
The Galois/Counter Mode of Operation (GCM)

David A. McGrew John Viega
Cisco Systems, Inc. Secure Software

170 West Tasman Drive 4100 Lafayette Center Drive, Suite 100
San Jose, CA 95032 Chantilly, VA 20151
mcgrew@cisco.com viega@securesoftware.com

Contents

1 Introduction 1

2 Definition 2

2.1 Inputs and Outputs . 2

2.2 Notation . 3

2.3 Encryption . 4

2.4 Decryption . 7

2.5 Multiplication in GF (2128) . 7

3 The Field GF (2128) 8

4 Implementation 10

4.1 Software . 10

4.2 Hardware . 13

5 Using GCM 15

6 Properties and Rationale 16

7 Security 22

A GCM for 64-bit block ciphers 25

B AES Test Vectors 27

GCM

1 Introduction

Galois/Counter Mode (GCM) is a block cipher mode of operation that uses universal hashing over
a binary Galois field to provide authenticated encryption. It can be implemented in hardware to
achieve high speeds with low cost and low latency. Software implementations can achieve excel­
lent performance by using table-driven field operations. It uses mechanisms that are supported
by a well-understood theoretical foundation, and its security follows from a single reasonable
assumption about the security of the block cipher.

There is a compelling need for a mode of operation that can efficiently provide authenticated
encryption at speeds of 10 gigabits per second and above in hardware, perform well in software,
and is free of intellectual property restrictions. The mode must admit pipelined and paralellized
implementations and have minimal computational latency in order to be useful at high data rates.
Counter mode has emerged as the best method for high-speed encryption, because it meets those
requirements. However, there is no suitable standard message authentication algorithm. This fact
leaves us in the situation in which we can encrypt at high speed, but we cannot provide message
authentication that can keep up with our cipher. This lack is especially conspicuous since counter
mode provides no protection against bit-flipping attacks.

GCM fills this need, while no other proposed mode meets the same criteria. CBC-MAC [1, Ap­
pendix F] and the modes that use it to provide authentication, such as CCM [2], EAX [3], and
OMAC [4], cannot be pipelined or parallelized, and thus are unsuitable for high data rates. OCB
[5] is covered by multiple intellectual property claims. CWC [6] does not share those problems,
but is less appropriate for high speed implementations. In particular, CWC’s message authen­
tication component uses 127-bit integer multiplication operations whose implementation costs
exceed those of even AES counter mode at high speeds, and it has a circuit depth that is twice
that of GCM. In contrast, the binary field multiplication used to provide authentication in GCM is
easily implemented at a fraction of the cost of counter mode at high speeds.

GCM also has additional useful properties. It is capable of acting as a stand-alone MAC, authen­
ticating messages when there is no data to encrypt, with no modifications. Importantly, it can be
used as an incremental MAC [7]: if an authentication tag is computed for a message, then part of
the message is changed, an authentication tag can be computed for the new message with compu­
tational cost proportional to the number of bits that were changed. This feature is unique among
all of the proposed modes.

Another useful property is that it accepts initialization vectors of arbitrary length, which makes it
easier for applications to meet the requirement that all IVs be distinct. In many situations in which
authenticated encryption is needed, there is a data element that could be used as a nonce, or as a
part of a nonce, except that the length of the element(s) may exceed the block size of the cipher. In
GCM, a nonce of any size can be used as the IV. This property is shared with EAX, but no other

1

http:cipher.In

GCM

proposed mode.

This document is organized as follows. Section 2 contains a complete specification of GCM, and
is the only normative part of this document. Section 3 contains an overview of finite fields and
a detailed description of the field representation used in GCM. Implementation strategies are de­
scribed in Section 4, along with a discussion of their performance. A summary of the mode’s
properties and a rationale for its design is offered in Section 6, along with a detailed performance
comparison with other modes. The security analysis is summarized in Section 7. Appendix A
describes the use of GCM for 64-bit block ciphers. Test data that can be used for validating AES
GCM implementations is contained in Appendix B.

2 Definition

This section contains the complete definition of GCM for 128-bit block ciphers. The mode is
slightly different when applied to 64-bit block ciphers; those differences are outlined in Appendix A.

2.1 Inputs and Outputs

GCM has two operations, authenticated encryption and authenticated decryption. The authenti­
cated encryption operation has four inputs, each of which is a bit string:

•	 A secret key K, whose length is appropriate for the underlying block cipher.

•	 An initialization vector IV , that can have any number of bits between 1 and 264. For a fixed
value of the key, each IV value must be distinct, but need not have equal lengths. 96-bit
IV values can be processed more efficiently, so that length is recommended for situations in
which efficiency is critical.

•	 A plaintext P , which can have any number of bits between 0 and 239 − 256.

•	 Additional authenticated data (AAD), which is denoted as A. This data is authenticated, but
not encrypted, and can have any number of bits between 0 and 264 .

There are two outputs:

•	 A ciphertext C whose length is exactly that of the plaintext P .

2

GCM	 2.2 Notation

•	 An authentication tag T , whose length can be any value between 0 and 128. The length of
the tag is denoted as t.

The authenticated decryption operation has five inputs: K, IV , C, A, and T . It has only a single
output, either the plaintext value P or a special symbol FAIL that indicates that the inputs are not
authentic. A ciphertext C, initialization vector IV , additional authenticated data A and tag T are
authentic for key K when they are generated by the encrypt operation with inputs K, IV , A and
P , for some plaintext P . The authenticated decrypt operation will, with high probability, return
FAIL whenever its inputs were not created by the encrypt operation with the identical key.

