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1 Introduction 

This specification document describes FFX, a mechanism for format-preserving encryption (FPE). 

Schemes for FPE enable one to encrypt Social Security numbers (SSNs), credit card numbers 
(CCNs), and the like, doing so in such a way that the ciphertext has the same format as the 
plaintext. In the case of SSNs, for example, this means that the ciphertext, like the plaintext, 
consists of a nine decimal-digit string. Similarly, encryption of a 16-digit CCN results in a 16-digit 
ciphertext. FPE is rapidly emerging as a useful cryptographic tool, with applications including 
financial-information security, data sanitization, and transparently encrypting fields in a legacy 
database. 

The encryption algorithm of FFX takes in a key K, a plaintext X, and  a  tweak  T . The plain­
text is taken over an arbitrary alphabet Chars. Assuming that n = |X| is a supported length, 
FFX.Encrypt will produce—deterministically—a ciphertext Y = FFX.EncryptK

T (X) ∈ Charsn . 
One can recover X from Y by way of X = FFX.DecryptT 

K (X). 

FFX mode is flexible and customizable. In particular, unrepresented in the explicitly named argu­
ments to FFX.Encrypt and FFX.Decrypt is the fact that FFX depends on a number of parameters. 
Once chosen, it is assumed that they are held fixed for the lifetime of a given user-generated key. 
The parameters used in FFX include the number of Feistel rounds rnds(n), the desired degree of 
imbalance split(n) in the Feistel network, and the round function F. 

As example instantiations of FFX, we consider enciphering (i) binary strings of 8–128 bits, or 
(ii) decimal strings of 4–36 digits. In Appendices A and B we specify parameter sets, denoted A2 
and A10, to enable these task. Both employ a round function derived from AES. The fully instan­
tiated schemes would be denoted FFX-A2 and FFX-A10. 
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The name FFX is meant to suggest Format-preserving, Feistel-based encryption. The X reflects 
there being multiple instantiations (that is, parameter choices). It further reflects that FFX is an 
outgrowth of, and extension to, the FFSEM specification earlier submitted to NIST by Spies [28]. 
The current draft replaces that contribution. Compared to it, FFX is more general, adding in 
support for tweaks, non-binary alphabets, and non-balanced splits. Cycle-walking can now be 
avoided in the setting of primary practical importance, encrypting decimal strings. 

While this document does not attempt to explain or survey all of the cryptographic results relating 
to FFX, their existence—and indeed the entire history of results concerning Feistel networks— 
underlies our mechanism’s selection. In general, contemporary cryptographic results and experience 
indicate that FFX achieves cryptographic goals including nonadaptive message-recovery security, 
chosen-plaintext, and even PRP-security against an adaptive chosen-ciphertext attack. The quan­
titative security depends on the number of rounds used, the imbalance, and the adversary’s access 
to plaintext/ciphertext pairs. One assumes that the underlying round function is a good pseudo­
random function (PRF). 

While FFX can, in principle, be used to encipher character strings of arbitrary length, the mecha­
nism is intended for message spaces smaller than that of AES (2128 points). For enciphering longer 
strings, other techniques would seem to be preferable. In particular, EME2 [9] can encipher binary 
strings of any length n > 128. 

An earlier version of this specification document, version 1.0, was provided to NIST in November 
2009. The substantive change we have made since that version is the addition of a parameter profile 
for binary strings, A2. 

Definition of FFX 

See Figure 1 for an illustration of FFX, Figure 2 for a description of the parameters on which FFX 
depends, and Figure 3 for the the definition of FFX in terms of these parameters. We expect all 
parameter choices to be fixed for the lifetime of a given key. Encryption and decryption must use 
the same parameters. 

3 Notation  

Throughout this document, a number means a nonnegative integer. Plaintexts and ciphertexts 
are regarded as strings over an alphabet Chars = {0, 1, . . . , radix − 1}. Members of the alphabet 
are called characters. The number of characters radix in Chars is referred to as the radix of the 
alphabet. Example radix values are 2, 10, and 26, corresponding to bits, digits, and uppercase 
English letters. It is required that radix ≥ 2. 

If a user wishes to encrypt over a non-numeric alphabet, say {a, . . . , z}, she must set up a bijective 
mapping between this alphabet and Chars = {0, . . . , radix − 1} via which her inputs and outputs 
can be regarded as numeric values, as required for our algorithms. 

A string is a finite sequence of characters from Chars. By  | X | we denote the length of string X, 
the number of characters in it. For example, X = 00326 is a string of length | 00326 | = 5. Note 
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Figure 1: Illustration of FFX encryption when method = 1  (left) and method = 2  (right). The 
first four rounds are shown. The divided boxes on the left are used to illustrate the re-partitioning of a 
string; for example, string B0C0 is exactly the string A1B1, where  |C0| = |A1| = £ and |B0| = |B1| = n− £. 
No such re-partitioning occurs on the right, but strings get two names instead. All boxed strings are over 
Chars = {0, 1, . . . , radix − 1}, while T is a byte string, n ≥ 2 is a number,  and  1  ≤ £ ≤ n− 1 is the imbalance. 

that leading zeros are counted just like any other character. By Chars ∗ we mean the set of strings 
over Chars having any length. If X,Y ∈ Chars ∗ are strings we let XY  or X I Y denote their 
concatenation. The i-th digit of a string X will be denoted X[i], for any i ∈ {1, . . . , |X |}. For  
1 ≤ i ≤ j ≤ |X | we let X[i .. j] =  X[i] · · ·X[j]. 

