory register requirements.

8.	 Pre-processing Capability

This mode requires maintaining a counter ctr.

9.	 Message Length Requirements

This mode requires padding. A padding function that does not require an extra block cipher-

invocation for plaintext messages comprising an integer numb e r of block and does not require an

extra enciphering key, is specifed.

10.	 Ciphertext Expansion

Not applicable.

11.	 Other Characteristics

• An alternative to the computation of the tag w uses the addition modulo 2L , 1, i.e.,

w = y1

+ + yn

+ yn+1

mod 2L , 1:

18

• Another alternative to the computation of the tag w uses the subtraction modulo 2L , 1, i.e.,

w = y1

, , yn

, yn+1

mod 2L , 1

7.2 Test Vectors

Please see discussion in Appendix 1.

7.3 Performance estimates

This authentication mode requires n block cipher invocations, where n is the numb e r o f plaintext blocks

after padding. The throughput of the stateful XECB mode (XECBS-MAC) is equivalent to only one

block-cipher invocation.

7.4 Intellectual Property Statement

Presented in Appendix 2.

19

Appendix 1: Test Vectors

VDG Inc believes that the correct implementation of a mode is essential to its secure operation, and that

reasonable assurance of correct implementation should be provided consistent with best industry practices.

The testing of the mode requires that test conditions, test data, and coverage analysis b e provided for

the systematic exercise of the mode's elements. For AES invocations, specifc AES test vectors should be

used that are developed specifcally for AES. (The test vectors for the modes should be independent of the

underlying block cipher.) Nevertheless, test conditions, data, and coverage analysis should be provided to

indicate the proper use of the block cipher (i.e., AES) is made.

Specifc test conditions and data for the randomness source used should b e used for all stateless modes.

(These should comply with tests for randomness specifed by FIPS 140-1.) Furthermore, test conditions,

test data, and coverage analysis should be provided to indicate that the source of randomness used by the

mode is protected (e.g., confdentiality, i n tegrity).

Furthermore, test conditions, test data, and coverage analysis is required to verify that the mode imple-

mentation protects other elements of the mode that are identifed as secret and that cannot b e modifed

from outside the mode itself. (e.g., blocks that are required to remain unpredictable to an adversary, such

as the initialization vectors, z0). The counters used in these modes are output in clear. Nevertheless,

test conditions and data should be provided which show that these counters are protected from arbitrary

modifcation or substitution.

If any mode of authenticated encryption or of authentication proposed by VDG Inc is adopted as a standard,

VDG Inc agrees to provide reference implementations of this mode on three separate system platforms,

and the test conditions, data (i.e., test vectors) and their coverage analysis necessary for specifcation-

compliance testing. Further penetration analysis exercises will be conducted on specifc reference imple-

mentations.

20

Appendix 2: Intellectual Property Statement

VDG Inc submitted a patent application covering the XCBC modes on January 31, 2000. Certain parts of

this application may be relevant to other modes submitted. These parts include, but are not restricted to,

the randomization of the output of an encryption mode to produce other modes that provide authenticated

encryption, the nature of the randomization operations, and of the randomization sequences themselves.

VDG Inc submitted another patent application covering the XECB authentication modes on March 31,

2000. Certain parts of this application may also be relevant to other modes submitted. These parts include,

but are not restricted to, the randomization of the input of an encryption mode to produce other modes

that provide message authentication, the nature of the randomization operations, and of the randomization

sequences themselves.

On August 24, 2000, VDG Inc submitted another patent application covering, among other aspects, fully

parallelizable modes that provide authenticated encryption using randomization sequences whose elements

are not pairwise-independent. Certain parts of this application may be relevant to other modes submitted.

If a mode submitted by VDG Inc is adopted as a standard by NIST, VDG Inc agrees, upon request, to

grant non-exclusive license under the scope of the specifc patent c o vering that mode on a nondiscriminatory

basis and on reasonable terms and conditions including its then current r o yalty rates and provided that a

similar grant under licensee's patents within the scope of the license granted to licensee is made available,

upon request, to VDG Inc.

21