The additional authenticated data A is used to protect information that needs to be authenticated,
but which must be left unencrypted. When using GCM to secure a network protocol, this input
could include addresses, ports, sequence numbers, protocol version numbers, and other fields that
indicate how the plaintext should be handled, forwarded, or processed. In many situations, it is
desirable to authenticate these fields, though they must be left in the clear to allow the network or
system to function properly. When this data is included in the AAD, authentication is provided
without copying the data into the ciphertext.

The primary purpose of the IV is to be a nonce, that is, to be distinct for each invocation of the
encryption operation for a fixed key. It is acceptable for the IV to be generated randomly, as long
as the distinctness of the IV values is highly likely. The IV is authenticated, and it is not necessary
to include it in the AAD field.

Both confidentiality and message authentication is provided on the plaintext. The strength of the
authentication of P, IV and A is determined by the length t of the authentication tag. When the
length of P is zero, GCM acts as a MAC on the input A. The mode of operation that uses GCM as
a stand-alone message authentication code is denoted as GMAC.

An example use of GCM for network security is provided in Section 5, which shows how the
inputs and outputs can be used in a typical cryptographic application.

2.2 Notation

Our notation follows that of the Recommendation for Block Cipher Modes of Operation [8]. The
two main functions used in GCM are block cipher encryption and multiplication over the field
GF (2128). The block cipher encryption of the value X with the key K is denoted as E(K, X). The
multiplication of two elements X, Y ∈ GF (2128) is denoted as X · Y , and the addition of X and Y
is denoted as X ⊕ Y . Addition in this field is equivalent to the bitwise exclusive-or operation, and
the multiplication operation is defined in Section 2.5.

3

GCM 2.3 Encryption

The function len() returns a 64-bit string containing the nonnegative integer describing the num­
ber of bits in its argument, with the least significant bit on the right. The expression 0l denotes a
string of l zero bits, and AiB denotes the concatenation of two bit strings A and B. The function
MSBt(S) returns the bit string containing only the most significant (leftmost) t bits of S, and the
symbol {} denotes the bit string with zero length.

2.3 Encryption

Let n and u denote the unique pair of positive integers such that the total number of bits in the
plaintext is (n − 1)128 + u, where 1 ≤ u ≤ 128. The plaintext consists of a sequence of n bit
strings, in which the bit length of the last bit string is u, and the bit length of the other bit strings
is 128. The sequence is denoted P1, P2, . . . , Pn−1, P ∗ , and the bit strings are called data blocks, n
although the last bit string, P ∗ , may not be a complete block. Similarly, the ciphertext is denoted n
as C1, C2, . . . , Cn−1, C

∗, where the number of bits in the final block C∗ is u. The additional au­n n
thenticated data A is denoted as A1, A2, . . . , Am−1, A

∗ , where the last bit string A∗ may be a m m
partial block of length v, and m and v denote the unique pair of positive integers such that the
total number of bits in A is (m − 1)128 + v and 1 ≤ v ≤ 128.

The authenticated encryption operation is defined by the following equations:

= E(K, 0128)H
IV i0311 if len(IV) = 96

Y0 =
GHASH(H, {}, IV) otherwise.

Yi = incr(Yi−1) for i = 1, . . . , n (1)
Ci = Pi ⊕ E(K, Yi) for i = 1, . . . , n − 1

C ∗ = P ∗ ⊕ MSBu(E(K, Yn))n n

T = MSBt(GHASH(H, A, C) ⊕ E(K, Y0))

Successive counter values are generated using the function incr(), which treats the rightmost 32
bits of its argument as a nonnegative integer with the least significant bit on the right, and incre­
ments this value modulo 232 . More formally, the value of incr(F iI) is F i(I + 1 mod 232). The
encryption process is illustrated in Figure 1.

The function GHASH is defined by GHASH(H, A, C) = Xm+n+1, where the inputs A and C are

4

GCM 2.3 Encryption

E

Counter 1

Plaintext 1

Ciphertext 1

E

Counter 2

Plaintext 2

Ciphertext 2

incr

K K

mult H mult H

Auth Data 1

mult H

len(A) || len(C)

Auth Tag

mult H

E

Counter 0 incr

K

Figure 1: The authenticated encryption operation. For simplicity, a case with only a single block of
additional authenticated data (labeled Auth Data 1) and two blocks of plaintext is shown. Here EK

denotes the block cipher encryption using the key K, multH denotes multiplication in GF (2128)
by the hash key H , and incr denotes the counter increment function.

5

GCM 2.3 Encryption

E

Counter 1

Plaintext 1

Ciphertext 1

E

Counter 2

Plaintext 2

Ciphertext 2

incr

K K

mult H mult H

Auth Data 1

mult H

len(A) || len(C)

Auth Tag

mult H

E

Counter 0 incr

K

Figure 2: The authenticated decryption operation, showing the same case as in Figure 1.

6

GCM 2.4 Decryption

formatted as described above, and the variables Xi for i = 0, . . . ,m + n + 1 are defined as

Xi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for i = 0

(Xi−1 ⊕ Ai) · H for i = 1, . . . ,m − 1

i0128−v)) · H(Xm−1 ⊕ (A∗ for i = mm (2)
(Xi−1 ⊕ Ci) · H for i = m + 1, . . . ,m + n − 1

i0128−u)) · H(Xm+n−1 ⊕ (C∗ for i = m + nm

(Xm+n ⊕ (len(A)ilen(C))) · H for i = m + n + 1.

2.4 Decryption

The authenticated decryption operation is similar to the encrypt operation, but with the order of
the hash step and encrypt step reversed. More formally, it is defined by the following equations:

= E(K, 0128)H

IV i0311 if len(IV) = 96
Y0 =

GHASH(H, {}, IV) otherwise.