The function E takes a pair of equal-length strings and returns a string of the same length. Two 
possibilities are allowed: characterwise addition and blockwise addition. For characterwise addition, 
a1 · · · an E b1 · · · bn = c1 · · · cn where ci = (ai + bi) mod  radix. For blockwise addition, c1 · · · cn is  (  
instead the unique string such that ciradix

n−i = airadix
n−i + biradix

n−i
) 
mod radixn. For  

example, when radix = 10, characterwise addition would have 439 E 724 = 153 while blockwise 
addition would result in 439 E 724 = 163. The function E correspondingly takes a pair of equal-
length strings and returns a string of the same length. It is determined by saying that XE Y is the 
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parameter description 

radix The radix, a  number  radix ≥ 2 that determines the alphabet Chars = {0, . . . , radix − 1}. 
Plaintexts and ciphertexts are strings of characters from Chars. 

Lengths The set of permitted message lengths. For a plaintext to be encrypted, or for a ciphertext 
to be decrypted, its length must be in this set. 

Keys The key space, a finite nonempty set of binary strings. 

Tweaks The tweak space, a nonempty set of strings. Conceptually, different tweaks name unrelated 
encryption mappings. 

addition The addition operator, either 0 (characterewise addition) or 1 (blockwise addition). De­
termines the meaning of the operators XEY and XEY that add or subtract equal-length 
strings over the alphabet Chars = {0, 1, . . . , radix − 1}. 

method The Feistel method, either 1 or 2. The value determines which of the two prominent Feistel 
variants will be used. 

split (n) The imbalance, a function that takes a permitted length n ∈ Lengths and returns a number 
1 ≤ split(n) ≤ n/2. 

rnds (n) The number of rounds, a function that takes a permitted length n ∈ Lengths and returns 
an even number rnds(n). 

F The round function, a function that takes in a key K ∈ Keys, a permitted length n ∈ 
Lengths, a  tweak  T ∈ Tweaks, a round number i ∈ {0, . . . , rnds(n) − 1}, and  a  string  
B ∈ Chars ∗ . It returns a string FK (n, T, i, B) ∈ Chars ∗ . If  method = 1  or  i is even then 
|B | = n − split(n) and  |FK (n, T, i, B) | = split(n). If method = 2  and  i is odd then 

= n− split(n).|B | = split(n) and  |FK (n, T, i, B) |

Figure 2: Parameters of FFX. To have a fully-specified scheme, each of these parameters must be defined. 

unique string Z such that Y E Z = X. As an example, still with radix = 10, we have 32 E 15 = 27 
for characterwise addition and 32 E 15 = 17 for blockwise addition. Note that when the radix is 
two, characterwise addition and subtraction are the same as xor. 

We expect radix and Lengths to be determined by the needs of the application, not by security 
considerations. The choice of Keys will typically flow from the underlying cryptographic primitive 
employed; for example, the key space might consist of AES keys if one uses AES to construct the 
round function. The set Tweaks should be large enough to accommodate all non-secret information 
that may be associated to a plaintext. Users are strongly encouraged to employ tweaks whenever 
possible, as their judicious use can significantly enhance security. See Appendix F. The addition 
parameter specifies the group over which addition is performed. Efficiency considerations determine 
its choice; we do not expect the value to be security relevant. 

In specifying a collection of parameters one must choose rnds, as  well  as  method and split, in  order  to  
balance performance requirements and security considerations. See Appendix H for a discussion. 
To avoid known attacks, we require that rnds(n) ≥ 8 if  n = 2  · split(n) or if  method = 2 and 
n = 2  · split(n) + 1, and we require that rnds(n) ≥ 4n/split(n) otherwise. We emphasize that these 
values are minimums, not recommended values. We insist that radixn ≥ 100. This last requirement 
is to prevent the meet-in-the-middle attack discussed in Appendix H. 

The round function FK (n, T, i, B) must be constructed from a blockcipher E or a hash func­
tion H. We recommend AES for the former. Options for an AES-based round function include 
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10 algorithm FFX.Encrypt(K, T, X) 
11 if K �∈ Keys or T �∈ Tweaks or X ∈� Chars ∗ 

12 n ← |X |; £ ← split(n); r ← rnds(n) 

20 if method = 1  then 
21 for i ← 0 to r − 1 do 
22 A ← X[1 .. £]; B ← X[£ + 1  .. n] 
23 C ← A E FK (n, T, i, B) 
24 X ← B I C 
25 return X 
26 end if 

or |X| �∈ Lengths then return ⊥ 

30 if method = 2  then 
31 A ← X[1 .. £]; B ← X[£ + 1  .. n] 
32 for i ← 0 to r − 1 do 
33 C ← A E FK (n, T, i, B) 
34 A ← B; B ← C 
35 return A IB 
36 end if 

50 algorithm FFX.Decrypt(K, T, Y )
 
51 if K �∈ Keys or T �∈ Tweaks or Y �∈ Chars ∗ or |Y | �∈ Lengths then return ⊥
 
52 n ← |Y |; £ ← split(n); r ← rnds(n)
 

60 if method = 1  then 70 if method = 2  then 
61 for i ← r − 1 downto 0 do 71 A ← Y [1 .. £]; B ← Y [£ + 1  .. n] 
62 B ← Y [1 .. n − £]; C ← Y [n − £ + 1  .. n] 72 for i ← r − 1 downto 0 do 
63 A ← C E FK (n, T, i, B) 73 C ← B; B ← A 
64 Y ← A IB 74 A ← C E FK (n, T, i, B) 
65 return Y 75 return A IB 
66 end if 76 end if 

Figure 3: Definition of FFX. The meaning of E and E is determined by the parameter addition, which  may  
be either 0 (characterwise addition) or 1 (blockwise addition). Here and elsewhere, Chars = {0, 1, . . . ,  radix}
is the underlying alphabet and Lengths = {minlen, . . . ,  maxlen} are the permitted message lengths. 

the CBC MAC [10] and CMAC [20]. When using a hash function, the PRF construction could be 
based on HMAC [19]. 

