
 

EAX’ Cipher Mode (May 2011) 
Authors Avygdor Moise, Edward Beroset, Tom Phinney, Martin Burns, Members, ANSI C12 SC17 Committee 

 

 Abstract— We propose a block-cipher mode of operation that 
optimizes protection in small embedded automation devices that 
have both extremely large and extremely small messages, in 
which the canonical form of message addressing information, 
needed in forming nonces, has almost unbounded length. 

I. INTRODUCTION 

The ANSI C12.22 Protocol Specification for Interfacing to 
Data Communication Networks [1] utilizes the EAX’ (EAX-
prime) Cipher Mode. The motivation for this work was the 
somewhat unique requirements of supervisory control and data 
acquisition (SCADA) messaging associated with Automated 
Meter Reading (AMR) that operate in the context of an 
Advanced Metering Infrastructure (AMI), the principle use of 
this standard. However, these unique requirements may be 
applicable to many small embedded devices communicating in 
SCADA environments.  

The developers of the standard were aware of several 
challenges for the protection of very large and very small and 
repetitive messages that conform to the ANSI C12.22 
standard, due largely to the almost unbounded length of the 
message addressing information specified by the associated 
protocol, which must be used in nonce formation when 
applying this proposed mode to that messaging. This paper 
introduces this Cipher Mode and its capabilities and 
advantages. 

CCM is a NIST-standardized Authenticated Encryption with 
Associated Data (AEAD) cryptographic mode developed for 
IEEE 802.11, now also used by IEEE 802.15.4 [7]. This mode 
has been suggested for similar applications to ANSI C12.22. 
However, several obstacles to the use of this mode have been 
identified with respect to messaging specific to ANSI C12.22. 
These shortcomings have been addressed in part by the EAX 
mode description [3], and further by the present EAX’ mode. 
Additionally, CCM is constrained by its definition to 
applicability only with the AES-128 block cipher, a constraint 
relaxed in EAX and EAX’. 

GCM is a second NIST-standardized parallelizable Authenti-
cated Encryption with Associated Data (AEAD) cryptographic 
mode developed for applications requiring high-speed crypto-
graphy [8]. This mode also has been suggested for similar 
applications to ANSI C12.22. However, significant obstacles 
to the use of this mode also have been identified with respect 
to messaging specific to C12.22. These shortcomings have 
been addressed in part by the EAX mode description [3], and, 
further by the present EAX’ mode. 

This paper introduces these issues, their resolutions, and the 

description of EAX’. The description of EAX’ was extracted 
from ANSI C12.22 

 

[1]. 

Note that EAX’ is described herein with references to using 
AES-128 as the block cipher. However, the EAX’ mode could 
be utilized with other underlying block ciphers. The term 
EAX’ implies that it is a derivative of EAX, utilizing a 
common mathematical notion of the suffix “’”. 

II. EAX’ PROPERTIES RELATIVE TO CCM PROPERTIES 

The NIST version of CCM has four functional restrictions 
(which EAX lacks) and one common implementation 
restriction that make it less appropriate for use in ANSI 
C12.22: 

Nonce length:  CCM has a fixed maximum nonce input size 
of 13 bytes.  The ANSI C12.22 Message format requires use 
of ApTitles [9] [10] and other information that may exceed 50 
bytes, all of which must be included in the nonce in a manner 
unpredictable to an attacker.  EAX directly processes nonces 
of arbitrary and variable size. 

Nonce unpredictability:  CCM generates nonces that are 
predictable to an attacker, making it trivial for an attacker to 
determine that two distinct messages under the same key are 
using the same nonce value.  This makes it imperative that the 
nonce construction never duplicate a nonce value, even after 
the compression step that would be required to reduce the 
large ANSI C12.22 nonce inputs to the required CCM 13-byte 
nonce.  EAX computes a nonce value that is unpredictable to 
an attacker, in a range of 2128 nonce values, so no special 
protection need be taken against duplicate nonce values 
(provided that the inputs to the nonce computation do not 
duplicate). 

“Online” capability:  “CCM requires that the entire message 
be available before authentication and plaintext encryption can 
begin, requiring that an entire message be buffered before 
CCM can be applied.  ANSI C12.22 can have message sizes of 
many thousand bytes, with maximum sizes exceeding 60,000 
bytes.  Together these features make it difficult to use add-on 
hardware or software for existing ANSI C12.22 
implementations, to minimize time to initial deployment of the 
new standard.  EAX has "online" capability, which makes it 
suitable for use in add-on hardware or software serial link 
encryptors. 

