

EAX’ Cipher Mode (May 2011)
Authors Avygdor Moise, Edward Beroset, Tom Phinney, Martin Burns, Members, ANSI C12 SC17 Committee

 Abstract— We propose a block-cipher mode of operation that
optimizes protection in small embedded automation devices that
have both extremely large and extremely small messages, in
which the canonical form of message addressing information,
needed in forming nonces, has almost unbounded length.

I. INTRODUCTION

The ANSI C12.22 Protocol Specification for Interfacing to
Data Communication Networks [1] utilizes the EAX’ (EAX-
prime) Cipher Mode. The motivation for this work was the
somewhat unique requirements of supervisory control and data
acquisition (SCADA) messaging associated with Automated
Meter Reading (AMR) that operate in the context of an
Advanced Metering Infrastructure (AMI), the principle use of
this standard. However, these unique requirements may be
applicable to many small embedded devices communicating in
SCADA environments.

The developers of the standard were aware of several
challenges for the protection of very large and very small and
repetitive messages that conform to the ANSI C12.22
standard, due largely to the almost unbounded length of the
message addressing information specified by the associated
protocol, which must be used in nonce formation when
applying this proposed mode to that messaging. This paper
introduces this Cipher Mode and its capabilities and
advantages.

CCM is a NIST-standardized Authenticated Encryption with
Associated Data (AEAD) cryptographic mode developed for
IEEE 802.11, now also used by IEEE 802.15.4 [7]. This mode
has been suggested for similar applications to ANSI C12.22.
However, several obstacles to the use of this mode have been
identified with respect to messaging specific to ANSI C12.22.
These shortcomings have been addressed in part by the EAX
mode description [3], and further by the present EAX’ mode.
Additionally, CCM is constrained by its definition to
applicability only with the AES-128 block cipher, a constraint
relaxed in EAX and EAX’.

GCM is a second NIST-standardized parallelizable Authenti-
cated Encryption with Associated Data (AEAD) cryptographic
mode developed for applications requiring high-speed crypto-
graphy [8]. This mode also has been suggested for similar
applications to ANSI C12.22. However, significant obstacles
to the use of this mode also have been identified with respect
to messaging specific to C12.22. These shortcomings have
been addressed in part by the EAX mode description [3], and,
further by the present EAX’ mode.

This paper introduces these issues, their resolutions, and the

description of EAX’. The description of EAX’ was extracted
from ANSI C12.22

[1].

Note that EAX’ is described herein with references to using
AES-128 as the block cipher. However, the EAX’ mode could
be utilized with other underlying block ciphers. The term
EAX’ implies that it is a derivative of EAX, utilizing a
common mathematical notion of the suffix “’”.

II. EAX’ PROPERTIES RELATIVE TO CCM PROPERTIES

The NIST version of CCM has four functional restrictions
(which EAX lacks) and one common implementation
restriction that make it less appropriate for use in ANSI
C12.22:

Nonce length: CCM has a fixed maximum nonce input size
of 13 bytes. The ANSI C12.22 Message format requires use
of ApTitles [9] [10] and other information that may exceed 50
bytes, all of which must be included in the nonce in a manner
unpredictable to an attacker. EAX directly processes nonces
of arbitrary and variable size.

Nonce unpredictability: CCM generates nonces that are
predictable to an attacker, making it trivial for an attacker to
determine that two distinct messages under the same key are
using the same nonce value. This makes it imperative that the
nonce construction never duplicate a nonce value, even after
the compression step that would be required to reduce the
large ANSI C12.22 nonce inputs to the required CCM 13-byte
nonce. EAX computes a nonce value that is unpredictable to
an attacker, in a range of 2128 nonce values, so no special
protection need be taken against duplicate nonce values
(provided that the inputs to the nonce computation do not
duplicate).

“Online” capability: “CCM requires that the entire message
be available before authentication and plaintext encryption can
begin, requiring that an entire message be buffered before
CCM can be applied. ANSI C12.22 can have message sizes of
many thousand bytes, with maximum sizes exceeding 60,000
bytes. Together these features make it difficult to use add-on
hardware or software for existing ANSI C12.22
implementations, to minimize time to initial deployment of the
new standard. EAX has "online" capability, which makes it
suitable for use in add-on hardware or software serial link
encryptors.