For example parameter collections see Appendices A and B. We believe these parameter collections 
to be useful and illustrative, but they are not meant to be exclusive. 

An implementation of FFX is considered to be in conformance with a specified parameter collec­
tion A if the message space associated to the implementation is an arbitrary but specified subset of 
that associated to A. Of course the functionality of the implementation on the domain where it is 
defined must be identical to that called for by A. As an example, an implementation of FFX-A10 
that requires the plaintext or ciphertext to be exactly 16 decimal digits, or that requires the tweak 
to be 4 to 8 bytes, could be in conformance with FFX-A10 even though FFX-A10 allows encryption 
over a broader message space and tweak space. This is no different from, say, allowing a conforming 
implementation of SHA-1 to assume that its input is a byte string, whereas the specification for 
SHA-1 allows any bit string, instead. 
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parameter value comment 

radix 2 alphabet is Chars = {0, 1} 
Lengths [minlen .. maxlen] where  minlen = 8,  maxlen = 128 permissible message lengths 

Keys {0, 1}128 128-bit AES keys 

Tweaks Byte
≤M where M = 264 − 1 tweaks are arbitrary byte strings 

addition 0 characterwise addition (xor) 

method 2 alternating Feistel 

split (n) ln/2J maximally balanced Feistel 

rnds (n) 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

12 if 32 ≤ n ≤ 128, 
18 if 20 ≤ n ≤ 31, 
24 if 14 ≤ n ≤ 19, 
30 if 10 ≤ n ≤ 13, and 
36 if 8 ≤ n ≤ 9 

from entropy-based heuristic 

F defined below AES-based round function 

100 algorithm FK (n, T, i, B) 
101 vers ← 1; t ← |T |8 

102 P ← [vers]2 I [method]1 I [addition]1 I [radix]1 I [n]1 I [split(n)]1 I [rnds(n)]1 I [t]8 

I [0]−t−9 mod  16  I 064−|B|103 Q ← T I [i]1 I B 

104 Y ← CBC-MACK (P IQ) 

105 if even(i) then m ← split(n) else m ← n − split(n) 
106 return Y [129−m ..  128] 

Figure 4: Parameter collection A2. Mechanism FFX-A2 enciphers binary strings of up to 128 bits. It 
does so using maximally balanced Feistel and a round function based on the AES CBC-MAC. 

A Parameter Collection A2 

Notation. We will employ the following new notation. (1) [s]i is the i-byte string that encodes the 
number s ∈ [0 .. 28i − 1] (for example, [6]1 = 00000110). (2) Byte denotes {0, 1}8, the  set of 8-bit  
bytes. (3) |T |8 = |T |/8 is the length, in bytes, of the byte string T . (4) even(i) is the predicate 

∗128 and X ∈ {0, 1}
divisible by 128 , algorithm CBC-MACK (X) is defined as follows. First, let X1 · · ·Xm ← X where 
|Xi| = 128 and let Y ← 0128 . Then, for j ← 1 to m, set  Y ← AESK (Y ⊕Xi). Finally, return Y . 

that is true if i is even and false otherwise. (5) When K ∈ {0, 1} and |X| is 

Specification. We specify the parameter collection we call A2. When FFX is instantiated with 
parameter collection A2 one obtains the scheme FFX-A2. With it one can encipher binary strings 
of 8 to 128 bits. The underlying mechanism in FFX-A2 is a maximally-balanced alternating Feistel 
scheme with an AES-based round function. The definition of A2 is given in Figure 4. 

Implementation notes. An implementation of F needs fewer AES calls than a quick inspection 
of the code might suggest. Suppose first that an application will, with a given key K, encipher 
messages of only one length n using tweaks of only one byte length t ≤ 7. Then the value of P 
(line 102) is static, so P ' = AESK (P ) can be precomputed. Writing CBC-MACK (C, X) for the 
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procedure identical to CBC-MACK (X) except that C ∈ {0, 1}128, rather than 0128, is the initial 
value of Y , we  note  that  CBC-MACK (P IQ) = CBC-MACK (P ' , Q). As P ' is known and |Q| = 128 
we need only one AES call per round. At the other extreme, if n and t vary and t is arbitrary one can 
still compute the P ' = AESK (P ) value appropriate to a given enciphering or deciphering operation 

' and then Q = CBC-MACK (P ' , T  ' ) where  T ' is the longest prefix of T that is a multiple of 128 
bits. Each round will then need a single AES operation, to compute CBC-MACK (Q ' , Z) for  some  
|Z| = 128. In conclusion, the amortized number of AES calls to encipher or decipher an n-bit string 
with FFX-A2 is rnds(n) if  n and t ≤ 7 are static, and never more than rnds(n)+1+  I(|T |8 −7)/16l. 

Security notes. The round function F is constructed in such a way that the set of inputs on 
which the CBC-MAC is invoked is prefix-free. (A set of strings is prefix-free if for any distinct x, y 
in the set, x is not a prefix of y.) The CBC-MAC is known to be a good PRF when it is invoked 
on a set of prefix-free inputs, assuming AES is a good PRP [23]. 

Including vers, method, addition, radix, split(n), and rnds(n) in the input to the CBC-MAC 
(lines 102 and 104) is not strictly necessary, given that the first four values are fixed in A2 and the 
next two are deterministic functions of n. All the same, the explicit inclusion of these values makes 
for a more robust design. 