Authenticate-before-decrypt:  CCM requires that the entire 
received message be decrypted before it can be authenticated.  
Thus the extra processing required to decrypt Ciphertext must 
be applied whether the received message authenticates or not.  
EAX authenticates the Ciphertext rather than the plaintext, so 
this extra processing is required only for messages that have 
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been authenticated.  This reduces the ability of an attacker to 
mount a DoS (denial of service) attack on the receiving 
device, causing it to consume significant resources before 
determining that the received message is invalid. 

Hardware non-support of canonicalized messages: Some 
modem chips such as many of those for IEEE 802.15.4 
provide hardware support for CCM-mode transmission and 
reception when the message to be CCM-authenticated consists 
exactly of the message Cleartext and plaintext, in that order, 
that is to be sent or that was received.  However, ANSI C12.22 
requires that the authenticated message use canonical forms of 
ApTitles, and exclude the <calling-AP-title-element> (the 
ApTitle of the message originator) when it was added by a 
proxy C12.22 Relay.  The resultant software-based sequencing 
of invocations of the underlying hardware block cipher (e.g. 
AES-128) implementation is equivalent to that required for 
EAX. 

III. JUSTIFICATIONS FOR THE EAX' OPTIMIZATIONS 

This section provides justifications for the simplifications of 
EAX’ over the basic EAX mode specified by [3].  These 
simplifications are motivated by a desire to reduce the number 
of AES block encryptions required by EAX, and to reduce the 
amount of per-key-related storage needed by a time-optimized 
implementation, without significantly weakening the 
cryptographic strength and resistance to attack that EAX 
offers.  The EAX' optimizations reduce the required per-key 
storage for a time-optimized implementation from those of 
unmodified EAX by K+4B+2T bytes per key (88 bytes when 
AES-128 is the block cipher) to K+2B bytes per key (48 bytes 
when AES-128 is the block cipher), where K is the key size of 
the underlying block cipher, B is the block size of that block 
cipher, and T is the desired authentication tag size, all in bytes.  
For space-optimized implementations, where only K bytes of 
storage per key are required, these optimizations eliminate 
either three extra invocations of AES per message when 
<epsem-data> secrecy is used [1], or five extra invocations 
when it is not used. 

BACKGROUND:  Block ciphers such as AES-128 are 
keyed pseudo-random permutations (PRPs), which map a 
block-size input (e.g., 16 bytes = 128 bits) to a block-size 
output.  The strength and ability to resist cryptanalysis of 
composite cryptographic modes which use this block cipher 
are directly related to the strength and ability to resist 
cryptanalysis of the underlying PRP.  Analysis of a new mode 
must examine its impact on increasing or decreasing this 
strength, as well as any avenues of cryptanalytic attack that 
such a new mode may expose. 

Consideration of the security proof of EAX, which is 
published in [3], indicates that the proof can be modified to 
account for the following optimizations.  Thus the security 
properties of EAX' are equivalent to those of EAX.  Here is 
the list of ways that EAX' differs from EAX and an overview 
of the basic rationale for each. 
 

1. ISSUE:  Reduction of EAX' to two input strings –  
Non-inclusion of CMACk(0n-11 || pad(nullString) ) when 
the EAX input H is null. 
 
JUSTIFICATION:  CMACk(0n-11 || pad(nullString) ) is 
precisely CBCk(01271 || (10127 XOR dbl(dbl(ECBk(0)) )), 
which is a key-dependent constant.  A predictable-to-an-
attacker XOR of a key-dependent constant that is the 
output of a keyed PRP, into a key-dependent variable that 
is itself a combination of keyed PRP outputs, does not 
strengthen the cryptanalytic resistance of the computation, 
because the dimensionality of the resultant composite 
PRP is identical to that without the inclusion.  Therefore 
its exclusion does not weaken the cryptanalytic resistance 
of the computation. 

 
2. ISSUE:  Exclusion of the ciphertext tag input from a 

null plainext string – Conditional non-inclusion of 
CMACk(0n-210 || CTRk(N, nullString)) when the EAX 
input M is null. 

