
On the Security of CTR + CBC-MAC
NIST Modes of Operation – Additional CCM Documentation

Jakob Jonsson*

jakob jonsson@yahoo.se

Abstract. We analyze the security of the CTR + CBC-MAC (CCM)
encryption mode. This mode, proposed by Doug Whiting, Russ Housley,
and Niels Ferguson, combines the CTR (“counter”) encryption mode
with CBC-MAC message authentication and is based on a block cipher
such as AES. We present concrete lower bounds for the security of CCM
in terms of the security of the underlying block cipher. The conclusion
is that CCM provides a level of privacy and authenticity that is in line
with other proposed modes such as OCB.

Keywords: AES, authenticated encryption, modes of operation.

Note: A slightly different version of this paper will appear in the Proceedings
from Selected Areas of Cryptography (SAC) 2002.

1 Introduction

Background. Block ciphers are popular building blocks in cryptographic algo­
rithms intended to provide information services such as privacy and authenticity.
Such block-cipher based algorithms are referred to as modes of operation. Exam­
ples of encryption modes of operation are Cipher Block Chaining Mode (CBC)
[23], Electronic Codebook Mode (ECB) [23], and Counter Mode (CTR) [9]. Since
each of these modes provides privacy only and not authenticity, most applica­
tions require that the mode be combined with an authentication mechanism,
typically a MAC algorithm [21] based on a hash function such as SHA-1 [24].
For example, a popular cipher suite in SSL/TLS [8] combines CBC mode based
on Triple-DES [22] with the MAC algorithm HMAC [26] based on SHA-1.

As it turns out, there are secure and insecure ways of combining a secure
encryption mode with a secure MAC algorithm; certain constructions are easily
broken due to bad interactions between the components (see [4, 19] for discus­
sion). While there are generic constructions with a provable security in terms
of the underlying components (e.g., schemes based on the first-encrypt-then­
authenticate paradigm as described in [19]), implementers tend to pick other
combinations for reasons that are beyond the scope of this paper. Some of these
combinations have turned out to be secure for the specific components chosen,
while other combinations have been broken (see again [19]).
* This work was completed at RSA Laboratories Europe in Stockholm.

mailto:jonsson@yahoo.se

An interesting line of research the last couple of years has been the devel­
opment of block cipher modes of operation that simultaneously provide privacy
and authenticity. We will refer to such modes of operation as combined modes
(a less ambiguous and frequently used term is authenticated-encryption modes).
Ideally, such a mode should be provably secure, roughly meaning that there ex­
ists a mathematical proof that the scheme cannot be broken unless a weakness
can be found in the underlying block cipher.

Our goal. In this paper we provide a formal analysis of a combined mode denoted
CCM, which is shorthand for CTR + CBC-MAC. As the full name indicates,
CCM combines the CTR encryption mode with the CBC-MAC [14] authenti­
cation mode; it does so using one single block cipher encryption key. CCM is
proposed for IEEE 802.11 [30] and NIST Modes of Operation [31].

Some attractive properties of CCM mode are as follows.

1. CCM readily handles messages in which certain parts are intended to be au­
thenticated only and not encrypted, and this is done without any additional
ciphertext overhead. For many other combined modes, certain enhancements
are needed to address this.

2. The underlying block cipher is used only in the forward “encryption” direc­
tion and not in the reverse “decryption” direction; this is true both for CCM
encryption and CCM decryption. This feature makes CCM an attractive can­
didate for applications where a small code size is desirable. Also, this makes
it possible to define CCM in terms of an arbitrary pseudo-random function
that is not necessarily reversible. In this respect, the CCM mode is more
versatile than other proposed modes (see below).

3. CCM is based on well-known technology; CTR and CBC-MAC were intro­
duced long ago. The two modes being widely scrutinized and documented
may help avoid potential implementation loopholes. Also, highly optimized
and well-trusted implementations of CBC have been around for years.

4. According to [30], all intellectual property rights to CCM have been released
into the public domain.

As is pointed out in [28], CCM being based on well-trusted components is not in
itself an argument for the security of CCM: While the underlying modes CTR
and CBC-MAC are known to be provably secure under certain assumptions (see
[2] and [3, 27]), the two modes share the same block cipher encryption key within
CCM. In particular, the results in [19] do not apply. Our object is to demonstrate
that CCM is as secure as the two-key variant covered in [19].

Property 2 turns out to be of significant help in the security analysis; thanks
to this property we can give a security proof for CCM in terms of a pseudo­
random function that does not necessarily have a well-defined inverse. By stan­
dard arguments, the proof is then easily translated into a security proof for CCM
in terms of a pseudo-random permutation (i.e., a block cipher) that does have an
inverse. A direct proof in terms of a block cipher would most certainly be very
tricky due to biases caused by the absence of output collisions in permutations.

Related work and further directions. A number of different combined modes have
been proposed; these modes have in common that they add “redundancy” to the
message to be encrypted. The approach, employed in proposals such as IAPM
[17], OCB [29], IACBC [16], and IGE [11], is to concatenate the message with
a non-cryptographic checksum before encrypting the message. In some cases
the checksum is an xor sum of the blocks in the message, while in other cases
a constant block will do. The encryption method is typically a refinement of
a standard mode such as CBC (e.g., IACBC and IGE) or ECB (e.g., IAPM
and OCB). See [1] for a general treatment of the “encrypt-with-redundancy”
paradigm.

The purpose of concatenating a checksum to the message is to make it hard
for an adversary to modify a ciphertext in a manner consistent with the un­
derlying message. The above mentioned modes of operation are all equipped
with security proofs assuring that this is indeed hard. CCM employs the same
paradigm but uses a cryptographic tag rather than a checksum. This makes
CCM less efficient than the other variants, but instead CCM achieves benefits
such as properties 1 and 2 listed above.