Authenticate-before-decrypt: CCM requires that the entire
received message be decrypted before it can be authenticated.
Thus the extra processing required to decrypt Ciphertext must
be applied whether the received message authenticates or not.
EAX authenticates the Ciphertext rather than the plaintext, so
this extra processing is required only for messages that have

EAX’ Cipher Mode (May 2011) 2

been authenticated. This reduces the ability of an attacker to
mount a DoS (denial of service) attack on the receiving
device, causing it to consume significant resources before
determining that the received message is invalid.

Hardware non-support of canonicalized messages: Some
modem chips such as many of those for IEEE 802.15.4
provide hardware support for CCM-mode transmission and
reception when the message to be CCM-authenticated consists
exactly of the message Cleartext and plaintext, in that order,
that is to be sent or that was received. However, ANSI C12.22
requires that the authenticated message use canonical forms of
ApTitles, and exclude the <calling-AP-title-element> (the
ApTitle of the message originator) when it was added by a
proxy C12.22 Relay. The resultant software-based sequencing
of invocations of the underlying hardware block cipher (e.g.
AES-128) implementation is equivalent to that required for
EAX.

III. JUSTIFICATIONS FOR THE EAX' OPTIMIZATIONS

This section provides justifications for the simplifications of
EAX’ over the basic EAX mode specified by [3]. These
simplifications are motivated by a desire to reduce the number
of AES block encryptions required by EAX, and to reduce the
amount of per-key-related storage needed by a time-optimized
implementation, without significantly weakening the
cryptographic strength and resistance to attack that EAX
offers. The EAX' optimizations reduce the required per-key
storage for a time-optimized implementation from those of
unmodified EAX by K+4B+2T bytes per key (88 bytes when
AES-128 is the block cipher) to K+2B bytes per key (48 bytes
when AES-128 is the block cipher), where K is the key size of
the underlying block cipher, B is the block size of that block
cipher, and T is the desired authentication tag size, all in bytes.
For space-optimized implementations, where only K bytes of
storage per key are required, these optimizations eliminate
either three extra invocations of AES per message when
<epsem-data> secrecy is used [1], or five extra invocations
when it is not used.

BACKGROUND: Block ciphers such as AES-128 are
keyed pseudo-random permutations (PRPs), which map a
block-size input (e.g., 16 bytes = 128 bits) to a block-size
output. The strength and ability to resist cryptanalysis of
composite cryptographic modes which use this block cipher
are directly related to the strength and ability to resist
cryptanalysis of the underlying PRP. Analysis of a new mode
must examine its impact on increasing or decreasing this
strength, as well as any avenues of cryptanalytic attack that
such a new mode may expose.

Consideration of the security proof of EAX, which is
published in [3], indicates that the proof can be modified to
account for the following optimizations. Thus the security
properties of EAX' are equivalent to those of EAX. Here is
the list of ways that EAX' differs from EAX and an overview
of the basic rationale for each.

1. ISSUE: Reduction of EAX' to two input strings –
Non-inclusion of CMACk(0n-11 || pad(nullString)) when
the EAX input H is null.

JUSTIFICATION: CMACk(0n-11 || pad(nullString)) is
precisely CBCk(01271 || (10127 XOR dbl(dbl(ECBk(0)))),
which is a key-dependent constant. A predictable-to-an-
attacker XOR of a key-dependent constant that is the
output of a keyed PRP, into a key-dependent variable that
is itself a combination of keyed PRP outputs, does not
strengthen the cryptanalytic resistance of the computation,
because the dimensionality of the resultant composite
PRP is identical to that without the inclusion. Therefore
its exclusion does not weaken the cryptanalytic resistance
of the computation.

2. ISSUE: Exclusion of the ciphertext tag input from a

null plainext string – Conditional non-inclusion of
CMACk(0n-210 || CTRk(N, nullString)) when the EAX
input M is null.

