
Submission to NIST:

Cipher-State (CS)

Mode of Operation for AES

Sandia National Laboratories**

P.O. Box 5800 MS 0785

Albuquerque, NM 87185-0785

FAX: 505-845-7065

Submitter:

Richard C. Schroeppel
Phone: 505-844-9079
Email: rschroe@sandia.gov

Authors:

W. Erik Anderson
Phone: 505-284-9621
E-mail: weander@sandia.gov

Cheryl L. Beaver
Phone: 505-844-9547
E-mail: cbeaver@sandia.gov

Timothy J. Draelos
Phone: 505-844-8698
Email:tjdrael@sandia.gov

Richard C. Schroeppel
Phone: 505-844-9079
E-mail: rschroe@sandia.gov

Mark D. Torgerson
Phone: 505-284-5677
Email: mdtorge@sandia.gov

** Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the
United States Department of Energy under Contract DE-AC04-94AL85000.

mailto:mdtorge@sandia.gov
mailto:rschroe@sandia.gov
mailto:Email:tjdrael@sandia.gov
mailto:cbeaver@sandia.gov
mailto:weander@sandia.gov
mailto:rschroe@sandia.gov

1 Mode Specification

Cipher-State (CS) is a new mode of encryption, which uses information from the internal state of the
cipher to provide the authentication very efficiently. This methodology has a number of benefits. The
encryption has some of the valuable properties of CBC mode, yet the encipherment and authentication
mechanisms can be parallelized and/or pipelined. The authentication overhead is minimal, so the
computational cost of the algorithm is very nearly that of the encryption process alone. Also, the
authentication process remains resistant against some initialization vector (IV) reuse. We provide a
general construction for using the internal state of any round-based block cipher as an authenticator
and we give a concrete example of this general construction that uses the Advanced Encryption
Standard (AES) [4] as the encryption primitive.

1.1 Encryption with Cipher-State Mode

CS mode is a simple method of adding authentication to any round-based block cipher. This method
provides a computationally low cost alternative to CBC mode, with stronger authentication properties.
It also has the virtue of being parallelizable, allowing faster execution. The new idea is to tap into the
middle of the encryption for authentication information. Of course, the security of the construction
depends on the security of the underlying cipher. The algorithm uses a 2n-round, d-bit block cipher,
E. Half-way through each block encryption, the state of the cipher (the middletext) is tapped and
non-commutatively mixed into a running pre-authenticator, A. The final value of the pre-authenticator
is passed through a one-way function and appended to the message. The one-way function may be
either created from the cipher, E, or a cryptographically strong hash function, H .

We use a simple linear feedback shift register (LFSR) as a pseudo-random number generator
(PRNG) to pre-whiten the plaintext. The ciphertext is also post-whitened with the same parameter,
R. Multiple steps of the PRNG and the authentication combining operation are easy to compute,
facilitating parallelism. The polynomial selected for the authentication combiner and the PRNG is
the lexicographically least primitive polynomial, p(x), of degree d. (A polynomial is primitive when x
has maximum order). Table 1 shows the least primitive polynomials for various degrees.

The algorithm given below illustrates the CS construction for a j-block message, M = m1, . . . , mj ,
initialization vector, IV , and encryption key, K.

CS Mode
INPUT (IV, M), K
OUTPUT (IV, C, AUTH)
Set A ← 0
Set R ← E(K, IV ⊕ K) ⊕ K
If R = 0, Set R = K
For i from 1 to j do

Set t ← E1:n(K, mi ⊕ R)
Set A ← A ∗ x (mod p(x)) ⊕ t
Set ci ← E(n+1):2n(K, t) ⊕ R
Set R ← R ∗ x (mod p(x))

IF using E only, Set AUTH = E(K, A ⊕ R) ⊕ A
ELSE, Set AUTH = H(K, A, R)
RETURN (IV, C, AUTH)

Table 1. Least primitive polynomials for selected degrees.