While we have defined a combined mode in terms of a block cipher, another
possibility would be to use a hash function such as SHA-1 as the underlying
primitive. It has been demonstrated [12] that certain standard hash functions
(e.g., SHA-1) are easily turned into block ciphers with attractive properties. Also,
any hash function can be used as a building block in a stream cipher; consider
the MGF construction in [13] based on ideas from [5]. We will not pursue this
discussion further in this context and confine ourselves with acknowledging the
problem as an interesting area of research.

Notation

For each integer k > 0, {0, 1}k denotes the set of bit strings of length k. The
length of a bit string X is denoted |X|. For integers j ≥ 0 and k > 0 (j < 2k),
(j)k is the k-bit representation of j (e.g., (13)6 = 001101). For a bit string X
of bit length k, we will sometimes write (X)k instead of X to indicate explicitly �
that the bit length of X is k. For any set S, define S∗ as the union Sk; S∗ k≥0
is the set of all finite sequences (including the empty sequence) of elements from
S. The concatenation of two bit strings X and Y is denoted X . Y .

2 Scheme Description

CTR + CBC-MAC [30] (from now on denoted CCM) is a combined mode pro­
viding privacy and authenticity. We stress that CCM as defined in this section is
a generalization of the proposal [30]; the special case defined in [30] is described
in Section 2.3. CCM is based on a pseudo-random function

E : {0, 1}k0 × {0, 1}kb → {0, 1}kb ;

E takes as input a key of bit length k0 and a block to be encrypted of bit length
kb and outputs an encrypted block of the same bit length kb. We will write
EK (X) = E(K, X).

We anticipate that most practical applications of CCM will be based on a
traditional block cipher E, which means that EK is a permutation (thus invert­
ible) for each K. For example, in the proposal [30] the underlying function is
AES [7, 25]. However, as we have already pointed out, EK does not have to be a
permutation; the function is used only in the forward encryption direction and
never in the reverse decryption direction.

2.1 Overview of CCM

Before the CCM encryption scheme can be used, the parties that are going to
exchange secret information must agree on a secret key K. A detailed description
of possible key exchange methods is beyond the scope of this paper, but it is
assumed that the key is selected uniformly (or close to uniformly) at random
from the set {0, 1}k0 of all possible keys.

The CCM encryption operation takes as input a nonce N of fixed bit length
kn < kb, a header H, and a message M . The header H is only authenticated
and not encrypted, whereas the message M is both authenticated and encrypted;
an authentication tag is derived from (N, H, M) via CBC-MAC and encrypted
together with M in CTR mode. The tag is of fixed length kt ≤ kb. The encryption
operation outputs a ciphertext C of bit length |M | + kt.

The nonce N is non-repeating (“fresh”) in the sense that it must not have
been used as a nonce in a previous application of the CCM encryption operation
during the lifetime of a key.

Typically, there are certain restrictions on the inputs to the CCM encryption
operation. For example, the lengths of the header and the message might be
upper-bounded by some constant. Also, some applications may require that the
bit length of the header and the message be a multiple of 8 or the block length.
An input (N, H, M) satisfying all requirements is valid ; the set of all valid inputs
is a subset V of the set of all possible triples (N, H, M) of bit strings.

CBC-MAC computation. In the first step of the encryption operation, we com­
pute a CBC-MAC tag of a string derived from the input. Since CBC-MAC acts
on blocks of bit length kb, it cannot be applied directly to the CCM input (which
is a triple of bit strings with lengths not necessarily multiples of kb). For this
reason we need to introduce an encoding function

β : V → W ∗ ,

where W = {0, 1}kb (W is the set of blocks); the output from β is a string of
blocks. On a valid input (N, H, M) ∈ V, the encoding function β derives a string

B = B0 . B1 . · · · . Br

of CBC-MAC blocks B0, . . . , Br. A tag T is derived by applying CBC-MAC to
these blocks; see the algorithm description in Section 2.2 for details. The first

1block B0 is the CBC-MAC pre-IV.
We require that the following hold for the encoding function β.

1. N is uniquely determined by the first block B0 of β(N, H, M).
2. For any two valid and distinct inputs (N, H, M) and (N ',H ',M ') with B =

β(N, H, M) and B' = β(N ',H ',M ') (|B| ≤ |B'|), the string consisting of
the first |B| bits of B' does not coincide with B; the function β is prefix-free.

While maybe not absolutely necessary for security (compare to [3, 27, 15]), the
first condition is a convenient way of making the security analysis more stream­
lined; each new application of the CCM encryption operation will employ a fresh
CBC-MAC pre-IV B0. The second condition is not arbitrarily chosen; Petrank
and Rackoff [27] have observed that CBC-MAC has attractive security properties
when applied to a prefix-free message space. Note that this condition implies that
(N, H, M) is uniquely determined by β(N, H, M).

CTR encryption. In the second step of the encryption operation, we encrypt
the message M and the CBC-MAC tag T in CTR mode. We use a CTR block
generator π with four arguments (i, N, H, |M |) such that the nonce N and the
counter i (but not necessarily the header H and the message length |M |) are
uniquely determined by the CTR block π(i, N, H, |M |). Here, N ∈ {0, 1}kn and
0 ≤ i ≤ µmax, where µmax is a scheme-specific parameter bounding the maximal
number of blocks in a message (note that (µmax + 1) · 2kn ≤ 2kb). This gives the
theoretical upper bound µmax · 2kn on the total number of message blocks that
can be encrypted during the lifetime of a key. There might be scheme-specific
restrictions on the nonce that make the actual upper bound considerably smaller
than the theoretical upper bound.

On input (N, H, M), the CTR input blocks A0, A1, A2, . . . are defined as

Ai = π(i, N, H, |M |) .