JUSTIFICATION: CTRk(N, nullString) is the null
string. Thus CMACk(0n-210 || pad(CTRk(N, nullString))
) is precisely CBCk(0n-210 || (10n-1 XOR
dbl(dbl(ECBk(0))))), which is a key-dependent constant.
A predictable-to-an-attacker conditional XOR of a key-
dependent constant that is the output of a keyed PRP, into
a key-dependent variable that is itself a combination of
keyed PRP outputs, does not strengthen the cryptanalytic
resistance of the computation, because the dimensionality
of the resultant composite PRP is identical to that without
the inclusion. Therefore the conditional exclusion of this
XOR does not weaken the cryptanalytic resistance of the
computation.

3. ISSUE: Simplified nonce incrementation in CTR-

mode processing – Forcing two bits of the initial nonce
input to a CTR-mode keyed encryption to zero, to
eliminate inter-word carries, reduces the average number
of messages that can be encrypted before nonce reuse
without reducing the maximum message length that can
be protected.

JUSTIFICATION: Rogaway [6] introduced a similar
optimization in his SIV combined authentication and
encryption mode, which was developed after EAX and
which has also been submitted to NIST. The resulting
reduction in the average number of messages is at most a
factor of four. However, since the other nonce bits are
unpredictable to an attacker, the attacker cannot determine
when nonce reuse might occur, and thus cannot exploit
this potential but undetectable-to-the-attacker nonce
reuse. Thus there is no practical reduction in the
cryptanalytic resistance of the result.

4. ISSUE: Alternate initial CMAC blocks – Use of

constants other than 0n, 0n-11, and 0n-210 as the initial

EAX’ Cipher Mode (May 2011) 3

constants for the three CMAC computations of EAX.

JUSTIFICATION: The real requirement in EAX is that
the three CMAC sequences each start with a value in the
first block that is disjoint from the values of the first
blocks of the other sequences, so that even if the
remainder of their input sequences are identical, their
outputs will not be. This will cause the initial values of
the CBC sequences for each block to differ from that of
the other blocks in a key-dependent way that is
unpredictable to an attacker. The original EAX choices of
0n, 0n-11, and 0n-210 were arbitrary.

5. ISSUE: Pre-encryption of each initial CMAC block –

Inclusion of a key-encrypted starting value in the CMAC'
CBC computation, in lieu of prepending a block
containing a known constant to the sequence of blocks to
be processed by CBC.

JUSTIFICATION: CMACk (J || S, D, Q) is identical to
CMAC' (K, Ek(J), S, D, Q). Equivalently, CMAC' (K, J',
S, D, Q) is identical to CMACk (Dk(J') || S, D, Q), where
Dk is the keyed decryption operator – the inverse of the
keyed encryption operator Ek. Thus this issue reduces to
issue 4.

6. ISSUE: Use of D and Q for the initial CMAC blocks –

The issue is use of a derived initial value for the first
block of the conditional CMAC' computation that
includes a CTR-mode output, where that value is a
constant multiple (in an appropriate predefined canonical
GF(2) extension field) of the initial value for the first
block of the other CMAC' computation, where that
second initial value is the output of a keyed PRP, in
contrast to requiring that the initial value for that second
CMAC computation (which is conditional) be a keyed
PRP output of an independent initial value.

JUSTIFICATION: The CMAC' computations here
always involve CBC of at least two blocks. As in issue 4,
the requirement is that the initial value of that CBC
sequence differs between the two sequences, in a key-
dependent way that is unpredictable to an attacker.
Whether the following CMAC' inputs to the two
sequences are identical or not, the results of the
corresponding CBC sequences are different because those
first non-zero outputs of the CBC-chaining process differ
for the two CBC sequences. Because the second CMAC'
computation occurs only when there is Plaintext/
Ciphertext, so that the corresponding input is non-null, the
results of the second CMAC' operator always differ from
that of the first. This is the weakest justification of this
set of six, but a careful analysis of the original security
proof of EAX indicates that this optimization, which
eliminates the need for time-optimized implementations
to store 32 extra bytes per key, does not degrade the
security of the EAX mode.