T ' = MSBt(GHASH(H, A, C) ⊕ E(K, Y0))
Yi = incr(Yi−1) for i = 1, . . . , n

Pi = Ci ⊕ E(K, Yi) for i = 1, . . . , n

P ∗ = C ∗ ⊕ MSBu(E(K, Yn))n n

The tag T ' that is computed by the decryption operation is compared to the tag T associated with
the ciphertext C. If the two tags match (in both length and value), then the ciphertext is returned.
Otherwise, the special symbol FAIL is returned. The decryption process is illustrated in Figure 2.

2.5 Multiplication in GF (2128)

The multiplication operation is defined as an operation on bit vectors in order to simplify the
specification. This definition corresponds to the particular choice of the field representation used
in GCM. Section 3 provides background information on this field and its representation, and Sec­
tion 4 describes some strategies for efficient implementation.

Each element is a vector of 128 bits. The ith bit of an element X is denoted as Xi. The leftmost
bit is X0, and the rightmost bit is X127. The multiplication operation uses the special element
R = 11100001i0120 , and is defined in Algorithm 1. The function rightshift() moves the bits of its

7

GCM

GF (2128).Algorithm 1 Multiplication in Computes the value of Z = X · Y , where X, Y and
Z ∈ GF (2128).

Z ← 0, V ← X
for i = 0 to 127 do

if Yi = 1 then
Z ← Z ⊕ V

end if
if V127 = 0 then

V ← rightshift(V)
else

V ← rightshift(V) ⊕ R
end if

end for
return Z

argument one bit to the right. More formally, whenever W = rightshift(V), then Wi = Vi−1 for
1 ≤ i ≤ 127 and W0 = 0.

3 The Field GF (2128)

A finite field is defined by its multiplication and addition operations. These operations obey
the basic algebraic properties that one expects from multiplication and addition (commutativity,
associativity, and distributivity). Both operations map a pair of field elements onto another field
element. In a polynomial basis, the multiplication of two elements X and Y consists of multiplying
the polynomial representing X with the polynomial representing Y , then dividing the resulting
256-bit polynomial by the field polynomial; the 128-bit remainder is the result. We describe this
operation in more detail below. The field polynomial is fixed and determines the representation
of the field. GCM uses the polynomial f = 1 + α + α2 + α7 + α128 .

The addition of two elements X and Y consists of adding the polynomials together. Because each
coefficient is added independently, and the coefficients are in GF (2), this operation is identical to
the bitwise exclusive-or of X and Y . No reduction operation is needed. Subtraction over GF (2128)
is identical to addition, because the field GF (2) has that property.

To describe multiplication, we take the small first step of showing how to multiply a field element
X by the field element P defined by

1 for i = 1
Pi = (3)

0 otherwise,

8

GCM

then we show how to use this method to multiply any two field elements. The element P corre­
sponds to the polynomial α. The multiplication of a polynomial by α is simple; it corresponds to
a shift of indices:

α · (x0 + x1α
1 + x2α

2 + . . . + +x127α
127) = x0α + x1α

2 + x2α
3 + . . . + +x127α

128 . (4)

If x127 = 0, then the product is a polynomial of degree 127. Otherwise, we must divide the
result by the field polynomial f to find the remainder. To find the remainder of a polynomial
α128 + a, where a = a0 + a1α + a2α

2 + . . . + a127α
127 is a polynomial of degree 127, we need to find

polynomials q and r such that α128 + a = q · f + r, where the remainder r has degree 127. We can
solve this equation for r when q = 1:

r = α128 + a − f = a + 1 + α + α2 + α7 . (5)

The highest term of f is canceled away (since addition is over GF (2)), and the net effect is just
to add the lowest terms of f to a. To compute Y = X · P , we combine the two steps of shifting
coefficients and adding in the lowest terms of f if the highest term of X is equal to one. In bit
operations, this can be expressed as

if X127 = 0 then
Y ← rightshift(X)

else
Y ← rightshift(X) ⊕ R

end if

where R is the element whose leftmost eight bits are 11100001, and whose rightmost 120 bits are
all zeros.

In order to multiply two arbitrary field elements X and Y , we can express Y in terms of P , then
use the method described above. This method is used in the following algorithm, which takes X
and Y as inputs and returns their product.

Z ← 0, V ← X
for i = 0 to 127 do

if Yi = 1 then
Z ← Z ⊕ V

end if
V ← V · P

end for
return Z

In this algorithm, V runs through the values of X, X ·P, X ·P 2 , . . ., and the powers of P correspond
to the powers of α, modulo the field polynomial f . This method is identical to Algorithm 1, but is
defined in terms of field elements instead of bit operations.

9

GCM

4 Implementation

Implementing GCM is straightforward in both hardware and software given an implementation
of the underlying block cipher and the multiplication operation over GF (2128). In this section, we
provide an overview of efficient hardware and software implementations, and a detailed descrip­
tion of the multiplication operation in software.

The number of block cipher invocations needed to encrypt an p-bit plaintext with AES GCM is
equal to lp/128l + 1. The same number of multiplications over GF (2128) are needed. An addi­
tional block cipher invocation is needed to compute the hash key H if it is not stored. If there
are an additional q bits of data to be authenticated, then an additional lq/128l multiplications
are needed. The decrypt operation is similar to the encrypt operation and shares its performance
characteristics. We provide more detailed performance data for the implementation methods dis­
cussed below.

4.1 Software

Multiplication in a binary fiend can use a variety of time-memory tradeoffs. It can be implemented
with no key-dependent memory, in which case it will generally run several times slower than AES.
Implementations that are willing to sacrifice modest amounts of memory can easily realize speeds
greater than that of AES.