The kt leftmost bits of EK (A0) are used for encryption of the CBC-MAC tag
T , while the |M | leftmost bits of the string EK (A1) . EK (A2) . EK (A3) . · · · are
used for encryption of the message M . Let β0(N, H, M) be equal to the first
block B0 of β(N, H, M). We require that

π(i, N, H, |M |) = β0(N ',H ',M ')

for all valid (N, H, M), (N ',H ',M ') and 0 ≤ i ≤ µmax. This is achieved if, e.g.,
the leftmost bit of the output from π is always 0, whereas the leftmost bit of the
output from β0 is always 1.

The nonce being non-repeating implies that all CTR input blocks Ai and all
CBC-MAC pre-IVs B0 used during the lifetime of a key are distinct.
1 We may view T as the CBC-MAC tag of B1 . · · · . Br with IV EK (B0).

2.2 CCM Specification

CCM encryption can be summarized as follows. First, the CBC-MAC tag T of
β(N, H, M) is computed. Second, the message M is encrypted in CTR mode with
CTR blocks generated from the nonce N via π. Finally, the tag T is encrypted
with a single CTR block.

Formally, CCM encryption is defined as follows.

CCM-Encrypt(N, H, M)

1. CBC-MAC computation:
–	 Let B0 . B1 . · · · . Br = β(N, H, M).
–	 Let Y0 = EK (B0).
–	 For 1 ≤ i ≤ r, let Yi = EK (Yi−1 ⊕ Bi).
–	 Let T be equal to the kt leftmost bits of Yr.

2. CTR encryption:
–	 Let µ = I|M |/kbl.
–	 For 0 ≤ i ≤ µ, let Ai = π(i, N, H, |M |).
–	 For 0 ≤ i ≤ µ, let Si = EK (Ai).
–	 Let S be equal to the |M | leftmost bits of S1 . S2 . · · · . Sµ and let S ' be

equal to the |T | leftmost bits of S0.
–	 Let C = [M ⊕ S] . [T ⊕ S '].

3. Output C.

CCM decryption of a ciphertext C with the nonce N and the header H is
defined in the obvious manner: First, apply the reverse of step 2 to C to obtain
a message M and a CBC-MAC tag T (the CTR block generator π is applied to
(i, N, H, |C|−kt)). Next, apply CBC-MAC to β(N, H, M) as in step 1 to obtain

'a CBC-MAC tag T equal to the kt leftmost bits of Yr. If T = T ', then C is valid
and M is output. Otherwise, C is not valid and an error is output. Note that
the decryption operation must not release the message or any part of it until
the tag has been verified. This is to prevent a chosen-ciphertext adversary from
deriving useful information from invalid decryption queries.

2.3 Example

In the proposals [30] to IEEE 802.11 and [31] to NIST, CCM is based on AES
with block length kb = 128 and key length k0 equal to 128, 192, or 256. All strings
are assumed to be of length a multiple of 8. Before CCM can be used, we need to
fix kt, kn, and µmax. In the IEEE 802.11 proposal, the tag length kt is a multiple
of 16 between 32 and 128, while the nonce length kn is a multiple of 8 between
56 and 112. For formatting reasons, the number of octets in a message must
not exceed 2120−kn − 1; put kmax = 120 − kn. Note that µmax = 2kmax−4; each
block contains 24 octets. An input (N, H, M) is valid if and only if N ∈ {0, 1}kn ,

20 ≤ |H|/8 < 216, and 0 ≤ |M |/8 < 2kmax .
2	 For simplicity, we assume that the octet length of the header H is small enough to

fit within two octets; the proposal can handle larger values as well.

The encoding function β is defined as follows on input (N, H, M). The first
block B0 is equal to

(0b)2 . (kt/16 − 1)3 . (kmax/8 − 1)3 . (N)kn . (|M |/8)kmax .

The bit b is equal to 0 if H is the empty string and 1 otherwise. If b = 1, then the
two leftmost octets of B1 are equal to (|H|/8)16. Let LH be (|H|/8)16 if |H| > 0
and the empty string otherwise. Then

β(N, H, M) = B0 . LH .H . Z1 .M . Z2 .

Here, Z1 and Z2 are short (possibly empty) strings of zeros such that |LH .H . Z1|
and |M . Z2| are multiples of the block length 128. Note that N is uniquely
determined by B0 and that β is prefix-free; no proper prefix of β(N, H, M)
is a valid output from β, and the input (N, H, M) is uniquely determined by
β(N, H, M). Namely, the inclusion of the exact octet length of H and M in
β(N, H, M) makes it possible to extract H and M from H . Z1 .M . Z2 in an
unambiguous manner.

The CTR block generator π depends only on the nonce and the counter and
is defined as

π(i, N) = (00000)5 . (kmax/8 − 1)3 . (N)kn . (i)kmax .

This cannot be equal to a CBC-MAC pre-IV B0; the first five bits in B0 are not
all zeros since kt/16 − 1 is nonzero.

3 Security Analysis of CCM

In this section we analyze the security of CCM. There are two aspects of security
in our setting:

–	 Privacy: It should be infeasible for an adversary to derive any information
from the ciphertexts without access to the secret key.

–	 Authenticity: It should be infeasible for an adversary to forge a valid cipher­
text without access to the secret key.

In Section 3.1 we argue heuristically for the security of CCM. Formal definitions
are provided in Section 3.2, while the main theorems are given in Section 3.3.

3.1 Heuristic Security Argument

Before analyzing CCM in greater detail, we provide a rough outline of the secu­
rity properties of CCM; see next section for a detailed description of the attack
models. Note that the discussion in this section is only heuristic and leaves
out quite a few technical details that must not be ignored in a formal analy­
sis. Throughout this section, we assume that the underlying permutation Ek is
chosen uniformly at random from the set of all permutations.

First, consider privacy. In our setting, the goal for the adversary is to dis­
tinguish the ciphertexts from “random gibberish” (a bit string chosen uniformly
at random from the set of all possible bit strings of a specified length). Let
(N, H, M) be an input to the encryption operation. This operation first com­
putes a tag T and then encrypts the message M and the tag in CTR mode. Since
N is required to be fresh, the CTR input blocks and the CBC-MAC pre-IVs are
new. In particular, the output ciphertext will be very close to random gibberish
even if the adversary knows the plaintext.