 
JUSTIFICATION:  CTRk(N, nullString) is the null 
string.  Thus CMACk(0n-210 || pad(CTRk(N, nullString)) 
) is precisely CBCk(0n-210 || (10n-1 XOR 
dbl(dbl(ECBk(0))))), which is a key-dependent constant.  
A predictable-to-an-attacker conditional XOR of a key-
dependent constant that is the output of a keyed PRP, into 
a key-dependent variable that is itself a combination of 
keyed PRP outputs, does not strengthen the cryptanalytic 
resistance of the computation, because the dimensionality 
of the resultant composite PRP is identical to that without 
the inclusion.  Therefore the conditional exclusion of this 
XOR does not weaken the cryptanalytic resistance of the 
computation. 

 
3. ISSUE:  Simplified nonce incrementation in CTR-

mode processing – Forcing two bits of the initial nonce 
input to a CTR-mode keyed encryption to zero, to 
eliminate inter-word carries, reduces the average number 
of messages that can be encrypted before nonce reuse 
without reducing the maximum message length that can 
be protected. 

 
JUSTIFICATION:  Rogaway [6] introduced a similar 
optimization in his SIV combined authentication and 
encryption mode, which was developed after EAX and 
which has also been submitted to NIST.  The resulting 
reduction in the average number of messages is at most a 
factor of four.  However, since the other nonce bits are 
unpredictable to an attacker, the attacker cannot determine 
when nonce reuse might occur, and thus cannot exploit 
this potential but undetectable-to-the-attacker nonce 
reuse.  Thus there is no practical reduction in the 
cryptanalytic resistance of the result. 

 
4. ISSUE:  Alternate initial CMAC blocks – Use of 

constants other than 0n, 0n-11, and 0n-210 as the initial 
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constants for the three CMAC computations of EAX. 
 

JUSTIFICATION:  The real requirement in EAX is that 
the three CMAC sequences each start with a value in the 
first block that is disjoint from the values of the first 
blocks of the other sequences, so that even if the 
remainder of their input sequences are identical, their 
outputs will not be.  This will cause the initial values of 
the CBC sequences for each block to differ from that of 
the other blocks in a key-dependent way that is 
unpredictable to an attacker.  The original EAX choices of 
0n, 0n-11, and 0n-210 were arbitrary. 

 
5. ISSUE:  Pre-encryption of each initial CMAC block – 

Inclusion of a key-encrypted starting value in the CMAC' 
CBC computation, in lieu of prepending a block 
containing a known constant to the sequence of blocks to 
be processed by CBC. 

 
JUSTIFICATION:  CMACk (J || S, D, Q) is identical to 
CMAC' (K, Ek(J), S, D, Q).  Equivalently, CMAC' (K, J', 
S, D, Q) is identical to CMACk (Dk(J') || S, D, Q), where 
Dk is the keyed decryption operator – the inverse of the 
keyed encryption operator Ek.  Thus this issue reduces to 
issue 4. 

 
6. ISSUE:  Use of D and Q for the initial CMAC blocks – 

The issue is use of a derived initial value for the first 
block of the conditional CMAC' computation that 
includes a CTR-mode output, where that value is a 
constant multiple (in an appropriate predefined canonical 
GF(2) extension field) of the initial value for the first 
block of the other CMAC' computation, where that 
second initial value is the output of a keyed PRP, in 
contrast to requiring that the initial value for that second 
CMAC computation (which is conditional) be a keyed 
PRP output of an independent initial value. 

 

JUSTIFICATION:  The CMAC' computations here 
always involve CBC of at least two blocks.  As in issue 4, 
the requirement is that the initial value of that CBC 
sequence differs between the two sequences, in a key-
dependent way that is unpredictable to an attacker.  
Whether the following CMAC' inputs to the two 
sequences are identical or not, the results of the 
corresponding CBC sequences are different because those 
first non-zero outputs of the CBC-chaining process differ 
for the two CBC sequences.  Because the second CMAC' 
computation occurs only when there is Plaintext/ 
Ciphertext, so that the corresponding input is non-null, the 
results of the second CMAC' operator always differ from 
that of the first.  This is the weakest justification of this 
set of six, but a careful analysis of the original security 
proof of EAX indicates that this optimization, which 
eliminates the need for time-optimized implementations 
to store 32 extra bytes per key, does not degrade the 
security of the EAX mode. 

IV. EAX’ ALGORITHM  

EAX’ takes as input a Cleartext (N) and an optional Plaintext 
(P) and produce as output a Message Authentication Code (T) 
and a corresponding optional Ciphertext (C). 