Let us explain our choice for the number of rounds. Here there are two questions: why do we 
use more rounds for small n, and why the particular numbers? In fact, we do not know that more 
rounds are actually necessary for small n; as far as we know, using rnds(n) = 10, say, for all n, would  
be perfectly fine. But, instead of this, we selected round counts according to the following heuristic. 
Let the induced entropy be the number of bits of entropy in the outputs of the round functions 
across all rounds, assuming truly random round functions. This is at least rnds(n) · split(n). Our 
A2 parameter collection uses four rounds plus enough additional rounds to provide at least 128 bits 
of induced entropy. Also, we never use fewer than 12 rounds, and we round up to the next multiple 
of 6. 

As we will explain in Appendix E, the authors do not regard the Patarin attacks [21] on n ≥ 6 
rounds as “real” attacks against FFX, since they need more than radixn −2 queries per tweak, and, 
having done so, only distinguish populations of PRPs from populations of random permutations. 
All the same, the entropy-based heuristic above leads to round counts large enough to defeat even 
the Patarin (non-)attack. 

Let q2(n) denote the “CCA threshold” for FFX-A2, meaning the largest number of queries such 
that even a computationally unbounded adversary asking q2(n) encryption or decryption queries 
will have PRP-advantage less than or equal to 0.5 in the model in which the round function is 
replaced by a uniform random function. Recent work by Hoang and Rogaway [8] implies bounds 
of, for example, q2(32) > 580 and q2(50) > 37000. Note that if tweaks are used then one will 
need to have, for example, more than 580 or 37000 identical tweaks, for these two cases, until one 
can no longer prove the inexistence of an adversary getting advantage exceeding 0.5 (assuming the 
underlying PRP’s security). 

Bounds more sophisticated than those used above are known from Patarin [22], but there are some 
difficulties with using them to get concrete numbers for FFX-A2, beginning with the fact that the 
bounds are stated only asymptotically. 

The best attack we know against FFX-A10 is, by far, to do exhaustive key-search on AES, expending 
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about 2128 time. The m-in-m attack mentioned above would take in excess of 21024 time. Overall, 
we regard the selected round counts as being extremely conservative from multiple points of view. 

B Parameter Collection A10 

Notation. We will use the notation introduced in Appendix A, plus the following additional 
number-to-string and string-to-number conversion routines: (a) numradix(x) takes a nonempty 

∗string x ∈ {0, . . . , radix − 1} and converts it to the corresponding number, where the number 
is interpreted in the given radix, most-significant character first. For example, num2(1100) = 12. 
(b) strm 

10(y) takes a number y ∈ [0 .. 10m − 1] and returns the m-digit string that represents it, 
base-10. For example, str3 = 037 (the string). More generally, strm (y) takes a number 10(37) radix

y ∈ [0 .. radixm − 1] and returns the m-character string that represents it in the the given radix, 
most significant character first. 

Specification. We specify the parameter collection we call A10. When FFX is instantiated with 
parameter collection A10 one obtains the scheme FFX-A10. With it one can encipher decimal 
strings of 4 to 36 digits. This covers U.S. Social Security numbers, credit card numbers, and 
commonly considered subsequences of credit card numbers. The underlying mechanism in FFX-A10 
is a maximally-balanced alternating Feistel scheme with an AES-based round function. 

Implementation notes. While the value B in Figures 3 and 5 is a decimal string of 18 or fewer 
digits, an implementation would probably want to represent B by the equivalent 8-byte unsigned 
integer. Under this representation, the [num10(B)]8 and [·]8 conversions at line 203 effectively 
vanish, as does the strm 

10(z) conversion at line 210. Note that a 4-byte unsigned integer will suffice 
for representing B if n ≤ 18. 

An implementation of F needs fewer AES calls than a quick inspection of the code might sug­
gest. Suppose first that an application will, with a given key K, encipher messages of only 
one length n using tweaks of only one byte length t ≤ 10. Then the value of P (line 202) is 
static, so P ' = AESK (P ) can be precomputed. Writing CBC-MACK (C,X) for the procedure 

128identical to CBC-MACK (X) except that C ∈ {0, 1} is the initial value of Y , we note that 
CBC-MACK (P IQ) = CBC-MACK (P ' , Q). As P ' is known and |Q| = 128 we need only one AES 
call per round. At the other extreme, if n and t vary and t is arbitrary one can still compute 
the P ' = AESK (P ) value appropriate to a given enciphering or deciphering operation and then 

' Q = CBC-MACK (P ' , T  ' ) where  T ' is the longest prefix of T that is a multiple of 128 bits. Each 
round will then need a single AES operation, CBC-MACK (Q ' , Z) for  some  |Z| = 128. In conclu­
sion, the amortized number of AES calls to encipher or decipher an n-digit string with FFX-A10 
is rnds(n) if  n and t ≤ 10 are static, and never more than rnds(n) + 1 +  I(|T |8 − 10)/16l. 

Security notes. The round function F is constructed in such a way that the set of inputs on 
which the CBC-MAC is invoked is prefix-free. (A set of strings is prefix-free if for any distinct x, y 
in the set, x is not a prefix of y.) The CBC-MAC is known to be a good PRF when it is invoked 
on a set of prefix-free inputs, assuming AES is a good PRP [23]. 