IV. EAX’ ALGORITHM

EAX’ takes as input a Cleartext (N) and an optional Plaintext
(P) and produce as output a Message Authentication Code (T)
and a corresponding optional Ciphertext (C).

[P]

 [C] T

K

N

N

EAX’

Figure 1: EAX’ Overview

Each component of the message is defined as follows:

N : Cleartext, part of the ANSI C12.22 Message that is
authenticated but not encrypted for secrecy.

P : Plaintext, part of the ANSI C12.22 Message which is
encrypted for secrecy. When used for message secrecy, the
Plaintext is composed of the <epsem-data> and the
optional <padding>. <epsem-data> is the <user-
information> portion of the Association Control Service
Element (ACSE) [9], and thus a subset of the full
application protocol data unit.

C : Ciphertext, part of the ANSI C12.22 Message after
encryption for secrecy, corresponding directly to the plain
text P.

T : Four bytes MAC (Message Authentication Code) inserted
at the end of the ANSI C12.22 Message.

NOTE: To provide interoperable security it is absolutely
critical that N, P, C, and T are generated and processed in a
consistent fashion. The ANSI C12.22 standard allows
substantial flexibility in message transmission. In its
application of ACSE, C12.22 allows for relative object
identifiers. These identifiers must be expanded to absolute

EAX’ Cipher Mode (May 2011) 4

identifiers for cryptographic processing. Section 5.2.4 of the
ANSI C12.22 standard provides specific details regarding how
a C12.22 Message is therefore canonified into a consistent
standard form for cryptographic processing. N and P must be
generated according to these rules. C and T are generated
based on the algorithms below.

The cryptographic key, K, is defined as follows:

K : Cryptographic secret key. The key length is sized
appropriate to the block cipher. The default value is set to
AES-128/EAX’. The EAX’ mode supports using alternate
block ciphers. AES-128 has a block size of 16 bytes (128
bits).

EAX’ is described in a series of algorithms which follow,
where these algorithms make use of the following operators
and notations:

Table 1: Operators and notations used
Operation Definition
X ← Y Y assigned to X
X & Y Bitwise AND of X and Y where X and Y and the

result are the same size
X XOR Y Bitwise exclusive-or of X and Y where X and Y

and the result are the same size
X XORend Y Bitwise exclusive-or (XOR) of Y after alignment

with the end of string X where X is longer than Y
and the result is the same size as X. This operation
is exactly equivalent to X XOR (0size(X)-size(Y)|| Y).

size(X) Length in bits of X
AESK(X) Encryption of X using AES with key K. X, K and

the result are all exactly n bits long.
X || Y The concatenation of strings X and Y
X [first m bits] Most significant m bits of X
msb(X) Most significant single bit of X
X << 1 Left shift of X by one position (i.e., with a carry-in

of 0)
ceiling(X) Ceiling function, which returns the smallest integer

not less than X
n The block size in bits of the underlying block

cipher (for AES-128, n = 128)
0m m bits of 0. (i.e., 04103 would be 00001000)

1m m bits of 1. (i.e., 140120 would be 11110110)

A. Algorithm dbl(X)
For this algorithm the minimal weight irreducible
polynomial rb is defined exactly as in [4].

-- modulo the first minimal weight irreducible polynomial of
degree n

10 define rb as 012010000111 -- for n = 128
11 if msb(X) = 0 -- most significant bit
12 then return X << 1
13 else return (X << 1) XOR rb

B. Algorithm deriveKeyDependentConstants(K)
20 L ← AESK(0n)

-- For the AES-128 block cipher n = 128
21 D ← dbl(L)

-- D is double the value of L in an appropriate field, as
defined by rb

22 Q ← dbl(D)
-- Q is quadruple the value of L
-- dbl(dbl(L))
-- in the same field

23 return D and Q

C. Algorithm pad (S, D, Q)

30 if (size(S) > 0) and (size(S) mod n = 0) -- n equals Cipher
block size (in bits)

31 then return S XORend D -- XORs into end of string

32 else return (S || 10n−1−(size(S) mod n)) XORend Q -- XORs
into end of string; applies to null string

D. Algorithm CBC'K (t, S)

40 Let S1 ... Sm ← S where size(Si) = n -- n equals Cipher
block size (in bits)

41 C0 ← t
42 for i ← 1 to m
43 do Ci ← AESK(Si XOR Ci−1)
44 return Cm

The following definition of CMAC' is derived from [4]. It has
been recast into nomenclature similar to that used in the EAX
papers and the syntax used by the ANSI C12.22 standard.