[ P ] 

 [ C ] T 

K 

N 

N 

EAX’ 

  
Figure 1: EAX’ Overview 

 
Each component of the message is defined as follows: 

N : Cleartext, part of the ANSI C12.22 Message that is 
authenticated but not encrypted for secrecy. 

P : Plaintext, part of the ANSI C12.22 Message which is 
encrypted for secrecy.  When used for message secrecy, the 
Plaintext is composed of the <epsem-data> and the 
optional <padding>. <epsem-data> is the <user-
information> portion of the Association Control Service 
Element (ACSE) [9], and thus a subset of the full 
application protocol data unit. 

C : Ciphertext, part of the ANSI C12.22 Message after 
encryption for secrecy, corresponding directly to the plain 
text P. 

T : Four bytes MAC (Message Authentication Code) inserted 
at the end of the ANSI C12.22 Message. 

NOTE: To provide interoperable security it is absolutely 
critical that N, P, C, and T are generated and processed in a 
consistent fashion.  The ANSI C12.22 standard allows 
substantial flexibility in message transmission.  In its 
application of ACSE, C12.22 allows for relative object 
identifiers. These identifiers must be expanded to absolute 
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identifiers for cryptographic processing. Section 5.2.4 of the 
ANSI C12.22 standard provides specific details regarding how 
a C12.22 Message is therefore canonified into a consistent 
standard form for cryptographic processing.  N and P must be 
generated according to these rules.  C and T are generated 
based on the algorithms below. 
 
The cryptographic key, K, is defined as follows: 

K : Cryptographic secret key. The key length is sized 
appropriate to the block cipher.  The default value is set to 
AES-128/EAX’. The EAX’ mode supports using alternate 
block ciphers.  AES-128 has a block size of 16 bytes (128 
bits). 

EAX’ is described in a series of algorithms which follow, 
where these algorithms make use of the following operators 
and notations: 

Table 1: Operators and notations used 
Operation Definition 
X ← Y Y assigned to X 
X  & Y Bitwise AND of X and Y where X and Y and the 

result are the same size 
X XOR Y Bitwise exclusive-or of X and Y where X and Y 

and the result are the same size 
X XORend Y Bitwise exclusive-or (XOR) of Y after alignment 

with the end of string X where X is longer than Y 
and the result is the same size as X.  This operation 
is exactly equivalent to X XOR (0size(X)-size(Y)|| Y). 

size(X) Length in bits of X 
AESK(X) Encryption of X using AES with key K.  X, K and 

the result are all exactly n bits long. 
X || Y The concatenation of strings X and Y 
X [first m bits] Most significant m bits of X 
msb(X) Most significant single bit of X 
X << 1 Left shift of X by one position (i.e., with a carry-in 

of 0) 
ceiling(X) Ceiling function, which returns the smallest integer 

not less than X  
n The block size in bits of the underlying block 

cipher (for AES-128, n = 128) 
0m m bits of 0.  (i.e., 04103 would be 00001000) 

1m m bits of 1.  (i.e., 140120 would be 11110110) 

 

A. Algorithm dbl(X) 
For this algorithm the minimal weight irreducible 
polynomial rb is defined exactly as in [4]. 

-- modulo the first minimal weight irreducible polynomial of 
degree n 

10 define rb as 012010000111   -- for n = 128 
11 if msb(X) = 0       -- most significant bit 
12 then return X << 1 
13 else return (X << 1) XOR rb 

 

B. Algorithm deriveKeyDependentConstants(K) 
20 L ← AESK(0n)  

-- For the AES-128 block cipher n = 128 
21 D ← dbl(L)  

-- D is double the value of L in an appropriate field, as 
defined by rb 

22 Q ← dbl(D)  
-- Q is quadruple the value of L  
-- dbl(dbl(L))  
-- in the same field 

23 return D and Q 
 

C. Algorithm pad (S, D, Q) 

30 if (size(S) > 0) and (size(S) mod n = 0)   -- n equals Cipher 
block size (in bits) 

31 then return S XORend D   -- XORs into end of string 

32 else return (S || 10n−1−(size(S) mod n)) XORend Q   -- XORs 
into end of string; applies to null string 

 

D. Algorithm CBC'K (t, S) 

40 Let S1 ... Sm ← S where size(Si) = n   -- n equals Cipher 
block size (in bits) 

41 C0 ← t 
42 for i ← 1 to m 
43 do Ci ← AESK(Si XOR Ci−1) 
44 return Cm 

 

The following definition of CMAC' is derived from [4].  It has 
been recast into nomenclature similar to that used in the EAX 
papers and the syntax used by the ANSI C12.22 standard. 