As we will see in the formal analysis, there are only two ways for the ad­
versary to be successful. First, the adversary may mount a “birthday” attack
against the CTR output blocks. Namely, since Ek is a block cipher and since all
input blocks are distinct, there are no collisions among the CTR output blocks.
However, with probability approximately O(q2) · 2−b (q is the number of ap­
plications of the underlying block cipher), true random gibberish will contain
such block collisions. Second, the adversary may hope for an anomaly to occur
within the CBC-MAC computations (e.g., an internal collision or a CBC-MAC
tag that coincides with some CTR output block). In our formal analysis, we will
demonstrate that the probability of any such anomaly is bounded by O(q2) ·2−b .

Next, consider authenticity. We have already concluded that it is hard to
distinguish the ciphertexts from random gibberish. In addition, it turns out that
it is hard to tell anything nontrivial about the internal CBC-MAC input and
output blocks even if all plaintexts are known. We will prove later that the
probability that the adversary is able to extract any useful information about
the internal blocks is bounded by O(q2) · 2−b .

Unless q is very large, the adversary knows close to nothing about the inter­
nal blocks, which implies that it is close to impossible to modify any previous
encryption query without having the encrypted tag modified in an unpredictable
manner. Namely, since β is prefix-free, any forgery attempt must have the prop­
erty that the corresponding sequence B = B0 . B1 . · · · of CBC-MAC blocks is
unique. Specifically, if there is a previous encryption query with the same ini­
tial blocks as the present forgery attempt, it is still the case that there is some
position on which the CBC-MAC blocks differ. The conclusion is that it is hard
to guess the tag with probability better than 2−kt ; whatever modification the
adversary tries to make, she cannot predict the consequences.

3.2 Security Concepts

Our definitions are based on work in [2, 4, 6, 18] and are analogous to those in [29].
CCM is a member of the family of nonce-using symmetric encryption schemes.
Such a scheme is defined by a 4-tuple (K, E , D, kn). Here, kn is an integer (the
nonce length) and K is the key space. In our setting, E and D are functions

K × {0, 1}kn × {0, 1} ∗ × {0, 1} ∗ → {0, 1} ∗ ∪ {φ}

(φ = “Error”) such that
M if C = E(K, N, H, M) for some (unique) M ;D(K, N, H, C) =
φ if C = E(K, N, H, M) for all M.

We will write EK (N, H, M) = E(K, N, H, M) and similarly for D. We assume
that the bit length of EK (N, H, M) is uniquely determined by the bit lengths of
H and M (the bit length of N is fixed to kn).

We want to define privacy and authenticity of a nonce-using symmetric en­
cryption scheme Π = (K, E , D, kn). For this purpose, we need to define two attack
experiments. In each of the two experiments, a key K is first chosen uniformly
at random from K. We proceed as follows in a manner similar to the approach
in [29], except that we allow the adversary against authenticity to make several
forgery attempts.

Privacy. In the privacy experiment, the adversary A has access to an encryption
oracle O that on input (N, H, M) returns a ciphertext C. A may send arbitrary
queries to the oracle, except that the same nonce must not be used in more than
one query; such a query is immediately rejected by the oracle. Thus we restrict
our attention to nonce-respecting adversaries.

The encryption oracle is chosen from a set of two possible oracles via a
fair coin flip b ∈ {0, 1}. If b = 1, then the oracle is the true oracle EK . If
b = 0, then the oracle is a random oracle R that on input (N, H, M) returns
a string of length |EK (N, H, M)| chosen uniformly at random. By assumption,
|EK (N, H, M)| depends only on |H| and |M |. The goal for A is to guess the bit
b; a correct guess would mean that she is able to distinguish EK from a true
random number generator. We define the advantage of A against the privacy of
Π as

Advpriv
Π (A) =

 (1 ← AEK) − Pr(1 ← AR)
 ;Pr

K←K

1 ← AO denotes the event that A outputs 1 conditioned that the underlying
oracle is O. D

Authenticity. In the authenticity experiment, A has access to the true encryption
oracle EK and to the true decryption oracle DK . Queries to the decryption
oracle will be referred to as forgery attempts. As in the privacy experiment, we
assume that the adversary is nonce-respecting when making encryption queries.
However, there are no such restrictions on forgery attempts. The goal for A is to
produce a forgery attempt (N∗,H∗, C∗) such that DK (N∗,H∗, C∗) = φ; if this
is true, then A forges. The only restriction on (N∗,H∗, C∗) is that there must
not be any previous encryption query (N ∗,H∗,M) with response C∗. However,
N∗ may well be part of a previous encryption query and one or several previous
forgery attempts. A may send her encryption queries and forgery attempts in
any order and at any time during the experiment. We define the advantage of A
against the authenticity of Π as

Advauth (AEK(A) = Pr forges) . DΠ
K←K

The reason for accepting several forgery attempts (as opposed to one single

forgery attempt at the end of the experiment) is that we want to analyze how
the number of forgery attempts affects the success probability of an adversary.
Specifically, we want to show that the adversary does not gain more than neg­
ligibly from making multiple forgery attempts if the tag length is considerably
larger than kb/2.

Our goal is to relate the security of CCM to the hardness of distinguishing the
underlying function EK from a random function (and, if E is a block cipher, from
a random permutation). Let Rand(kb) be the set of all functions f : {0, 1}kb →
{0, 1}kb and let Perm(kb) be the subset of Rand(kb) consisting of all permutations.
First consider indistinguishability from a random function.