Degree Primitive Polynomial Low-order Portion (Hex)
64 x 64 + x 4 + x 3 + x + 1 1B
96 x 96 + x 7 + x 6 + x 4 + x 3 + x 2 + 1 DD
128 x 128 + x 7 + x 2 + x + 1 87
160 x 160 + x 5 + x 3 + x 2 + 1 2D
192 x 192 + x 8 + x 6 + x 4 + x 3 + x 2 + 1 15D
224 x 224 + x 8 + x 7 + x 5 + x 4 + x 2 + 1 1B5
256 x 256 + x 10 + x 5 + x 2 + 1 425
320 x 320 + x 4 + x 3 + x + 1 1B
384 x 384 + x 10 + x 6 + x 4 + x 3 + x 2 + 1 45D
512 x 512 + x 8 + x 5 + x 2 + 1 125
768 x 768 + x 13 + x 8 + x 7 + x 5 + x 3 + 1 21A9
1024 x 1024 + x 9 + x 8 + x 7 + x 5 + x + 1 3A3

The block cipher is split into two roughly equal pieces, E1:n and E(n+1):2n. E1:n returns the
middletext after completing half of the rounds of the block cipher. In the case of AES-128, this includes
the initial XOR of the zeroth-round key, through five rounds of AES, finishing after the XOR of the
fifth-round round key. The middletext is tapped to compute the running pre-authenticator. The second
half of AES resumes with the middletext, starting with the S-box mapping of round 6, and continuing
through round 10. Since the middletext is not altered, but merely tapped for authentication, the
combined result of the two cipher halves is the same as an ordinary AES encryption of the plaintext.
The first half of AES uses the first six round keys, and the second half uses the last five round keys
(AES has a total of eleven round keys). For the additional-round variants of AES, the extra rounds are
divided evenly between the two halves. For other ciphers with a definite round structure, we propose
using the midpoint as the tapping point.

The non-commutative combining operation used for the running pre-authenticator A is easy and
inexpensive to compute, simple to advance multiple steps, and the results from separate computa­
tions are easy to combine. For both encryption and decryption, the authentication combiner and the
whitening PRNG can be easily adjusted for several kinds of parallelism: low-level parallelism where
successive cipher blocks are parceled out to different pieces of hardware; higher-level parallelism where
larger chunks of the message are handled by different processors; and even pipelined chip architectures
that process consecutive cipher blocks in consecutive clocks. The adjustments are straightforward for
the more complex cases of pipelined hardware that intermixes processing for multiple messages, or
when messages are broken into variable-sized pieces, or even when several kinds of parallelism are
used together.

1.2 Initialization Vector Considerations

In a typical cipher design, the codebook mode of operation is undesirable, since repeats in the plaintext
of a given message give repeats in the ciphertext. CBC mode overcomes this to some extent, since
repeats in the plaintext blocks do not generally produce repeats in the ciphertext. Also, if the two
identical messages have different IV s, then they encrypt to different values. However, CBC mode has
always had the theoretical irritant that given a repeated IV , two messages that agree on the first few
blocks of plaintext will have ciphertexts that agree in the same positions.

CS mode has the following properties.

1. Repeated plaintext blocks within the same message encrypt to equal values with negligible prob­
ability.

2. Given identical messages with different IV s, the correlation between the two ciphertexts is negli­
gible.

However, given a repeated IV , two messages that have identical plaintext blocks in the identical
position will produce identical ciphertext in that position. This is a little weaker than what occurs in
CBC mode.

The assumption of unique IV s, counters, nonces and the like are often used in cryptographic
designs to allow proofs of security in various adversarial models. The fact that when IV s are repeated,
plaintext blocks in equal positions give equal ciphertext implies that the cipher can be distinguished
from random and thus fails common security criteria. This is also true of most cryptographic designs
that rely on unique message nonces to attain the desired level of security. Unfortunately, many of
these other designs also have easily exploited weaknesses whenever an IV is repeated. For instance,
the authentication mechanisms of both XORMAC [2] and OCB [6] are trivially broken with a few
messages processed with the same IV .