The operation H · X is linear in the bits of X , over the field GF (2). This property can be exploited
to make efficient table-driven implementations, in which tables computed for a particular value of
H can be used to multiply H by an arbitrary element X . The simplest method computes Z = X ·H
as

Z = M0[byte(X, 0)] ⊕ M1[byte(X, 1)] ⊕ . . . ⊕ M15[byte(X, 15)], (6)

where byte(X, i) denotes the ith byte of the element X .

To show how this method works, we introduce a decomposition of a field element into a sum of
field elements which have only eight nonzero bits. We denote as S the set of elements in GF (2128)
that have the rightmost 120 bits equal to zero. For any element A ∈ S, multiplying A with any
other element H ∈ GF (2128) is relatively simple. For a fixed element H we can construct a table
M such that the product A · H can be computed easily. Because there are only 28 = 256 elements
in S, the table can be constructed by looping over all 256 cases and computing each result.

10

GCM 4.1 Software

Our decomposition of X is described by the equation

151
X = xi · P 8i , where xi ∈ S for all i, (7)

i=0

where P is the element associated with α and defined in Equation 3. In this decomposition, the
element xi has the ith byte of X as its nonzero part. The product H · X can be expressed as

15 151 1
H · X = xi · H · P 8i = Mi[byte(X, i)]. (8)

i=0 i=0

Each table M0,M1, . . . M15 is initialized before the multiplication algorithm is run so that its entries
satisfy the equation Mi[byte(X, i)] = xi · H · P 8i . Each of the 16 tables holds 256 values, each of
which is 16 bytes long, for a total of 65,536 bytes. When this table is used in GGM, it is key-
dependent and must be computed at key initialization time and stored along with the key. To
conserve memory, we could instead decompose X into 32 components with four bits each, for a
total of 8,192 bytes.

With a small increase in the amount of computation, we can reduce the storage requirements
considerably, as described by Shoup [9]. We can use only the table M0 defined above to multiply
an arbitrary element X ∈ GF (2128) by H as follows. We first express the product as

15 151 1
H · X = H · xi · P 8i = (xi · H) · P 8i ,

i=0 i=0

This equation leads to the following simple algorithm:
Z ← 0

for i = 15 to 0 do

Z ← (Z ⊕ (xi · H)) · P 8

end for
return Z

Note that i loops from 15 down to zero so that the rightmost byte is associated with the lowest
power of P 8 . In order to use this method, we need an efficient way to compute X · P 8 for an
arbitrary element X . We make use of the decomposition in Equation 7 again, and express the
product as

151
· P 8(i+1)X · P 8 = xi . (9)

i=0

The expression x · P 8(i+1), for x ∈ S and 0 ≤ i < 15, corresponds to a simple bit-rotation of the
element x to the right by eight bits. The expression x · P 128 is not so simple, but can be computed

11

GCM 4.1 Software

Algorithm 2 Computes Z = X · H using the tables M0 and R.
Z ← 0
for i = 15 to 0 do

Z ← Z ⊕ M0[byte(X, i)]
A ← byte(X, 15)
for j = 15 to 1 do

byte(X, j) ← byte(X, j − 1)
end for
Z ← Z ⊕ R[A]

end for
return Z

Method Storage requirement Throughput (cycles per byte)
Simple, 8-bit tables
Simple, 4-bit tables
Shoup’s, 8-bit tables
Shoup’s, 4-bit tables
No tables

65,535 bytes/key
8,192 bytes/key
1024 bytes + 4096 bytes/key
64 bytes + 256 bytes/key
16 bytes/key

13.1
17.3
32.1
69.3
119

Table 1: The throughput of GHASH using various different methods for the Galois field multipli­
cation on a Motorola G4 processor.

using a table, as we did above. In the following, we assume that there is a table R containing these
products. Algorithm 2 details how these methods can be combined.

The table M0 requires only 4096 bytes of storage. Each elements of the table R has its rightmost
112 bits equal to zero. In practice, those bits need not be stored, so that table contains 1024 bytes.
It is not key-dependent. Storage requirements can be reduced further by using a decomposition
into four-bit elements, so that M0 and R consume 256 bytes and 64 bytes, respectively.

The performance of these methods is outlined in Table 1, which gives the throughput for a C
implementation of GHASH using the strategies discussed above on a Motorola G4 processor (a 32­
bit RISC CPU). These times should be compared to that of the OpenSSL [10] optimized C version
of AES, which ran at 33.0 cycles per byte on the same platform, and requires 4096 bytes + 160
bytes/key of storage. The GNU C compiler (gcc version 3.3) was used in all cases.

Because the computation of the tables used in multiplication introduces a delay between the time
that a key is provided and the time that the key can be used, it is desirable to minimize amount
of time required for that computation. Below we outline a novel method for computing table
M0 quickly. The efficiency in this method comes from the use of the information contained in
the parts of the table that have already been computed to find the remaining entries. Each table

12

GCM 4.2 Hardware

entry that has an index that is a power of two contains a product of H times a power of P . The
other elements of the table can computed by summing together these elements. For example,
M [128] = H and M [64] = H · P . The index 192 (decimal) has a binary decomposition of 11000000,
so M [192] = H ⊕ H · P = M [64] ⊕ M [128]. The table can be computed using Algorithm 3,
which makes a single pass over the data, using only 247 field additions and eight ‘mutliply by P ’
operations. The other tables M1,M2, . . . ,M15 can be computed using similar algorithms.