PRF indistinguishability. The attack experiment for EK is very similar to the
privacy experiment for Π above. In the first step of the experiment a key K is
chosen uniformly at random from K and an oracle O is chosen via a fair coin flip
b. If b = 0, then O is a function ρ selected uniformly at random from Rand(kb).
If b = 1, then O is EK . The adversary B is given access to the oracle O and is
allowed to send arbitrary queries. The goal for the adversary is to guess the bit
b. We define

Advprf
E (B) = Pr (1 ← BEK) − Pr (1 ← Bρ) . D

K←K ρ←Rand(kb)

PRP indistinguishability. We now consider indistinguishability from a random
permutation. The only modification from the previous experiment is that ρ is
selected from Perm(kb) instead of Rand(kb); we define

Advprp (B) = Pr (1 ← BEK) − Pr (1 ← Bρ) . DE
K←K ρ←Perm(kb)

Before we proceed, we state a useful result regarding the correspondence between
PRF and PRP indistinguishability; see [3] for a proof.

Lemma 1. Let E be a block cipher; EK is a permutation for each key K ∈ K.
Then for any PRF distinguisher B making q queries to his oracle, there is a
PRP distinguisher B̂ making q queries to his oracle such that

Advprf (B) ≤ Advprp (B̂) + q(q − 1) · 2−kb−1 .E E

The running time for B̂ is the running time for B plus the time needed to trans­
port q queries and q responses between B and B̂’s oracle. D

3.3 Security Results

We now present lower bounds for the security of CCM in terms of the under­
lying function EK . First consider authenticity. For an encryption query Q =
(N, H, M), define

|β(N, H, M)| + |M |

lQ = + 1 ;

kb

lQ is the total number of applications of the block cipher needed to respond to
the query Q. For a forgery attempt Q∗ = (N∗,H∗, C∗) corresponding to the
message M∗, define

|β(N∗,H∗,M∗)| + |C∗|

lQ∗ = + 1 ;

kb

lQ∗ is the total number of applications of the block cipher needed to decrypt C∗

and check whether C∗ is valid.

Theorem 1. Let A be an adversary against the authenticity of CCM. Let qE

be the number of encryption queries and let Q1, Q2, . . . , QqE denote the queries.
Let qF be the number of forgery attempts and let Q1

∗, Q∗ 2, . . . , Q
∗ denote the qF

attempts. Put
= and lF = lQ∗ .lE lQi i

i i

Then there is a PRF distinguisher B such that

Advauth (A) ≤ Advprf · 2−kt · 2−kb−1(B) + qF + (lE + lF)2 .CCM E

Thus, by Lemma 1, if E is a block cipher, then there is a PRP distinguisher B̂
such that

Advauth (A) ≤ Advprp (B̂) + qF · 2−kt + (lE + lF)2 · 2−kb .CCM E

Both distinguishers have an additional running time equal to the time needed
to process the queries from A. This includes making lE + lF oracle queries and
xoring lE − qE + lF − qF pairs of blocks of size kb.

The proof of Theorem 1 is given in Appendix A.
Now consider privacy.

Theorem 2. Let A be an adversary against the privacy of CCM. Let qE and
lE be defined as in Theorem 1. Then there is a PRF distinguisher B such that

Advpriv · 2−kb−1(A) ≤ Advprf (B) + l2 .CCM E E

Thus, by Lemma 1, if E is a block cipher, then there is a PRP distinguisher B̂
such that

Advpriv (A) ≤ Advprp · 2−kb(B̂) + l2
CCM E E .

Both distinguishers have an additional running time equal to the time needed to
process the queries from A. This includes making lE oracle queries and xoring
lE − qE pairs of blocks of size kb.

The proof of Theorem 2 is given in Appendix B.

3.4 Possible Extensions Beyond the Birthday Paradox

The security bounds in the previous section include a term of the form c·l2 ·2−kb ,
where c is a small constant, l is the number of applications of the underlying
block cipher, and kb is the block size. This term is closely related to the “birthday
paradox”, which states that a collision Xi = Xj is likely to be found among l
uniformly random bit strings X1, . . . , Xl of length kb if l is approximately 2kb /2 .

In some situations, it would be desirable to have assurance that CCM remains
secure beyond the birthday paradox bound. While this cannot be true for the
confidentiality of CCM, we still hope to find an authenticity bound that is linear
rather than quadratic in the number of applications of the block cipher.

As a comparison, consider the recent paper [15], which elaborates on a variant
of CBC-MAC called RMAC. The RMAC construction is a message authentica­
tion code based on CBC-MAC that is provably secure against birthday paradox
attacks. RMAC is similar to CCM in that both schemes encrypt the CBC-MAC
tag. While the encryption method in RMAC is substantially stronger than that
in CCM, we still conjecture that the CTR encryption of the CBC-MAC tag is
strong enough to thwart birthday attacks.

We summarize the problem to be solved as follows.

Problem 1 Let notations be as in Theorem 1 with A being an adversary against
the authenticity of CCM, and assume that E is a block cipher. Is there a PRP
distinguisher B̂ with approximately the same running time as A such that

Advauth	 1+o(1)(A) ≤ Advprp (B̂) + q · 2−kt + (lE + lF)1+o(1) · 2−kb ?CCM E F

Ferguson [10] has demonstrated that the corresponding conjecture for OCB mode
[29] is false; there is an attack against the authenticity of OCB demonstrating
that the established lower bound for OCB is also an upper bound. In this context,
it is worth mentioning TAE, an interesting variant of OCB with excellent security
bounds based on a “tweakable” block cipher; see [20] for details. It remains to be
examined whether there exists a variant of CCM based on a “tweakable” block
cipher with just as good security bounds.

Acknowledgments

I thank Burt Kaliski, Tadayoshi Kohno, and the CCM designers Niels Ferguson,
Russ Housley, and Doug Whiting for valuable comments and fruitful discussions.

References

1.	 J. H. An and M. Bellare. Does Encryption with Redundancy Provide Authenticity?
Advances in Cryptology – EUROCRYPT 2001, pp. 512 – 528, Springer Verlag,
2001.