E. Algorithm CMAC’K (t, S, D, Q)

50 return CBC'K (t, pad (S, D, Q))

S

K

pad

XOR XOR XOR t

AES AES AES

CMAC’K

Figure 2: Computation algorithm of CMAC’K

EAX’ Cipher Mode (May 2011) 5

F. Algorithm CTR'K (N, S) The following definition of CTR chaining mode is derived
from [5]. It has been recast into nomenclature similar to that
used in the EAX papers and the syntax used in the ANSI
C12.22 standard.

Note: For this algorithm, the counter Ctr can be thought of as
a single n-bit number represented as m bytes with the most
significant byte placed first, (byte 0) and least significant byte
placed last (byte m-1). By contrast, all the other functions that
implement EAX’, including AES, are defined with the least
significant byte placed first. This was done as an
acknowledgement of extant existing practice in
implementations of CTR mode as defined in [5].

60 m ←ceiling(size(S)/n)
61 Ctr ← N & 1n−32 0115 0115

-- Optimization, to avoid inter-word carries.
62 -- For AES, n=128 and 1n−32 0115 0115 resolves to
63 -- FFFF FFFF FFFF FFFF FFFF FFFF 7FFF 7FFFH
64 Pad ← AESK(Ctr) || AESK(Ctr+1) || ... || AESK(Ctr+m−1)
65 return S XOR Pad [first size(P) bits]

CTR'K

Ctr

K

N

S

Ctr + 1 Ctr + 2

FFFF FFFF FFFF FFFF FFFF FFFF 7FFF 7FFFH

&

AES AES AES

XOR XOR XOR

Figure 3: Computation algorithm of CTR’K

G. Algorithm EAX'.EncryptK (N, P) Encryption
When confidentiality is selected 70 deriveKeyDependentConstants(K)

-- need be done only once per new key value
71 Tag ← N ← CMACK (D, N, D, Q)

-- EAX’ optimization, first D used instead of EK(0n)
72 if size(P) > 0

-- EAX’ optimization, no contribution of a key-dependent
constant for an empty C

73 then
C ← nullString

74 else
75 C ← CTR'K (N, P)
76 Tag ← Tag XOR CMACK (Q, C, D, Q) }

-- EAX’ optimization, first Q used instead of EK(0n-210)
77 T ← Tag [first 32 bits]
78 return C and T

N [P]

N

[C]

CMAC’K (D, N)

CTR’K (N, P)

CMAC’K (Q, C)

XOR

T

Figure 4: Encryption algorithm when confidentiality is selected

H. Algorithm EAX'.DecryptK (N, C, T)

80 deriveKeyDependentConstants(K)
-- need be done only once per new key value

81 Tag ← N ← CMACK (D, N, D, Q)
-- EAX’ optimization, first D used instead of EK(0n)

82 if size(C) = 0 then
-- EAX’ optimization, no contribution of a key-dependent
constant for an empty C

83 P ← nullString
84 if T ≠ Tag [first 32 bits] then

 return INVALID
 else return P -- message is VALID

85 else
86 Tag ← Tag XOR CMACK (Q, C, D, Q)

-- EAX’ optimization, first Q used instead of EK(0n-210)
87 if T ≠ Tag [first 32 bits] then return INVALID
88 P ← CTR'K (N, C)

-- decrypt Ciphertext only when tags match
89 return P -- message is VALID

Decryption
When confidentiality is selected

N

N

C

P T’

T

XOR

CMAC’K (D, N) CMAC’K (Q, C)

CTR’K (N, P)

=

Figure 5: Decryption algorithm when confidentiality is selected

V. TEST VECTORS
The following test vectors are for use when the underlying
block cipher is AES-128. All inputs and outputs are shown as
the hexadecimal representation of sequential bytes.