 

E. Algorithm CMAC’K (t, S, D, Q) 

50 return CBC'K (t, pad (S, D, Q)) 

 

S 

K 

pad 

XOR XOR XOR t 

AES AES AES 

CMAC’K 

 
Figure 2: Computation algorithm of CMAC’K 
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F. Algorithm CTR'K (N, S) The following definition of CTR chaining mode is derived 
from [5].  It has been recast into nomenclature similar to that 
used in the EAX papers and the syntax used in the ANSI 
C12.22 standard. 

Note:  For this algorithm, the counter Ctr can be thought of as 
a single n-bit number represented as m bytes with the most 
significant byte placed first, (byte 0) and least significant byte 
placed last (byte m-1). By contrast, all the other functions that 
implement EAX’, including AES, are defined with the least 
significant byte placed first.  This was done as an 
acknowledgement of extant existing practice in 
implementations of CTR mode as defined in [5]. 
 

60 m ←ceiling(size(S)/n) 
61 Ctr ← N & 1n−32 0115 0115     

-- Optimization, to avoid inter-word carries. 
62    -- For AES, n=128 and 1n−32 0115 0115 resolves to  
63    -- FFFF FFFF FFFF FFFF FFFF FFFF 7FFF 7FFFH  
64 Pad ← AESK(Ctr) || AESK(Ctr+1) || ... || AESK(Ctr+m−1) 
65 return S XOR Pad [first size(P) bits] 

 

 

CTR'K 

Ctr 

K 

N 

S 

Ctr + 1 Ctr + 2 

FFFF FFFF FFFF FFFF FFFF FFFF 7FFF 7FFFH 

& 

AES AES AES 

XOR XOR XOR 

 
Figure 3: Computation algorithm of CTR’K 

 
  

G. Algorithm EAX'.EncryptK (N, P) Encryption 
When confidentiality is selected 70 deriveKeyDependentConstants(K)   

-- need be done only once per new key value 
71 Tag ← N ← CMACK (D, N, D, Q)    

-- EAX’ optimization, first D used instead of EK(0n) 
72 if size(P) > 0    

-- EAX’ optimization, no contribution of a key-dependent 
constant for an empty C 

73 then  
C ← nullString 

74 else  
75     C ← CTR'K (N, P) 
76 Tag ← Tag XOR CMACK (Q, C, D, Q) }   

-- EAX’ optimization, first Q used instead of EK(0n-210) 
77 T ← Tag [first 32 bits] 
78 return C and T 

N [ P ] 

N 

[ C ] 

CMAC’K (D, N) 

CTR’K (N, P) 

CMAC’K (Q, C) 

XOR 

T 

 
Figure 4: Encryption algorithm when confidentiality is selected 

 



 

H. Algorithm EAX'.DecryptK (N, C, T) 

80 deriveKeyDependentConstants(K)   
-- need be done only once per new key value 

81 Tag ← N ← CMACK (D, N, D, Q)     
-- EAX’ optimization, first D used instead of EK(0n) 

82 if size(C) = 0 then    
-- EAX’ optimization, no contribution of a key-dependent 
constant for an empty C 

83       P ← nullString 
84       if T ≠ Tag [first 32 bits] then  

      return INVALID  
   else return P -- message is VALID 

85 else  
86      Tag ← Tag XOR CMACK (Q, C, D, Q)    

-- EAX’ optimization, first Q used instead of EK(0n-210) 
87       if T ≠ Tag [first 32 bits] then return INVALID 
88       P ← CTR'K (N, C)    

-- decrypt Ciphertext only when tags match 
89 return P -- message is VALID 
 

Decryption 
When confidentiality is selected 

N 

N 

C 

P T’ 

T 

XOR 

CMAC’K (D, N) CMAC’K (Q, C) 

CTR’K (N, P) 

= 

Figure 5: Decryption algorithm when confidentiality is selected 

V. TEST VECTORS 
The following test vectors are for use when the underlying 
block cipher is AES-128.  All inputs and outputs are shown as 
the hexadecimal representation of sequential bytes. 