Let Ud denote the uniform distribution on Z10m and let Mm be the distribution given by picking R 
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parameter value comment 

radix 10 alphabet is Chars = {0, 1, 2, . . . ,  8, 9} 
Lengths [minlen .. maxlen] where  minlen = 4,  maxlen = 36  permitted message lengths 

Keys {0, 1}128 128-bit AES keys 

Tweaks Byte
≤M where M = 264 − 1 tweaks are arbitrary byte strings 

addition 1 blockwise addition 

method 2 alternating Feistel 

split (n) ln/2J maximally balanced Feistel 

rnds (n) 

⎧ ⎨ 

⎩ 

12 if 10 ≤ n ≤ 36, 
18 if 6 ≤ n ≤ 9, and 
24 if 4 ≤ n ≤ 5 

from entropy-based heuristic 

F given below AES-based round function 

200 algorithm FK (n, T, i, B) 
201 vers ← 1; t ← |T |8 

202 P ← [vers]2 I [method]1 I [addition]1 I [radix]1 I [n]1 I [split(n)]1 I [rnds(n)]1 I [t]8 

I [0]−t−9 mod  16  203 Q ← T I [i]1 I [num10(B)]8 

204 Y ← CBC-MACK (P IQ) 

205 Y � ← Y [1 .. 64]; Y �� ← Y [65 .. 128]
 
206 y� ← num2(Y �); y�� ← num2(Y ��)
 
207 if even(i) then m ← split(n) else m ← n − split(n)
 
208 if m ≤ 9 then z ← y�� mod 10m
 

209 else z ← (y� mod 10m−9) · 109 + (y�� mod 109)
 
210 return strm
 

10(z) 

Figure 5: Parameter collection A10. Mechanism FFX-A10 enciphers decimal strings of up to 36 digits. 
It does so using maximally-balanced Feistel and a round function based on the AES CBC-MAC. 

at random in Z264 and returning R mod 10m . The statistical distance between these distributions 
is at most 10m/266, which as at most 2−36 given that the maximum value of m here is 9. This 
means that line 210 is returning a m-digit string that is very close to uniform; the bias would be 
at most 2−35 . 

Including the values vers, method, addition, radix, split(n), and rnds(n) in the input to the CBC­
MAC is not strictly necessary, given that the first four values are fixed and the next two are 
deterministic functions of n. All the same, the explicit inclusion of these values makes for a more 
robust design. 

Let us explain our choice for the number of rounds. Here there are two questions: why do we 
use more rounds for small n, and why the particular numbers? In fact, we do not know that 
more rounds are actually necessary for small n; as far as we know, using rnds(n) = 10, say, for 
all n, would be perfectly fine. But, instead of this, we selected round counts according to the 
following heuristic. Let the induced entropy be the number of bits of entropy in the outputs of 
the round functions across all rounds, assuming truly random round functions. This is at least 
rnds(n) · split(n) · log2(radix). Our A10 parameter collection uses four rounds plus enough additional 
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rounds to provide at least 128 bits of induced entropy. Also, we never use fewer than 12 rounds, 
and we round up to the next multiple of 6. 

As we will explain in Appendix E, the authors do not regard the Patarin attacks [21] on n ≥ 6 
rounds as “real” attacks against FFX, since they need more than radixn − 2 queries per tweak, and, 
having done so, only distinguish populations of PRPs from populations of random permutations. 
All the same, the heuristic above leads to round counts large enough to defeat even the Patarin 
(non-)attack. 

Let q10(n) denote the “CCA threshold” for FFX-A10, meaning the largest number of queries such 
that even a computationally unbounded adversary asking q10(n) encryption or decryption queries 
will have PRP-advantage less than or equal to 0.5 in the model in which the round function is 
replaced by a uniform random function. Recent work by Hoang and Rogaway [8] implies bounds 
of, for example, q10(6) ≥ 62 and q10(16) > 77000. Note that if tweaks are used then one will need to 
have, for example, more than 77000 16-digit plaintexts with identical tweaks until we can no longer 
prove the inexistence of an adversary getting advantage exceeding 0.5 (assuming the underlying 
PRP’s security). 

Bounds more sophisticated than those used above are due to Patarin [22], but there are some 
difficulties with using them to get concrete numbers for FFX-A10: the bounds are only for the 
balanced setting, for binary strings, and they are stated asymptotically. 

The best attack we know against FFX-A10 is to do exhaustive key-search on AES, expending about 
2128 time. The m-in-m attack mentioned above would take in excess of 22600 time. Overall, we 
regard the selected round counts as being extremely conservative from multiple points of view. 

C Brief History 

The origins of the FPE problem go back over 25 years. In 1981, the US National Bureau of 
Standards (NBS, later to become NIST) published FIPS 74 [18], an appendix of which describes 
an approach for enciphering arbitrary strings over an arbitrary alphabet. Brightwell and Smith 
(1997) appear to be the first authors to clearly and more generally describe the FPE problem and 
its utility [5]. They called it “datatype-preserving encryption.” Black and Rogaway [4] brought 
the problem to the attention of the cryptographic community in 2002, providing definitions and a 
number of solutions. Spies gave the primitive its currently-used name, circa 2003. 

Bellare, Ristenpart, Rogaway, and Stegers provide a comprehensive treatment of the FPE problem, 
including definitions and solutions employing what they call type-1 and type-2 Feistel networks [3]. 
The current document employs these same constructs. The Feistel construction itself goes back to 
later versions of the IBM cipher Lucifer. The method-1 (“unbalanced”) Feistel variant is described 
by Schneier and Kelsey [25], while the method-2 (“alternating”) Feistel variant is described by 
Lucks [13]. References [3, 4, 8, 15, 16, 22] provide some of the relevant security results on the Feistel 
construction. 