2.	 M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A Concrete Security Treatment
of Symmetric Encryption: Analysis of the DES Modes of Operation. Proceedings of
38th Annual Symposium on Foundations of Computer Science (FOCS 97), IEEE,
1997.

3.	 M. Bellare, J. Kilian, P. Rogaway. The Security of the Cipher Block Chaining
Message Authentication Code. Journal of Computer and System Sciences, 61 (3),
362 – 399, 2000.

4.	 M. Bellare and C. Namprempre. Authenticated Encryption: Relations Among No­
tions and Analysis of the Generic Composition Paradigm. Advances in Cryptology
– ASIACRYPT 2000, pp. 531 – 545, Springer-Verlag, 2000.

5.	 M. Bellare and P. Rogaway. Optimal Asymmetric Encryption – How to Encrypt
with RSA. Advances in Cryptology – Eurocrypt ’94, pp. 92 – 111, Springer Verlag,
1994.

6.	 M. Bellare and P. Rogaway. Encode-Then-Encipher Encryption: How to Exploit
Nonces or Redundancy in Plaintexts for Efficient Encryption. Advances in Cryp­
tology – ASIACRYPT 2000, pp. 317 – 330, Springer-Verlag, 2000.

7.	 J. Daemen and V. Rijmen. AES Proposal: Rijndael. Contribution to NIST, Septem­
ber 1999. Available from csrc.nist.gov/encryption/aes/rijndael/.

8.	 T. Dierks and C. Allen. IETF RFC 2246: The TLS Protocol Version 1.0. January
1999.

9.	 W. Diffie and M. Hellman. Privacy and Authentication: An Introduction to Cryp­
tography. Proceedings of the IEEE, 67, pp. 397 – 427, 1979.

10.	 N. Ferguson. Collision Attacks on OCB. Preprint, February 2002.
11.	 V. Gligor, P. Donescu. Infinite Garble Extension. Contribution to NIST, 2000.

Available from csrc.nist.gov/encryption/modes/proposedmodes/.
12.	 H. Handschuh and D. Naccache. SHACAL. Contribution to the NESSIE project,

2000.
13.	 IEEE Std 1363-2000. Standard Specifications for Public Key Cryptography. IEEE,

2000.
14.	 ISO/IEC 9797: Information Technology – Security Techniques – Data Integrity

Mechanism Using a Cryptographic Check Function Employing a Block Cipher Al­
gorithm. Second edition, 1994.
´ 15.	 E. Jaulmes, A Joux and F. Valette. On the Security of Randomized CBC-MAC
Beyond the Birthday Paradox Limit – A New Construction. Fast Software Encryp­
tion, 9th International Workshop, FSE 2002, to appear.

16.	 C. S. Jutla. Encryption Modes with Almost Free Message Integrity. Contribution
to NIST, 2000. Available from csrc.nist.gov/encryption/modes/proposedmodes/.

17.	 C. S. Jutla. Parallelizable Encryption Mode with Almost Free Message Integrity.
Contribution to NIST, 2000.
Available from csrc.nist.gov/encryption/modes/proposedmodes/.

18.	 J. Katz and M. Yung. Unforgeable Encryption and Chosen-Ciphertext-Secure
Modes of Operation. Fast Software Encryption 2000, pp. 284-299, 2000.

19.	 H. Krawczyk. The Order of Encryption and Authentication for Protecting Com­
munications (or: How Secure Is SSL?). Advances in Cryptology – CRYPTO 2001,
pp. 310 – 331, Springer Verlag, 2001.

20.	 M. Liskov and R. L. Rivest. Tweakable Block Ciphers. Submitted.
Available from theory.lcs.mit.edu/˜rivest/publications.html.

21.	 A. Menezes, P. van Oorschot and S. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1996.

22.	 National Institute of Standards and Technology (NIST). FIPS Publication 46-3:
Data Encryption Standard (DES). October 1999.

23.	 National Institute of Standards and Technology (NIST). FIPS Publication 81: DES
Modes of Operation. December 1980.

24.	 National Institute of Standards and Technology (NIST). FIPS Publication 180-1:
Secure Hash Standard (SHS). April 1995.

25. National Institute of Standards and Technology (NIST). FIPS Publication 197:
Advanced Encryption Standard (AES). November 2001.

26.	 National Institute of Standards and Technology (NIST). FIPS Publication 198:
HMAC - Keyed-Hash Message Authentication Code. March 2002

27.	 E. Petrank, C. Rackoff. CBC MAC for Real-Time Data Sources. Journal of Crypto­
logy, 13 (3), pp. 315–338, 2000.

28.	 P. Rogaway. IEEE 802.11-01/156r0: Some Comments on WHF Mode. March 2002.
Available from www.cs.ucdavis.edu/˜rogaway/ocb/ocb-doc.htm.

29.	 P. Rogaway, M. Bellare, J. Black and T. Krovetz. OCB: A Block-Cipher Mode of
Operation for Efficient Authenticated Encryption. 8th ACM Conference on Com­
puter and Communications Security (CCS-8), pp. 196-205. ACM Press, 2001.

30.	 D. Whiting, R. Housley and N. Ferguson. IEEE 802.11-02/001r2: AES Encryption
& Authentication Using CTR Mode & CBC-MAC. March 2002.

31.	 D. Whiting, R. Housley and N. Ferguson. Counter with CBC-MAC (CCM), AES
Mode of Operation. Contribution to NIST, May 2002.
Available from http://csrc.nist.gov/encryption/modes/proposedmodes/.

A Proof of Theorem 1

We want to relate an adversary A against the authenticity of CCM to a PRF
distinguisher B attacking the underlying function EK . B is given access to an
oracle O equal to either EK or a random function ρ, each with probability 1/2.
B is able to respond to encryption queries from A if O = EK . In this case B
provides a perfect simulation of EK ; the responses are exactly the same as those
provided by the true encryption oracle EK .