A. Test Vector 1
1) Inputs:

Key:
 01 02 03 04 05 06 07 08 01 02 03 04 05 06 07 08
Plaintext:
 a2 0c 06 0a 60 7c 86 f7 54 01 16 00 17 02 a7 03
 02 01 04 a8 03 02 01 02 ac 0f a2 0d a0 0b a1 09
 80 01 02 81 04 48 e9 93 88 be 19 28 17 81 15 9a
 a6 0d 06 0b 60 7c 86 f7 54 01 16 00 17 82 11 02
 48 e9 93 88
Cleartext:
 54 45 4d 50 0b 40 00 07 00 05 1a 00 00 02 00 e4

2) Outputs:
Ciphertext:

 40 31 cc 95 7d 4e df 9a 35 7f 3d b0 fa 9f e8 38
MAC:
 65 55 c0 29

B. Test Vector 2
1) Inputs:

Key:
 01 02 03 04 05 06 07 08 01 02 03 04 05 06 07 08
Plaintext:
 a2 0c 06 0a 60 7c 86 f7 54 01 16 00 7b 02 a7 03
 02 01 04 a8 03 02 01 02 ac 0f a2 0d a0 0b a1 09
 80 01 02 81 04 48 f3 d2 f8 be 19 28 17 81 15 9a
 a6 0d 06 0b 60 7c 86 f7 54 01 16 00 7b 82 11 02
 48 f3 d2 f8
Cleartext:
 54 45 4d 50 0b 40 00 07 00 05 1a 00 00 02 00 e4

2) Outputs:
Ciphertext:
 8d 2f bb 7a 0a 8c 4d 40 ed aa 10 a4 64 31 c9 b8
MAC:
 fe c6 d9 e8

C. Test Vector 3
1) Inputs:

Key:
 10 20 30 40 50 60 70 80 90 a0 b0 c0 d0 e0 f0 00
Plaintext:
 a2 0e 06 0c 60 86 48 01 86 fc 2f 81 1c aa 4e 01
 a8 06 02 04 39 a0 0e bb ac 0f a2 0d a0 0b a1 09
 80 01 00 81 04 4b ce e2 c3 be 25 28 23 81 21 88
 a6 0a 06 08 2b 06 01 04 01 82 85 63 00 4b ce e2
 c3
Cleartext:
 17 51 30 30 30 30 30 30 30 30 30 30 30 30 30 30
 30 30 30 30 30 30 00 00 03 30 00 01

2) Outputs:
Ciphertext:
 9c f3 2c 7e c2 4c 25 0b e7 b0 74 9f ee e7 1a 22
 0d 0e ee 97 6e c2 3d bf 0c aa 08 ea
MAC:
 00 54 3e 66

D. Test Vector 4
1) Inputs:

Key:
 66 24 c7 e2 30 34 e4 03 6f e5 cb 3a 8b 5d ab 44
Plaintext:
 a2 11 06 0f 2b 06 01 04 01 82 85 63 8e 7f 85 f1
 c2 4e 01 a8 06 02 04 2b c8 1a a1 ac 0f a2 0d a0
 0b a1 09 80 01 00 81 04 4b 97 d2 cc be 39 28 37
 81 35 88 a6 09 06 07 2b 06 01 04 82 85 63 00 4b
 97 d2 cc
Cleartext:
 17 51 30 30 30 30 30 30 30 30 30 30 30 30 30 30
 30 30 30 30 30 30 00 00 03 30 00 01 03 30 00 78
 03 30 00 79 03 30 00 7a 03 30 00 7b 03 30 00 7d

2) Outputs:
Ciphertext:
 be b0 98 9f ad b0 20 eb 72 ba 46 35 3c c0 a2 ac
 2a 00 7a 10 1a fe ba f9 68 0d 3b 96 59 f9 91 12
 1b 86 5f 25 4f 6a c9 2c dd 21 3d 31 e3 c4 d2 ca
MAC:
 e6 f8 9b 6d

VI. IPR STATEMENT

NEMA gives permission to NIST to reproduce a description of
the EAX’ algorithm which is Appendix I of the ANSI C12.22-
2008 standard.