FFX evolved from the FFSEM specification due to Spies [28]. The FFSEM scheme was, in turn, 
based on the paper by Black and Rogaway [4]. 
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D High-Level Design Choices 

Why feistel? The authors believe that, for FPE, there is, at present, no serious alternative to 
some form of Feistel. The approach benefits from being a classically known and extensively studied. 
For all their prescience in identifying FPE, the actual mechanistic ideas described by Brightwell and 
Smith do not possess any such history and are rather incoherent [5]. Methods to achieve uniform 
shuffles on large domains, starting with a random function, remain completely impractical [7]. 
Developing a new confusion/diffusion primitive seems out of that question in terms of delivering 
assurance and leveraging existing AES experience and implementations, while resurrecting an old 
confusion/diffusion primitive, say Hasty Pudding [26], is unrealistic for the same reasons. Only 
Feistel combines decades of history and a corpus of significant academic work. 

Why the parameters? The generality embodied by the parameter choices facilitates continuing 
innovation while at the same time ensuring that any NIST-approved FPE mode embodies sound 
cryptographic practice. We name specific collections of parameters, A2 and A10, so that, despite 
the permitted generality, implementers can employ a fully-instantiated “off the shelf” mode. 

The classical Feistel construction is balanced. When one considers making it unbalanced, two 
alternative ways of doing so arise naturally, represented here by method-1 and method-2. We have 
allowed both because both have appeared in the literature [13, 25], and, depending on the parameter 
choices and implementation, one might offer better performance than the other, so implementers 
benefit by having a choice. At the present time there are no convincing security reasons to prefer 
one choice over the other, although such reasons could arise in the future. 

Why imbalance? Some imbalance is made necessary by the fact that inputs could have odd length. 
Greater imbalance is allowed so as to keep within the scope of the standard the Thorp Shuffle 
(where method = 1 and split(n) = 1) and similar schemes whose analysis continues [8, 16]. 

The final round. In DES, which uses balanced Feistel, the returned value would (in terms of our 
method-1 construction) be B IA rather than AIB. That is, the last round is different, not “crossing 
the wires” at the end. The historical reason for this choice was to allow the encryption algorithm 
to also be used for decryption. We have not followed this convention because it is simpler for all 
rounds (including the last) to be the same and, regardless, the trick does not work for method-2 
schemes in the sense that altering the order of outputs in the final round still does not allow the 
encryption algorithm to be used for decryption when the number of rounds is even, as it is for 
us. The hardware-based mindset that may have lead DES to this choice does not seem important 
enough in our setting to warrant the increased complexity and lack of uniformity that would result. 

E Security Definition 

In this section we describe the security notion we expect FFX to meet. The material here is rather 
technical, but it is not needed for understanding the definition of FFX or how to use it. 

The notion we target is a conventional one: strong-PRP security for a conventional (fixed length, 
not tweakable) blockcipher [12]. It should be recognized from the start that the notion is too 
strong to model any “real-world” attack, but it has the advantage both of familiarity and of 
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tightly implying the more realistic security notions one may ultimately care about. To review, 
let E : Keys × Charsn → Charsn be a blockcipher, meaning that EK (·) =  E(K, ·) is a permutation 
on Charsn and n ≥ 1 is fixed. Consider an adversary A that has two oracles, E and D. The  
adversary may ask any encryption query E(X) or decryption query D(Y ), where X, Y ∈ Charsn . 
We consider two ways of answering these queries. In the first, key K is uniformly chosen from Keys 
and then E(X) and  D(Y ) queries are answered by EK (X) and  E−1(Y ), respectively. In the second, K 
a permutation π on Charsn is chosen uniformly at random and then E(X) and  D(Y ) queries are 
answered by π(X) and  π−1(Y ). The adversary’s advantage is the probability that A outputs 
the bit “1” if run in the first setting minus the probability that it outputs “1” when run in the 
second setting. Informally, we regard a blockcipher E as secure if for any adversary A that runs 
in a reasonable amount of time and asks some number q ≤ N − 2 queries to its oracles, where 
N = |Chars|n, adversary  A’s advantage is small. Limiting q to N − 2 instead of N is because 
balanced Feistel constructions give rise to only even permutations (that is, permutations that are 
the product of an even number of transpositions), giving rise to a trivial distinguishing test if N 
or N − 1 queries are asked. 

To apply this definition to FFX one should assume that the adversary fixes the tweak T and message 
length n used for queries. This is a safe thing to assume because FFX includes T and n within 
the scope of its round function F, so we know that it is never advantageous, up to the PRF-ness 
of the round function F, for the adversary to use queries of varying T or n-values. By avoiding 
the inclusion of T and n in adversarial queries we eliminate the artificial boosting of advantage 
associated to taking an attack achieving a tiny advantage ε for breaking a PRP and creating an 
attack with advantage nearly 1 for a tweakable family of PRPs just by running the original attack on 
Θ(ε−2) differently-tweaked PRPs and finishing with a majority vote. Such boosting of advantage 
does not represent any genuine security degradation and does not help for breaking real-world 
security properties of a PRP, such as its unpredictability. 

We note that Patarin shows that, for r ≥ 6, even n, and a binary alphabet, there is an attack 
employing about 2 

n 
2 (r−4) time for distinguishing a family of n-bit, r-round Feistel constructions 

from a comparable family of n-bit random permutations [21]. Under our definition, this is simply 
not an attack, as our adversary has only a single permutation. 

F Why use a Tweak?  

FPE will be used in settings where the number N = radixn of strings of a certain allowed length n 
is quite small. In such settings, use of a tweak can significantly enhance security, and is strongly 
recommended whenever this is possible. Let us explain. 