However, if O = ρ, then the simulation is no longer perfect. Still, the exper­
iment can be run; A may or may not be able forge at the end. Let B output 1
if A forges (with respect to an oracle based on O) and 0 otherwise. Note that

Advauth
CCM(A) = Pr (1 ← BEK) ≤ Advprf (B) + Pr (1 ← Bρ)E

K←K	 ρ←Rand(kb)

= Advprf (B) + Pr (Aρ forges) ; E
ρ←Rand(kb)

Aρ denotes A with a CCM encryption oracle based on ρ. Thus we need to give
a bound for the probability that an adversary A forges conditioned that the
underlying function is selected uniformly at random from Rand(kb). To achieve
such a bound, we need to demonstrate how to simulate A’s encryption oracle.
This is achieved if we are able to simulate the underlying random function ρ.
We will also need to simulate the decryption oracle to check whether the forgery
attempts by the adversary are valid or not. However, for the moment we restrict
our attention to the encryption oracle simulation.

A true simulation of the function ρ would be as follows. The algorithm RF-

Simulation (RF = Random Function) takes as input the block X to be pro­
cessed and a list L containing all pairs (X ' , Y ') corresponding to previous appli­
cations of ρ; Y ' = ρ(X ').

RF-Simulation(X, L)

http://csrc.nist.gov/encryption/modes/proposedmodes
www.cs.ucdavis.edu/�rogaway/ocb/ocb-doc.htm

1. If X is the first block in some entry on the list L, then Y = ρ(X) is already
defined; output Y and exit.

2. Generate a string Y uniformly at random.
3. Add (X, Y) to the list L and output Y .

To simplify analysis, we introduce a modified simulation by skipping step 1 and
the list L; RO-Simulation (RO = Random Output) is defined as follows, in
the easiest possible manner.

RO-Simulation(X)

1. Generate a string Y uniformly at random.
2. Output Y .

This simulation fails if and only if some block appears twice as input to RO-

Simulation and the two corresponding outputs are distinct (this makes the
definition of ρ inconsistent). Let RO-InColl be the even that some input X appears
twice; Pr(RO-InColl) is at least the probability of a simulation failure. Before we
can estimate the probability of RO-InColl, we need to examine the structure of
the input blocks to RO-Simulation. This is done as follows.

Let X be the multi-set of all input blocks to ρ needed when responding to
encryption queries. X being a multi-set means that if some input block appears
several times during the simulation, then this block appears just as many times
in X . We claim that the following holds for RO-Simulation.

Claim. The set X of input blocks can be divided into two sets X1 and X2. X1

is the set of input blocks derived from the nonces (i.e., the CTR blocks and the
CBC-MAC pre-IV), while X2 is the set of input blocks occurring in the internal
CBC-MAC computations. All blocks in the first set X1 are distinct and known to
the adversary. All blocks in the second set X2 are, from the view of the adversary,
mutually independent and uniformly distributed among all possible blocks. Also,
the sets X1 and X2 are independent. In particular, the ciphertexts given to the
adversary leak no information about the blocks in the set X2.

Proof of Claim. We use induction over the number of encryption queries to
prove that the claim holds. Thus assume that after a certain number q ≥ 0 of

'queries, the set X containing the corresponding input blocks can be divided
' 'into two sets X and X as above. Consider a new encryption query (N, H, M)1 2

with blocks A0, . . . , Aµ, B0 derived from N . Since N is a new nonce never used
'before, the set X does not contain any of the blocks A0, . . . , Aµ, B0. Also, N1

'is independent from all elements in X since these are completely unknown to 2
the adversary and since N is generated in a predetermined fashion. Thus adding

' A0, . . . , Aµ, B0 to X does not violate the desired properties. 1

Now, consider the CBC-MAC computation of

γ(N, H, M) = B0 . B1 . · · · . Br .

By construction, the first output block Y0 in the CBC-MAC computation is a
uniformly distributed string. Namely, RO-Simulation does not check for input
collisions (with the true simulation, Y0 would not necessarily be uniformly dis­
tributed). In particular, Y0 is independent from B1, which implies that Y0 ⊕B1 is
independent from other input blocks and uniformly distributed. Similarly, Yi−1

is uniformly distributed for i > 1, which implies that Yi−1 ⊕ Bi is independent
from other input blocks and uniformly distributed. Also, the CBC-MAC tag T
(which is Yr truncated to kt bits) and the part of the CTR output stream to
which T is xored are both uniformly distributed and do not leak any informa­
tion about the internal blocks. Hence, all internal CBC-MAC input blocks can

'be added to X without violating the desired properties. 2

Using induction, we conclude that X has the desired property. D

As a consequence, we may now compute the probability of the event RO-InColl.
Let x1 = |X1| and x2 = |X2| (the sets are still viewed as multi-sets); x1 +x2 = lE .
The probability that there is an input block that appears twice in the simulation
is bounded by

RO-InColl ≤ (x1x2 + x2(x2 − 1)/2) · 2−kb ≤ lE (lE − 1)/2 · 2−kb ; (1)

This follows immediately from the facts that the elements in X1 are all different
and that the elements in X2 are uniformly distributed, mutually independent,
and independent from X1. Thus, from the view of the adversary, every two
elements in X coincide with probability either 0 (if both elements are in X1) or
2−kb (otherwise).

Note that total secrecy of the elements in X2 is essential for the proof; oth­
erwise the adversary might be able to increase the failure probability for the
simulation by selecting new encryption queries on the basis of leaked informa­
tion about X2.

Now consider forgery attempts. We may assume that B always responds with φ
on any forgery attempt, even if the forgery attempt turns out to be valid with
respect to B’s oracle. Namely, if A forges with a specific query Q∗, then A wins,
so B’s response does not matter. If Q∗ is invalid, then B’s response coincides
with the true oracle.