Algorithm 3 Computes the table M given an element H ∈ GF (2128).
M [128] ← H , i ← 64
while i > 0 do

M [i] ← M [2i] · P
i ← li/2J

end while
i ← 2
while i < 128 do

for j = 1 to i − 1 do
M [i + j] = M [i] ⊕ M [j]

end for
i ← 2i

end while
M [0] ← 0128

4.2 Hardware

In this section, we outline a pipelined hardware design, which is illustrated in Figure 3. The trape­
zoids at the top and bottom denote inputs and outputs, respectively. The rhomboids denote the
points at which data paths are switched. There are three inputs: data that is authenticated-only
(AAD), the IV, and the plaintext. The IV is fed into the increment function, which then outputs
successive counter values that are fed into the block cipher pipeline, shown as EK in the fig­
ure. The first encrypted counter is sent to encrypt the GHASH output (path 3), then the output
of that function is switched so that the other encrypted counters are exored with the plaintext
to form the ciphertext (path 2). The authenticated-only data is fed into the GHASH function
(path 1), then the input of that function is switched to the ciphertext (path 2). After all of the
data input to GHASH has been processed, the output of that function is exored with the fist en­
crypted counter, producing the authentication tag. In this design, the tag-generating pipeline and
ciphertext-generating pipelines are independent, except for the tag-encryption step. These two
pipelines can be made completely independent by adding another AES engine dedicated to the
encryption of the GHASH output.

13

GCM 4.2 Hardware

incr

Emult

IV plaintext

ciphertexttag

1. auth only path
2. normal path
3. hash encrypting path

AAD

H K

Figure 3: A hardware implementation of GCM, showing the different data paths through the
circuit.

14

GCM

Binary Galois field multiplication is especially suitable for hardware implementations. Many im­
plementation strategies are discussed in the literature. Parr [11] summarizes the efficiency of var­
ious finite field multiplication methods for GF (2q) as follows:

Method Time Area

Parallel 1 O(q2)
Digit Serial [12] q/D O(qD)
Bit Serial q O(q)
Super Serial [13] qE O(q/E)

The bit serial method is a direct implementation of Algorithm 1. The parallel method computes
the product in a single clock; it essentially unwinds the q loops of the bit serial method. The other
methods trade off circuit area against computation time. With q = 128, the parallel method is
practical, and it can keep up with any pipelined implementation of AES. In many cases, the digit
serial method may provide a worthwhile tradeoff; it has performance parameters between the
serial and parallel methods. Algorithm 2 is structurally similar to a digit serial circuit, though a
hardware design would use a dedicated circuit rather than a table.

The multiply operation can be performed in a single clock, or a small number of clocks, without
its area cost dominating the total cost of the GCM circuit. Thus a straightforward implementation
using a single digit serial or parallel multiplier appears to be useful. Alternately, it is possible to
parallelize the multiplication step, as observed in [6]. For example, there can be two multipliers,
one of which works on the even blocks X0, X2, X4, . . ., and one of which works on the odd blocks
X1, X3, X5, . . . in Equation 2. This method follows from the fact that

(((((X5 · K ⊕ X4) · K ⊕ X3) · K ⊕ X2) · K ⊕ X1) · K ⊕ X0) · K =
((X5 · K2 ⊕ X3) · K2 ⊕ X1) · K2 ⊕ ((X4 · K2 ⊕ X2) · K2 ⊕ X0) · K .

5 Using GCM

This section illustrates some uses of GCM. An example use for protecting a network packet flow is
shown in Figures 4 and 5, which include a typical cryptographic encapsulation, modeled after the
IEEE 802 Media Access Control Security draft standard [14]. A data field is encrypted and authen­
ticated, and is carried along with a header and a sequence number. The header is authenticated
by including it in the AAD. The sequence number is included in the IV. The authentication tag is
carried along with the encrypted data in an Integrity Check Value (ICV) field. Note that there is
no need to pad the plaintext, since any length can be provided as an input. In the authentication
decryption operation (Figure 5), these fields provide the inputs. The plaintext is the output, un­
less the authentication check failed. In that case, the decrypt operation would return FAIL rather

15

GCM

Header Data

Header Encrypted Data ICV

GCM Encryption

Authentication TagCiphertext

Plaintext

Seq.

Seq.

IV

Addtl Auth Data

Figure 4: Using GCM to encrypt and authenticate a packet, showing how the fields of the security
encapsulation map onto the inputs and outputs of the authenticated encryption mode.

than the plaintext, and the decapsulation would halt and the plaintext would be discarded rather
than forwarded or further processed. After the operation, the header and sequence number can
be checked, and their values can be trusted.

By including the sequence number in the IV, we can satisfy the requirement that IV values be
unique. If that number is less than 96 bits long, it can be concatenated with another value in order
to form the IV. This other value could be constant, such as a string of zeros, or it could be a random
string, which adds to the security of the system because it makes the inputs less predictable than
they would be otherwise. The data needed to form the IV has to be known to both the encrypt
side and the decrypt side, but it need not all be included in the packet.

In some situations, it may be desirable to have the same GCM key used for encryption by more
than one device. In this case, coordination is needed to ensure the uniqueness of the IV values. A
simple way in which this requirement can be met is to include a device-specific value in the IV,
such as a network address.

6 Properties and Rationale

The important properties of GCM are summarized in Table 2. Its primary motivation is the need
for an authenticated encryption mode that can be efficiently implemented in hardware at very
high data rates, achieves high performance in software, is provably secure, and is free of intellec­

16

GCM

Data

Encrypted Data ICV

GCM Decryption

Authentication Tag

Plaintext

Ciphertext

Header

Header

Seq.

Seq.

Addtl Auth Data

IV

Figure 5: Using GCM to decrypt and verify the authenticity of a packet.

tual property restrictions. These goals are important for high-speed network security, especially at
the link layer. This point is underscored by the fact that the IEEE 802.1 MAC Security Task Group
has proposed to use mode as the standard’s mandatory-to-implement cryptoalgorithm [14].

Defining a mode using generic composition (encrypt-then-authenticate [15]) is a simple way to
achieve a provably secure mode of operation, as long as the underlying components for encryption
and authentication are provably secure. Our strategy, similar to that of CWC and EAX, was to
start with generic composition and then modify the algorithm in provably secure ways that better
address other requirements.