Suppose we are enciphering the middle-six-digits of a 16-digit CCN; the remaining ten digits are 
to be left in the clear. If we use a deterministic and tweakless scheme, there is a danger that an 
adversary might be able to create, by noncryptographic means, an unnecessarily useful dictionary 
of plaintext/ciphertext pairs (X, Y ), where X is a 6-digit number and Y is its encryption. Each 
plaintext/ciphertext pair (X, Y ) that the adversary somehow obtains (acquired, for example, by 
a phishing attack) would let the adversary decrypt every CCN that happens to have those same 
middle-six digits. Note that in a database of 100-million entries we’d expect about 100 CCNs to 
share any given middle-six digits. Learning k CCNs and possessing an encrypted database ought 
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algorithm CycleWalking.Encrypt(K,T,X) 
if K ∈� Keys or T ∈� Tweaks or X ∈� Chars ∗ or 
|X| �∈ Lengths or not valid(X) then return ⊥ 

repeat 
X ← FFX.Encrypt(K,T,X) 

until valid(X) 
return X 

algorithm CycleWalking.Decrypt(K,T, Y ) 
if K ∈� Keys or T ∈� Tweaks or Y ∈� Chars ∗ or 
|Y | �∈ Lengths or not valid(Y ) then return ⊥ 

repeat 
Y ← FFX.Decrypt(K,T, Y ) 

until valid(Y ) 
return Y 

Figure 6: Cycle walking. Plaintexts satisfying a predicate valid are enciphered to plaintexts satisfying the 
same predicate by way of repeated application of the FFX.Encrypt operation. 

not to give you 100k more CCNs for free. 

The problem is not a cryptographic failure, but a failure to use a good tool well. The middle-six 
digits ought to have been tweaked by the remaining ten. If this had been done then learning that 
CCN 1234-123456-9876 encrypts to 1234-770611-9876, say, would not let one decrypt 1111-770611­
9999, as the mapping of 123456 to 770611 is specific to the surrounding digits 1234/9876. 

In general, it is desirable to use all information that is available and statically associated to a 
plaintext as a tweak for that plaintext. In the most felicitous setting of all, the non-secret tweak 
associated to a plaintext is associated only to that plaintext. 

Extensive tweaking means that fewer plaintexts are enciphered under any given tweak. This corre­
sponds, in the PRP model we have adopted, to fewer queries to the target instance. The relevant 
metric is the maximum number of plaintexts enciphered with the same tweak, which is likely to be 
significantly less than the total number of plaintexts enciphered. 

G Enciphering on Arbitrary Domains 

Mechanism FFX enciphers strings within the set Charsn for some alphabet of characters Chars and 
some allowed message length n ∈ Lengths. Often it is useful to encipher points within a message 
space that is not of this form. When this the case, FFX should be used in conjunction with one or 
both of the following techniques: cycle walking and dense encoding. 

Cycle walking and dense encoding are well-known techniques, having the status of folklore. Using 
them on top of FFX does not damage security compared to a more direct application of FFX. 

G.1 Cycle Walking 

As an illustrative example, consider the problem of enciphering calendar days {0, . . . , N−1} within 
some epoch, say 01/01/1900 to 12/31/2099. The number of possible days N = 73, 049 is not a power 
n ≥ 2 of some radix radix. Now one could certainly consider the points we wish to encipher as being 
binary-strings, say ones of length 17 = I log2(73049) l bits, but it is not all binary strings of length 17 
that should be considered valid—only the ones representing numbers between 0 and N − 1. While 
FFX will allow us to encipher a 17-bit string into a 17-bit string, how would one encipher on a space 
consisting of just the particular 17-bit strings that satisfy the desired predicate validDay(X)? 
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As a second example, consider the problem of enciphering a valid Social Security number (SSN) into 
a valid SSN. While there is no universally agreed-upon notion of validity for SSNs, some numbers— 
for example, those beginning with 000 or beginning with a number in excess of 772—have not been 
issued by the U.S. Social Security Administration and may therefore be considered invalid [27]. 
Let validSSN(X) be some fixed predicate that, given a nine-decimal-digit string X, returns either 
true or false according to some fixed validity criterion. One might wish to encipher points on 
the message space that consists of all nine-digit strings X that satisfy validSSN(X). 

In both examples, there is a universe of strings Charsn on which we can FFX-encipher and there 
is a subset of these that satisfy some fixed predicate valid. To encrypt within the subset of valid 
strings, one can use the mechanism of Figure 6. The mechanism works by repeatedly enciphering 
or deciphering until obtaining a valid string. A valid string must eventually be obtained because 
repeated enciphering or deciphering amounts to “walking along a cycle” and at least one point on 
this cycle, the initial one, satisfies the validity predicate. 

In order for cycle walking to be efficient, it is important that valid is true a reasonably large 
fraction of the time. In our first example, the valid strings comprise 73049/217 ≈ 56% of the total; 
in the second example, the fraction depends on how strict a validity condition is established. If 
valid strings comprise a fraction p of the total, the expected number of iterations of the algorithm 
is around 1/p, indicating that for good performance p should be made as large as possible. 

In recent work [3] it is shown that, in a formal model, it is not damaging to release the cycle-
walking timing information. (That is, the number of times that the repeat/until loop of Figure 6 
is executed.) 

G.2 Dense Encoding 

It is sometimes useful to re-encode strings from a relatively sparse set of strings into a dense set of 
strings. To illustrate the idea, suppose one wishes to encipher not all credit card numbers (CCNs) 
of a given length n but, instead, all of those with a Luhn checksum of zero [14]. In other words, 
we are assuming that a plaintext presented for encryption will have a Luhn checksum of zero and 
that we wish to ensure that we encrypt it into a ciphertext that again has this same property. To 
accomplish this, take the n-digit CCN X we wish to encrypt and verify that it does indeed have the 
correct Luhn checksum. Assuming that it does, strip the last digit from X, resulting in an (n − 1)­

' ' digit string X (by the definition of the Luhn checksum, the string X uniquely determines X). 
' Encipher X into an (n−1)-digit string Y ' using FFX.Encrypt. Now expand Y ' to an n-digit string 

with the correct Luhn checksum by appending the necessary final digit. Return this string as the 
ciphertext Y for X. 