Since security under nonce reuse is difficult to achieve, the typical solution is to simply insist that
implementations never reuse nonces and thus pass the responsibility to implementors. However, nonce
reuse is a significant practical concern. It is difficult to guarantee that an implementation of some
security mechanism will never produce a repeated nonce, either by natural or malicious means. This
issue must be addressed by everything from the management system down through the hardware. For
instance, if the particular hardware supporting an algorithm is rebooted, what happens to sequence
numbers and the like? Often they simply start over.

Offering a solution that addresses a pragmatic set of system-wide security issues, including secu­
rity under nonce reuse, is the motivation of our designs. The hope is the construction of an efficient
encryption mode with authentication that has a measured degradation in security when various se­
curity suppositions are not met, rather than a more brittle approach where it is disastrous to reuse
an IV . To this end, the inputs of our authentication designs are key dependent and never exposed.
Even if an adversary has multiple messages processed with the same IV , the advantage in foiling the
authentication mechanism is limited.

In CS mode, an IV is supplied with each message to be encrypted or decrypted. The IV is used
to initialize the LFSR-PRNG for whitening the plaintext and concealing the raw ciphertext, and as
an ingredient in the final message authenticator. Ideally, the IV s are unpredictable and cannot be
controlled or influenced by an opponent. Although nonrepeated IV s are preferred, the fact that the
authentication mechanism is hidden from the adversary’s view means that the method has a certain
amount of resistance to IV reuse.

As a final note, the use of an involutional block cipher is not recommended with this scheme. We
don’t know of such ciphers in widespread use.

1.3 Security Considerations

One security concern with CS-AES is that since the computation of the authenticator reaches into the
middle of the encryption process, it could somehow leak information from the middle of an encryption.
We consider this below.

The authenticator value AUTH is computed in a finalization step from the pre-authenticator value
A. This step is either a strong hash or a strong cipher, so we expect no detectable relationship between
the pre-authenticator values and authenticator values.

In the strongest attack we know of, we assume a long period of IV reuse for the attacker to
make headway. (If the IV is changed even occasionally, the attacker has no prospect of collecting a
statistically useful amount of message data.) Any attack based on finding weak correlations between
middletext values of related messages is doomed, since the weak correlations will be destroyed by the
finalization step.

The only useful datum for an attacker is that two messages have the same authenticator. From this,
he guesses that the pre-authenticator values are also the same, and he tries to deduce a relationship
between the messages. Two different single-block messages (with the same IV and same key) will have
different middletexts and therefore differing pre-authenticator values. So, nontrivial collisions of single-
block messages are effectively impossible. (We can take this a step further: Take a multi-block message
and vary one particular block within it, running through all possible values. Then the ciphertext and
middletext will run through all values, and so will the pre-authenticator. So two messages which match
in all but one block will have differing pre-authenticators.)

For two-block messages, the attacker can try to engineer a pre-authenticator collision using dif­
ferentials. (XOR-based differentials propagate transparently through the PRNG whitening step.) He
uses a two-block differential (δ1, δ2), and hopes that the encryption of the two-block messages (P1,
P2) and (P1 ⊕ δ1, P2 ⊕ δ2) will produce compatible middletext differentials. The middletexts are (M1,
M2) and (N1, N2). For a pre-authenticator collision, the equation M1 ∗ x (mod p(x)) ⊕ M2 = N1 ∗ x
(mod p(x)) ⊕ N2 must hold. This will happen if the second-block differential M2 ⊕ N2 is a one-bit left
shift of the first-block differential M1 ⊕ N1. Also, the high-order-bit of the first-block differential is 0,
so no carry occurs in the multiplication by x. The chance of a match is the square of the individual
probabilities for the half-cipher differentials, which is comparable to the chance of a differential propa­
gating through the full cipher. This is negligible for AES, which was specifically designed to withstand
this sort of differential attack.