Counter mode is the obvious choice for the foundation of any authenticated encryption mode,
since it is the one well-known encryption-only mode that is fully parallelizable. Our choice of
MAC represents the best available solution between hardware efficiency (particularly, paralleliz­
ability and memory requirements), software efficiency, security bound and intellectual property
restrictions. Like CWC, we chose a parallelizable MAC based on the Carter-Wegman design [16]
that uses polynomial hashing. However, we used a binary Galois field rather than a 127-bit integer
field because of the ease and efficiency with which binary fields can be implemented in hardware.
Because our primary motivation is to achieve high data rates, the choice of a field with hardware-
friendly multiplication operations is natural. Perhaps surprisingly, the binary field makes it easier
to realize high-speed software implementations, as shown below.

In hardware, GCM adds a negligible amount of overhead compared to a pipelined AES implemen­
tation. OCB would share similar properties, except that it requires both an AES encryption and
AES decryption engine. CWC, on the other hand, has an expensive message authentication func­

17

GCM

Security Function Authenticated encryption
Error Propagation None
Synchronization Same IV used by sender and recipient
Parallelizability Encryption - block-level

Authentication - bit-level
Keying Material Requirements One block cipher key
IV Requirements Each IV must be distinct, for each fixed key

IV can have arbitrary length from 1 to 264 bits
Memory Requirements Same as block cipher
Pre-processing capability Keystream can be precomputed

Fixed parts of IV or A can be processed in advance
Effective methods available for accelerating authentication;
recommended methods (Section 4.1) use 256b to 64 Kb

Message Length Requirements Arbitrary message up to 239 − 256 bits
Arbitrary additional authenticated data up to 264 bits
No padding

Ciphertext Expansion Ciphertext length is identical to plaintext length
0 to 128 bits required for the authentication tag

Other Features Can be used as a stand-alone MAC
Can be used as an incremental MAC
On-line (message lengths need not be known in advance)
Minimal circuit depth

Table 2: A summary of the properties of GCM.

18

GCM

tion. While it is capable of high speeds, the implementation is significantly more expensive than
an AES encryption unit. A typical fully pipelined implementation of a single AES counter mode
encryption engine requires approximately 90K gates. In the same environment a straightforward
implementation of GCM requires only an additional 30K gates for the binary field hash function,
by our estimation. In contrast, CWC mode requires the same number of gates for encryption, but
requires over 100K gates for its integer-based hash function [6].

We worked hard to ensure that GCM would never unnecessarily stall data pipelines. In a high-
speed network implementation, it is essential to minimize the circuit depth in order to preserve
performance on short packets or frames. A pipelined implementation of AES will have a latency
of about ten clock cycles, since each round can be computed in a single clock (this latency can be
reduced, but only with significant cost). A typical high-speed cipher implementation processes
128 bits per clock cycle. At a clock rate of 200 megahertz, it runs at 25 gigabits per second. Stalling
the pipeline for ten clock cycles would consume as much time as is required to process 1280 bits
of data - resulting in a 50% performance degradation for 160 octet packets. The circuit depth
of GCM is essentially that of the block cipher, assuming that the hash key has been computed
and stored. In contrast, the CWC mode of operation has a circuit depth that is longer by an
additional application of the block cipher, due to an additional post-processing step [6, Step 1
of Section 2.5]. This additional delay significantly impacts its performance on short packets or
frames. Unfortunately, this problem cannot be fixed with a simple change to CWC. It needs the
post-hashing block cipher invocation to allow the authentication tag to have a size less than the
block width of the cipher, because the integer field does not have the same properties as does the
binary field.

The field definition was chosen as follows. The field polynomial was chosen to have low weight
and terms of low order, properties that promote efficient implementations; the polynomial was
referenced from the table of low weight binary irreducible polynomials of Seroussi [17]. We chose
to use a ‘little endian’ definition of the field, in which multiplication proceeds from left to right.
This property allows a multiplier to process data as it arrives, using the algorithms described
above, whenever the width of the data bus is less than 128 bits.

We allow the IV to have an arbitrary length, but we include an important optimization that en­
sures that pipeline stalls are avoided when the length of the IV is 96 bits. Otherwise the encryption
pipeline could stall until the initial counter value Y0 is computed. However, even in environments
where a larger IV is used, it is possible to take advantage of precomputation to minimize or elimi­
nate pipeline stalls. We believe in giving the user an option to have an arbitrary-sized IV, because
it eases the job of using the mode. When application and protocol designers specify an IV format
for our mode, they don’t need to adopt the procrustean approach of fitting their data into a small,
fixed number of bits. Importantly, GCM is secure even if IVs of different length are used with the
same key, as long all IV values of the same length are distinct.

Also helping to avoid pipeline stalls is the fact that GCM is on-line, meaning that it does not need

19

http:stalls.We

GCM

to know the length of a message in advance. Instead, it can calculate the length of the message as it
arrives. CCM does not have this property, which can be a particular problem with large messages,
as hardware implementations may find it expensive to provide the memory necessary to buffer
the largest feasible messages.

GCM uses only the forward (encrypt) direction of its block cipher for both encryption and de­
cryption. This fact simplifies the implementation of AES GCM. In software, it is not necessary to
include the code and tables that are needed for AES decryption, and in hardware, there is no need
to design or include an AES decryption circuit. This property is shared by the CWC, CCM, and
EAX modes, but not OCB, which uses both the forward and backward directions of its cipher.