The above approach is more efficient than cycle walking. In general, encoding a sparse set of strings 
one wishes to encipher (all n-digit strings with a Luhn checksum of zero) into a dense set of strings 
(all (n − 1)-digit strings) is a desirable first step for format-preserving encryption on a sparse space. 
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H Number of Rounds 

The choice of method, rnds, and  split impact security. Let us discuss some of the issues involved in 
their selection. 

Note first that many different FPE security goals are possible; which one is targeted can impact 
the round count selection. One can consider, for example, message-recovery security, designated-
point security, PRP-security against a chosen-plaintext attack, and PRP-security against a chosen-
ciphertext attack. The attacks can be adaptive or non-adaptive. The underlying scheme might 
be regarded as tweakable or not. Which goal is sufficient depends on the application, but we 
have singled out one very strong goal in Appendix E that we believe adequate to cover real-world 
applications of FPE. 

Once a goal has been decided upon, another question is the quantitative level of security desired. 
We are seeking security up to q(n) =  radixn − 2 queries on length-n inputs, and we want the time 
to break the scheme to be completely prohibitive—as bad as doing exhaustive key search on the 
underlying blockcipher. We expect this to usually be 128 bits, and we consider attacks taking more 
than 2128 time as being irrelevant. 

For any choice of split and method, there are two sources of information on how many rounds 
r = rnds(n) are needed to achieve this goal. One is existing attacks. These give us a lower bound 
on the needed number of rounds. From the other direction, proofs of security give us a number 
of rounds proven sufficient to preclude attacks. Ideally, these numbers would match. But, at 
the moment, there is a significant gap between them. The severity of this gap depends on the 
parameters. 

Going with the lower bound is not conservative enough since better attacks might emerge. Going 
with the upper bound is conservative but one pays a performance penalty—assuming the security 
bound is ever good enough. In such situations, we need to pick and recommend a number of rounds 
in between the lower and upper bounds. 

For six or more rounds, the best generic attack on Feistel is Patarin’s meet-in-the-middle (henceforth 
“m-in-m”) attack [21]. The minimal round counts and domain size specified in Section 2 ensure 
that this attack takes more than 2128 time. Let us now give the details for the m-in-m attack. 

Fix n and, for concision, let d = radix, a = split(n), and r = rnds(n). First assume method = 1.  A  
round function is a map f : Charsn−a → Charsa. If  f = (f1, . . . , fc) is an  £-vector of round functions 
and X,Y ∈ Charsn then we let f(X) =  fc(· · · (f1(X)) · · · ) and  f−1(Y ) =  f−1(· · · (f−1(Y )) · · · ).1 c 

We describe the attack as a PRP one, so that the adversary has an oracle E, this being either EK or 
a random permutation π on Charsn . The adversary queries any distinct points X1, . . . , Xq ∈ Charsn 

to get back Y1, . . . , Yq. It then makes tables T1, T2 whose entries are defined by 

T1[f ] = (f(X1), . . . , f(Xq)) and T2[f ] = (f−1(Y1), . . . , f
−1(Yq)) 

for all (r/2)-vectors f of round functions. If there exist f1, f2 such that T1[f1] =  T2[f2] then the 
adversary returns 1, else 0. 

For the attack to succeed (defined, say, as the adversary getting advantage is at least 1/2), the 
= Iadn−arnumber of queries q must be large enough. A ballpark estimate is q 2n l, but we stress this 
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is an estimate only. We will, conservatively, estimate the running time of the attack by assuming 
q = 1 and asking that, even then, the running time should be at least 2128 . 

A round function is described by a table having dn−a rows,  with each entry  being in  Charsa. The  
size of such a table is adn−a. An (r/2)-vector of round functions is thus described by a table of size 

dad
n−ar/2ardn−a/2. Each of the tables T1, T2 has N = rows of this type, so, even neglecting the 

storage of the table entries, the storage and time to make the tables is at least 2dad
n−ar/2·ardn−a/2 ≥ 

dad
n−ar/2+(n−a). The running time of the attack is thus at least t = dad

n−ar/2+(n−a). Let  

(256/ log2(d)) − 2(n − a) 
rm = . 

adn−a 

d128/ log2(d)Then r ≥ rm guarantees t ≥ 2128 = . We have written a program to compute rm for 
given d, n, a. Our requirement radixn ≥ 100 guarantees that rm ≤ 8 for all choices of a. This  
doesn’t necessarily mean that rm > 8 when  radixn < 100; our requirement of radixn ≥ 100 was 
chosen because it is simple to state and sufficient to ensure rm ≤ 8. 

Now let’s turn to method = 2. A round function for the i-th round maps as f : Charsn−a → Charsa if 
i is even and as f : Charsa → Charsn−a if i is odd, for 0 ≤ i ≤ r − 1. Let r1 = Ir/4l and r2 = lr/4J. 
For T1, each (r/2)-vector of round functions is described by a table of size ar1dn−a + (n − a)r2da , 

dad
n−ar1+(n−a)dar2and T1 has N = rows. Neglecting the second table T2, the storage and time to 

r1+(n−a)dar2make the first is at least dad
n−a · (dn−a + da). The running time of the attack is thus at 

r1+(n−a)dar2+(n/2)least t = dad
n−a

. Assuming r/2 is even,  let  

2((256/ log2(d)) − n) 
rm = . 

adn−a + (n − a)da 

= d128/ log2(d)Then r ≥ rm guarantees t ≥ 2128 . Based on our program, our requirement radixn ≥ 
100 continues to guarantee that rm ≤ 8 for all choices of a. 
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