2 Summary of Properties

Security Function Parallelizable encryption mode with inexpensive
authentication

Error Propagation none
Synchronization Same IV used by sender and receiver
Parallelizability Block parallelizable encryption/decryption and

authentication generation/verification
Keying Material Requirements One key
IV Requirements Tolerant of some IV reuse
Memory Requirements A few cipher blocks
Pre-processing Capability R sequence can be precomputed
Message Length Requirements Arbitrary length, must be padded to a multiple of

the cipher block size
Ciphertext Expansion Fixed size authenticator appended to message

3 Performance Estimates

The general construction of encryption with cipher-state authentication can run approximately as fast
as the underlying cipher plus a small overhead for authentication in each round and at the end of the
encipherment process. The number of block cipher invocations required by the CS encryption mode is
j +2, where j is the number of blocks in the message. When a cryptographic hash algorithm is used for

the final authentication, j + 1 block cipher invocations are required. CS mode is block-parallelizable,
which will make implementations with a parallelization capability faster with no loss of security.

To test the performance of our algorithms and measure the overhead relative to the underlying
cryptographic primitives, we chose Wei Dai’s Crypto++ 5.1 C++ cryptographic library [7] as a
common framework. The Crypto++ library uses Barreto’s implementation of AES [1]. Test programs
were compiled using Microsoft Visual C++ 7.1 and executed on a Dell Precision 340 computer with
a 2.53 GHz Pentium IV processor. 1024-byte messages were used during testing. Table 2 provides
comparative figures of the the CS-AES mode against the AES cryptographic primitive and the typical
usage of AES in CBC mode for encryption with HMAC authentication [5] using SHA-1 [3]. A 128-bit
key was used for AES.

Table 2. Performance comparison of the CS-AES algorithm against AES alone and AES-CBC with HMAC­
SHA-1 authentication on 1024-byte messages using a 2.53 GHZ Pentium IV PC.

Algorithm Mbytes/Second
AES 69

CS-AES-AES 61
CS-AES-SHA-1 61

AES-CBC-HMAC-SHA-1 32

4 Test Vectors

The following test parameters and outputs are for the CS algorithm using AES-128 as the cipher and
both AES-128 and SHA-1 as the one-way function for the final authenticator.

K : 000102030405060708090A0B0C0D0E0F
IV : 0123456789ABCDEF0123456789ABCDEF

m1 00112233445566778899AABBCCDDEEFF

R1 : FDED29920913A3DA8C9ECA2F0FD434AA

m1 ⊕ R1 : FDFC0BA14D46C5AD04076094C309DA55

t1 : C31FDB743AA199CB78AA156AED162EB9

A1 : C31FDB743AA199CB78AA156AED162EB9

AES(K, m1 ⊕ R1) : FEE2017432993F8D81E1251E9BD6125E

c1 : 030F28E63B8A9C570D7FEF31940226F4

R2 : FBDA5324122747B5193D945E1FA869D3

A1 ⊕ R2 : 38C588502886DE7E61978134F2BE476A

AES(K, A1 ⊕ R2) : 08A2C2E93DFEEBEBEDD5CD4AB7351526

AUT H-AES : CBBD199D075F7220957FD8205A233B9F

AUT H-SHA-1 : ECFA375F615DB07834F50C7B9C3B08A9C9D3F12F

The second test is an iterative multi-block test with a total of 1,000,000 blocks. The input parame­
ters are the same as the first test, but the ciphertext of the current block is used as the plaintext in the
next block. For this test, intermediate results are given for only the first two blocks and the final block.