The choice of a 128-bit field allows message authentication with that level of security. The use of a
smaller field would have resulted in a modest reduction in the computational cost of the multipli­
cation operation. However, we found that the use of field elements that match the AES block size
simplifies implementations considerably, avoiding complex byte-shifting in software and poten­
tial data buffering issues at high speed. To have used a smaller field would have added complexity
without much gain in performance, and would have reduced the security level. This design choice
reflects knowledge gained by implementation experience with CWC, the hash function of which
operates on 96-bit blocks.

GCM is also suitable for software implementations. It is simple to build a portable implementa­
tion of GHASH that outperforms AES on all platforms, with a modest amount of key-dependent
precomputation. In contrast, the efficiency of CWC implementations varies depending on the
performance and characteristics of the underlying multiplication operation. It usually requires a
substantial effort to get a software-based CWC implementation to run as quickly as AES on 32-bit
platforms. On 16-bit and 8-bit platforms, CWC’s performance drops to unacceptable levels, re­
quiring a minimum of 48 multiplies and nearly as many additions on a 16-bit platform, and an
unacceptable 192 multiplies on an 8-bit platform. CWC’s dependence on multiplication does lead
to it being a bit faster than GCM on 64-bit platforms. A well-optimized OCB implementation will
always be faster than CWC, and will generally be faster than GCM, with the exception of small
messages (see Table 3). The software speed advantage of OCB is slight, and the speed of both
modes are dominated by that of the underlying block cipher. This relative advantage for OCB
is probably outweighed by GCM’s other advantages, including its lack of intellectual property
restrictions.

The software performance for various modes of operation is captured in Table 3. We started with
reference versions of each algorithm and then modified them to all use the same underlying AES
implementation. The GCM implementations were our own, the OCB implementation was written
by Ted Krovitz and the remainder of the implementations were written by Brian Gladman. All
of the performance times were found experimentally on a G4 processor, using the GNU C com­
piler version 3.3 with the options -O3 -funroll-loops -ftracer -fnew-ra1. For comparison,

1The option -funroll-loops was not used for CWC, since it degraded the performance of that algorithm. Interest­

20

http:capturedinTable3.We

GCM

Mode Message size (bytes)
16 64 256 1024 8192

CBC-HMAC-SHA1
CCM
CWC
EAX
GCM, 64Kb storage
GCM, 8Kb storage
GCM, 4Kb storage
GCM, 256b storage
OCB

1270
159
227
239

60.8
89.9
118
179

89.4

342
75.6
102

93.8
44.8
51.9
69.1
108

43.3

124
54.5
72.7
59.4
36.1
42.9
46.5
89.5
31.4

68.4
49.2
63.3
51.1
36.6
43.0
54.1
85.4
29.3

51.2
47.6
61.2
48.0
38.1
40.1
53.5
84.6
29.0

Table 3: Software performance for various different AES modes of operation, expressed in clock
cycles per byte.

we include a generic composition of CBC with HMAC-SHA1, which is a common method for
achieving authenticated encryption. Each of the implementation methods for GCM discussed in
Section 4.1 is included, labeled by the amount of state that it requires. OCB is the fastest, except
on messages of 64 bytes or smaller, where GCM with 64K storage has the same or greater speed.
For large messages, the simple implementation strategy for GCM never runs in more than 4/3 the
time of OCB, even when storage is limited to 8K. EAX, CCM, and CBC-HMAC-SHA1 are slower,
especially on shorter messages. GCM with 4K storage is faster than those modes on messages
less than 1024 bytes in length, and GCM with 256 byte storage is faster than CBC-HMAC-SHA1
on the same messages. For storage comparison, the performance-optimized implementation of
the generic composition requires 180 bytes of storage per key (for the AES expanded key and a
single SHA1 context). These results clearly establish the viability of GCM for high-speed software
implementations.

Only a single key is input into GCM. The hash key is derived from this key, and is used both
for message authentication and for IV-processing. By using the same key for both purposes, we
reduce the amount of storage needed. The use of a single key simplifies the interface to the mode,
and also reduces the storage requirement by allowing implementations to store only the block
cipher key and derive the hash key from it during the encryption or decryption operations.

GCM can be used as a stand-alone message authentication code, if authentication but not en­
cryption is needed, simply by having the plaintext P be zero-length. OCB, which cannot accept
additional authenticated data whose size exceeds the block length of the cipher, cannot be used in
this way. GCM also has the useful property that it can be used as an incremental MAC [7]. Such
constructions can be used in applications in which a large and dynamic data set must be authenti­
cated such as a remote database, file system, or network storage. In such situations, a conventional

ingly, the new compiler options -ftracer and -fnew-ra improved AES performance considerably, raising the relative
performance of CCM and EAX, which call AES twice per message block.

21

GCM

MAC is often unworkable. The only other incremental MAC [18] of which the authors are aware
is the subject of patent claims. None of the other proposed modes have this property.

Our mode inherits several desirable properties from counter mode. The ciphertext has minimal
expansion; it will be exactly the same length as the plaintext. The only expansion in message size
comes from the authentication tag. The IV need not be random, as it must be with CBC mode; a
sequential IV value is sufficient. This weaker requirement is easier to satisfy, since randomness is
often a precious resource in a cryptomodule. We are aware of more than one CBC implementation
whose security suffered from a poor choice of IV selection.

Counter mode can be implemented in many different ways; we have followed current practice in
order to simplify adoption. The counter format and increment function that are used matches that
in the proposed IPsec ESP Counter Mode standard [19]. This format avoids the need to implement
a 128-bit integer increment in hardware (which has a high circuit complexity at high speeds) or an
LFSR in software (which would take about eight times as many clock cycles on a 32-bit CPU).

Software implementations of network security protocols often favor cryptographic encapsulations
that allow the receiver of a bogus message to discard it before encryption, in order to avoid that
step. GCM has that property, since the ciphertext, not the plaintext, is authenticated.