A. Test Vector 1 
1) Inputs: 

Key: 
 01 02 03 04 05 06 07 08 01 02 03 04 05 06 07 08  
Plaintext: 
 a2 0c 06 0a 60 7c 86 f7 54 01 16 00 17 02 a7 03  
 02 01 04 a8 03 02 01 02 ac 0f a2 0d a0 0b a1 09  
 80 01 02 81 04 48 e9 93 88 be 19 28 17 81 15 9a  
 a6 0d 06 0b 60 7c 86 f7 54 01 16 00 17 82 11 02  
 48 e9 93 88  
Cleartext: 
 54 45 4d 50 0b 40 00 07 00 05 1a 00 00 02 00 e4  
 

2) Outputs: 
Ciphertext: 

 40 31 cc 95 7d 4e df 9a 35 7f 3d b0 fa 9f e8 38  
MAC: 
 65 55 c0 29  

B. Test Vector 2 
1) Inputs: 

Key: 
 01 02 03 04 05 06 07 08 01 02 03 04 05 06 07 08  
Plaintext: 
 a2 0c 06 0a 60 7c 86 f7 54 01 16 00 7b 02 a7 03  
 02 01 04 a8 03 02 01 02 ac 0f a2 0d a0 0b a1 09  
 80 01 02 81 04 48 f3 d2 f8 be 19 28 17 81 15 9a  
 a6 0d 06 0b 60 7c 86 f7 54 01 16 00 7b 82 11 02  
 48 f3 d2 f8  
Cleartext: 
 54 45 4d 50 0b 40 00 07 00 05 1a 00 00 02 00 e4  
 

2) Outputs: 
Ciphertext: 
 8d 2f bb 7a 0a 8c 4d 40 ed aa 10 a4 64 31 c9 b8  
MAC: 
 fe c6 d9 e8  

C. Test Vector 3 
1) Inputs: 

Key: 
 10 20 30 40 50 60 70 80 90 a0 b0 c0 d0 e0 f0 00  
Plaintext: 
 a2 0e 06 0c 60 86 48 01 86 fc 2f 81 1c aa 4e 01  
 a8 06 02 04 39 a0 0e bb ac 0f a2 0d a0 0b a1 09  
 80 01 00 81 04 4b ce e2 c3 be 25 28 23 81 21 88  
 a6 0a 06 08 2b 06 01 04 01 82 85 63 00 4b ce e2  
 c3  
Cleartext: 
 17 51 30 30 30 30 30 30 30 30 30 30 30 30 30 30  
 30 30 30 30 30 30 00 00 03 30 00 01  
 

2) Outputs: 
Ciphertext: 
 9c f3 2c 7e c2 4c 25 0b e7 b0 74 9f ee e7 1a 22  
 0d 0e ee 97 6e c2 3d bf 0c aa 08 ea  
MAC: 
 00 54 3e 66  

D. Test Vector 4 
1) Inputs: 

Key: 
 66 24 c7 e2 30 34 e4 03 6f e5 cb 3a 8b 5d ab 44  
Plaintext: 
 a2 11 06 0f 2b 06 01 04 01 82 85 63 8e 7f 85 f1  
 c2 4e 01 a8 06 02 04 2b c8 1a a1 ac 0f a2 0d a0  
 0b a1 09 80 01 00 81 04 4b 97 d2 cc be 39 28 37  
 81 35 88 a6 09 06 07 2b 06 01 04 82 85 63 00 4b  
 97 d2 cc  
Cleartext: 
 17 51 30 30 30 30 30 30 30 30 30 30 30 30 30 30  
 30 30 30 30 30 30 00 00 03 30 00 01 03 30 00 78  
 03 30 00 79 03 30 00 7a 03 30 00 7b 03 30 00 7d  
 

2) Outputs: 
Ciphertext: 
 be b0 98 9f ad b0 20 eb 72 ba 46 35 3c c0 a2 ac  
 2a 00 7a 10 1a fe ba f9 68 0d 3b 96 59 f9 91 12  
 1b 86 5f 25 4f 6a c9 2c dd 21 3d 31 e3 c4 d2 ca  
MAC: 
 e6 f8 9b 6d  
 
 

 



 

 

VI. IPR STATEMENT 

NEMA gives permission to NIST to reproduce a description of 
the EAX’ algorithm which is Appendix I of the ANSI C12.22-
2008 standard.    

The origin of the algorithm is as described herein and NEMA 
makes no IPR claims to the EAX’ algorithm. 
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