Using this flawed simulation of the decryption oracle, we obtain a model
where the actual success of a specific forgery attempt does not depend on the
responses to other forgery attempts (as these are always φ), only on the responses
to the encryption queries. The conclusion is that we may analyze each forgery
attempt separately. In addition, we may assume that all forgery attempts are
made at the end of the attack (see [15] for further discussion), with the following
exception:

In case A makes a forgery attempt Q∗ corresponding to a certain triple
(N, H, M) and later queries (N, H, M) at the encryption oracle (e.g., by pure
coincidence or by choosing a very short M that can be guessed), we cannot make
the assumption that A waits until the end before she queries Q∗. Namely, she

is not allowed to make forgery attempts corresponding to previous encryption
queries in this manner. Still, by construction, the responses to later encryption
queries are completely unpredictable, which implies that Q∗ cannot be valid with
better probability than 2−kt ; all encrypted tags are equally likely.

From now on, consider forgery attempts that do not correspond to later en­
cryption queries in the manner just described. For such forgery attempts, we may
assume that all encryption queries are already made. We need to compute the
probability that a specific forgery attempt is successful. Let Q∗ = (N∗,H∗, C∗)
be such an attempt and let M∗ be the corresponding message (note that we may
not know M∗ yet).

If N∗ is not part of any encryption query, then we may apply the decryption
operation in the same manner as we applied the encryption operation on en­
cryption queries, thus generating a uniformly distributed output block for each
application of ρ. With the same argument as before, it is easily seen that this
simulation will fail with probability at most

(lQ∗ (lQ∗ − 1)/2 + lE lQ∗) · 2−kb .	 (2)

Namely, each of the input blocks in the decryption computation is equal to some
input block appearing in an encryption query with probability at most lE · 2−kb ;
there are lQ∗ such blocks. With probability at most lQ∗ (lQ∗ −1)/2 ·2−kb , there is
an input collision within the decryption computation. The success probability for
the adversary is obviously 2−kt since each encrypted tag has the same probability.

Now, assume that N∗ is part of an encryption query Q = (N∗, H, M). Extract
M∗ from C∗ by applying ρ to the relevant CTR blocks derived from N∗. Some
of these blocks might be part of the computations needed to respond to the
encryption query Q; ρ is already defined on these blocks. Define Ek on the other
blocks in the usual manner as uniformly distributed output blocks. The resulting
message M∗ is clearly independent from the set X2.

We identify two cases; the first block B0 in β(N∗, H, M) and the first block
B∗ in β(N∗,H∗,M∗) are either equal or different. 0

–	 First, assume that B0 = B0
∗ . This implies that B0

∗ is not part of X1. In
particular, we may simulate the CBC-MAC computation in the same random
manner as usual. Again, the error probability for this simulation is bounded
by (2) and the success probability for the adversary is 2−kt . Namely, the
CBC-MAC tag is uniformly distributed and independent from the block
that is xored to it to form the encrypted tag T .

–	 Second, assume that B0 = B∗. Write 0

β(N ∗ , H, M) = B0 . · · · . Br;
β(N ∗ ,H ∗ ,M ∗) = B0

∗ . · · · . B r
∗
∗ .

Let i ≤ min{r, r ∗} be the smallest index such that Bi and B∗ are different; i
such an i exists since β is prefix-free. Let Yi−1 be the corresponding block
that is xored to Bi and B∗, respectively, within the CBC-MAC computation. i
Put Xi = Yi−1 ⊕ Bi and X∗ = Yi−1 ⊕ B∗. By assumption, Xi is an element i i

� �

in X2 that is completely unknown to the adversary and independent from all
other elements in X . Also, B∗ is independent from all elements in X2 (namely, i
the adversary has no information about X2). In particular, X∗ is uniformly i
distributed and independent from all elements in X \ {Xi} and different
from Xi. Thus we may proceed in the usual manner from this point with
the CBC-MAC computation of B0

∗ . B1
∗ . · · · . B∗, generating random output r

blocks Y ∗, . . . , Y ∗ As before, the error probability for this simulation is ∗ .i r
bounded by (2), and the success probability for the adversary is 2−kt .

Summing over all forgery attempts, we conclude that the success probability for
the adversary within this model based on RO-Simulation is at most qF · 2−kt

and that the probability of decryption oracle simulation failure is bounded by

lQ∗ (lQ∗ − 1)/2 + lE lQ∗ · 2−kb ≤ (lF (lF − 1)/2 + lE lF) · 2−kb ; (3)
i i i

i

this follows from (2). The total probability of simulation failure is bounded by
the sum of (1) and (3), from which we conclude that the probability of success
for the adversary within the true model based on RF-Simulation is bounded
by

qF · 2−kt + lE (lE − 1)/2 · 2−kb + (lF (lF − 1)/2 + lE lF) · 2−kb

< qF · 2−kt + (lE + lF)2 · 2−kb−1 ,

which is the desired bound. D

B Proof of Theorem 2

We want to relate an adversary A against the privacy of CCM to a PRF distin­
guisher B attacking the underlying function EK . The prerequisites are the same
as in the proof of Theorem 1. In addition, introduce a random oracle R ' for B
that on any input block X outputs a uniformly random output block Y (without
checking for consistency with previous queries). This oracle is the oracle simu­
lated by RO-Simulation in the proof of Theorem 1. It is easily seen that B is
able to provide a perfect simulation of R with probability 1 using the oracle R ' .
Thus we obtain that

Advpriv (A) = Pr (1 ← BEK) − Pr(1 ← BR
'
)CCM K←K

≤ Advprf (B) + Pr (1 ← Bρ) − Pr(1 ← BR
'
) .E

ρ←Rand(kb)

Hence we need to compute the probability that ρ, selected uniformly at random
from Rand(kb), does not provide a perfect simulation of the random oracle R ' .
This is the case only if B is asked to query the same input block twice. From the
proof of Theorem 1 we learn that this happens with probability at most l2 2−kb

E · ,
which gives the desired bound. D