K :	 000102030405060708090A0B0C0D0E0F
IV : 0123456789ABCDEF0123456789ABCDEF

m1 : 00112233445566778899AABBCCDDEEFF

R1 : FDED29920913A3DA8C9ECA2F0FD434AA

m1 ⊕ R1 : FDFC0BA14D46C5AD04076094C309DA55

t1 : C31FDB743AA199CB78AA156AED162EB9

A1 : C31FDB743AA199CB78AA156AED162EB9

AES(K, m1 ⊕ R1) : FEE2017432993F8D81E1251E9BD6125E

c1 : 030F28E63B8A9C570D7FEF31940226F4

m2 : 030F28E63B8A9C570D7FEF31940226F4

R2 : FBDA5324122747B5193D945E1FA869D3

m2 ⊕ R2 : F8D57BC229ADDBE214427B6F8BAA4F27

t2 : E005EF3D83A7F60BD8486A7B15CC93DD

A2 : 663A59D5F6E4C59D291C40AECFE0CE28

AES(K, m2 ⊕ R2) : 778A4DF11D9CAB517F68DD65E6053BFA

c2 : 8C501ED50FBBECE46655493BF9AD5229

. . .
m1,000,000 : 8C9A9C08367E40D4A0BDF5405E0A8358
R1,000,000 : 8F3461728ECD3A7B3D3CC89808967071
m1,000,000 ⊕ R1,000,000 : 03AEFD7AB8B37AAF9D813DD8569CF329
t1,000,000 : 0DF19348FE1FD9EFEC91D9843B13566A
A1,000,000 : D72D708155DB739339471E4D1EAB6D85
AES(K, m1,000,000 ⊕ R1,000,000) : 7C73C0F8EA2923A80A65651995CAA8C5
c1,000,000 : F347A18A64E419D33759AD819D5CD8B4
R1,000,001 : 1E68C2E51D9A74F67A799130112CE065
A1,000,000 ⊕ R1,000,001 : C945B26448410765433E8F7D0F878DE0
AES(K, A1,000,000 ⊕ R1,000,001) : 4A49085400CF9BA45A84774B6020EF55
AUT H-AES : 9D6478D55514E83763C369067E8B82D0
AUT H-SHA-1 : 29520E37A0D635C41694F30AA9C09FE5AF525D2B

5 Intellectual Property Statements/Agreements/Disclosures

The authors dedicate this specification and release any intellectual property rights to CS mode to the
public domain. The authors are not aware of any patent or patent application that covers CS mode.
CS mode is a simple combination of well known pre-whitening and post-whitening techniques with
the use of the internal cipher state for authentication and the necessary support to make this safe.

References

1.	 P. Barreto, “The Block Cipher Rijndael,“
http://www.esat.kuleuven.ac.be/˜rijmen/rijndael/.

2.	 M. Bellare, R. Guerin, P. Rogaway, “XOR MACS: New Methods for Message Authentication using Finite
Pseudorandom Functions,“ Advances in Cryptology - CRYPTO 1995, Lecture notes in Computer Science,
vol. 963, D. Coppersmith, ed., Springer-Verlag, 1995.

3.	 Department of Commerce/NIST, “Secure Hash Standard,“ FIPSPUB 180-1, April 17, 2001.
4.	 Department of Commerce/NIST, “Advanced Encryption Standard,“ FIPSPUB 197, November 26, 2001.
5.	 H. Krawczyk, M. Bellare, R. Canetti, “HMAC: Keyed hashing for message authentication,“ Internet RFC

2104, February 1997.

http://www.esat.kuleuven.ac.be/�rijmen/rijndael

6.	 P. Rogaway, M. Bellare, J. Black, T. Krovetz, “OCB: A Block-Cipher Mode of Operation for Efficient
Authenticated Encryption,“ 8th ACM Conference on Computer and Communications Security, ACM Press,
2001.

7.	 W. Dai, “Crypto++ Library,“ http://www.eskimo.com/weidai/ cryptlib.html.

http://www.eskimo.com/weidai