The origin of the algorithm is as described herein and NEMA
makes no IPR claims to the EAX’ algorithm.

VII. ACKNOWLEDGEMENT

This EAX' description is derived from [3]. Its presentation is
based on the algorithms specified in Figures 1 - 3 of that
paper, recast into a syntax appropriate to this Standard. The
authors of the referenced EAX papers [2][3], generously
granted permission to use those figures. While the material
below is not a direct reproduction of those figures, they are
clearly the motivation for this presentation.

NEMA has graciously given permission to the authors to
reproduce content from the ANSI C12.22 standard in this
report to support the full consideration by NIST of EAX’.

REFERENCES
[1] “American National Standard Protocol Specification For Interfacing to

Data Communication Networks”, ANSI C12.22-2008 / IEEE P1703 /
MC1222: Annex I, "EAX' description"

[2] M. Bellare, P. Rogaway and D. Wagner, Authenticated Encryption with
Associated Data (AEAD) algorithm designed to simultaneously protect
both authentication and privacy of messages, as described in “A
Conventional Authenticated-Encryption Mode”, April 13, 2003,
available from
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/e
ax/eax-spec.pdf.

[3] M. Bellare, P. Rogaway, and D. Wagner, “The EAX Mode of Operation,
A Two-Pass Authenticated-Encryption Scheme Optimized for
Simplicity and Efficiency”, January 18 2004, available from
http://www.cs.ucdavis.edu/~rogaway/papers/eax.pdf.

[4] “Recommendation for Block Cipher Modes of Operation: The CMAC
Mode for Authentication”, NIST SP 800-38B, available from
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

[5] “Recommendation for Block Cipher Modes of Operation: Methods and
Techniques”, NIST SP 800-38A, available from
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

[6] P. Rogaway, T. Shrimpton, “The SIV Mode of Operation for
Deterministic Authenticated-Encryption (Key Wrap) and Misuse-
Resistant Nonce-Based Authenticated-Encryption”, August 20, 2007,
available from
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/s
iv/siv.pdf

[7] “Recommendation for Block Cipher Modes of Operation: The CCM
Mode for Authentication”, NIST SP 800-38C, available from
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-
July20_2007.pdf.

[8] “Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC”, NIST SP 800-38C, available
from http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

[9] ISO/IEC 10035-1 Information Technology—Open Systems
Interconnection—Connectionless Protocol for the Association Control
Service Element: Protocol Specification, 1995

[10] ISO/IEC 8825-1 Information Technology—ASN.1 Encoding Rules:
Specification of Basic Encoding Rules (BER), Canonical Encoding
Rules (CER) and Distinguished Encoding Rules (DER), July 2008

http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/eax/eax-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/eax/eax-spec.pdf
http://www.cs.ucdavis.edu/%7Erogaway/papers/eax.pdf
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/siv/siv.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/siv/siv.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

	I. INTRODUCTION
	II. EAX’ Properties Relative To CCM Properties
	III. Justifications for the EAX' Optimizations
	IV. EAX’ Algorithm
	A. Algorithm dbl(X)For this algorithm the minimal weight irreducible polynomial rb is defined exactly as in [4].
	B. Algorithm deriveKeyDependentConstants(K)
	C. Algorithm pad (S, D, Q)
	D. Algorithm CBC'K (t, S)
	E. Algorithm CMAC’K (t, S, D, Q)
	F. Algorithm CTR'K (N, S)
	G. Algorithm EAX'.EncryptK (N, P)
	H. Algorithm EAX'.DecryptK (N, C, T)

	V. Test Vectors
	A. Test Vector 1
	1) Inputs:
	2) Outputs:

	B. Test Vector 2
	1) Inputs:
	2) Outputs:

	C. Test Vector 3
	1) Inputs:
	2) Outputs:

	D. Test Vector 4
	1) Inputs:
	2) Outputs:

	VI. IPR Statement
	VII. Acknowledgement