7 Security

GCM is secure in the concrete security models introduced by Bellare, Killian, and Rogaway [20] for
message authentication, and Bellare, Desai, Jokipii, and Rogaway for confidentiality [22], against
adversaries that can adaptively choose the plaintext, the additional associated data, and the IV
(as long as the requirements on these inputs are respected). Its security relies on the fact that
the underlying block cipher cannot be distinguished from a random permutation, an assumption
which is common in cryptographic designs and which appears to be valid for the AES.

The security of its basic components are well established. The use of universal hashing for prov­
ably strong message authentication was introduced by Carter and Wegman in 1981 [16], and that
method has been an element in the design of many cryptosystems since that time. Counter mode
was suggested in 1979 by Diffie and Hellman [21], and was shown to be secure in a strong, con­
crete sense by Bellare et. al. [22]. While the proof of security for GCM rests on those proofs, there
are some differences. The derivation of the hash key H from the block cipher key K, the hashing
of the IV, and the use of that key for both IV-processing and message authentication are impor­
tant details. More information is available in separate security analysis [23]. The results of this
analysis show that GCM is secure whenever the block cipher is indistinguishable from random

2l22−142 + q2l32−147 and the condition q « 1 is met, where q is the number of invocations of the

22

GCM	 REFERENCES

authentication encryption operation and l is the maximum number of bits in the fields P , A, and
IV .

References

[1] DES Modes of Operation. Federal Information Processing Standards Publication 81, December,
1980.

[2] D.	 Whiting, N. Ferguson, and R. Housley. Counter with CBC­
MAC (CCM). Submission to NIST, 2002. Available online at
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/.

[3] M. Bellare, P. Rogaway, and D. Wagner, A conventional authenticated-encryption mode.
2003. Available online at http://eprint.iacr.org/2003/069/.

[4] T.	 Iwata, K. Kurosawa. OMAC: One-Key CBC. Available online at
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/.

[5] P. Rogaway, M. Bellare, J. Black, and T. Krovitz. OCB: a block-cipher mode of operation for
efficient authenticated encryption. ACM CCS, 2001.

[6] T.	 Kohno, J. Viega, and D. Whiting. The CWC-AES Dual-use Mode. Internet Draft,
Crypto Forum Research Group, May 20, 2003. Work in progress. Available online at
http://www.zork.org/cwc/draft-irtf-cfrg-cwc-01.txt.

[7] M. Bellare, O. Goldreich, and S. Goldwasser. Incremental cryptography: the case of hash­
ing and signing. Advances in Cryptology - Proceedings of CRYPTO ’94.

[8] M. Dworkin, Recommendation for Block Cipher Modes of Operation: Methods and Tech­
niques, NIST Special Publication 800-38A.

[9] V. Shoup, On Fast and Provably Secure Message Authentication Based on Universal Hash­
ing, Advances in Cryptology - Proceedings of CRYPTO ’96, 1996.

[10] Multiple authors. OpenSSL: The Open Source toolkit for SSL/TLS. www.openssl.org.

[11] C. Parr, Implementation Options for Finite Field Arithmetic for Elliptic Curve Cryptosys­
tems. ECC ’99.

[12] L. Song, K.K. Parhi , Efficient Finite Field Serial/Parallel Multiplication. 1996 International
Conference on Application-Specific Systems, Architectures, and Processors (ASAP ’96), August,
1996.

23

http:www.openssl.org
http://www.zork.org/cwc/draft-irtf-cfrg-cwc-01.txt
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes
http://eprint.iacr.org/2003/069
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes

GCM	 REFERENCES

[13] G.Orlando and C.Paar. A super-serial Galois field multiplier for FPGAs and its application
to public key algorithms. Proceedings of the IEEE Symposium on Field-programmable custom
computing machines (FCCM ’99), pages 232-239, 1999.

[14] A. Romanow, Ed. Media Access Control (MAC) Security. IEEE 802.1AE, Draft Standard.
Work in progress.

[15] H. Krawczyk. The Order of Encryption and Authentication for Protecting Communica­
tions. In Lecture Notes in Computer Science, volume 2139, 2001.

[16] M. Wegman and L. Carter. New hash functions and their use in authentication and set
equality. Journal of Computer and System Sciences, 22:265279, 1981.

[17] G. Seroussi. Table of Low-Weight Binary Irreducible Polynomials. HP Labs Technical Report
HPL-98-135, Computer Systems Laboratory, August, 1998.

[18] M. Bellare, R. Guerin, and P. Rogaway. XOR MACs: New methods for message authentica­
tion using finite pseudorandom functions. Advances in Cryptology - Proceedings of CRYPTO
’95.

[19] R.	 Housley, Using AES Counter Mode With IPsec ESP. IETF Internet Draft
draft-ietf-ipsec-ciph-aes-ctr-05.txt. Work in Progress.

[20] M. Bellare, J. Killian, and P. Rogaway. The security of the cipher block chaining message
authentication code. Journal of Computer and System Sciences, Vol. 61, No. 3, Dec 2000, pp.
362–399.

[21] W. Diffie and M. Hellman. Privacy and Authentication: An Introduction to Cryptography.
Proceedings of the IEEE, Volume 67, Number 3, March, 1979.

[22] M. Bellare, A. Desai, E. Jokipii and P. Rogaway. A Concrete Security Treatment of Sym­
metric Encryption: Analysis of the DES Modes of Operation. Proceedings of 38th Annual
Symposium on Foundations of Computer Science, IEEE, 1997.

[23] D. McGrew and J. Viega. Flexible and Efficient Message Authentication in Hardware and
Software. Unpublished draft. Available online at http://www.cryptobarn.com/.

24

http:http://www.cryptobarn.com

GCM

Appendices

A GCM for 64-bit block ciphers

While GCM is clearly designed for use with AES, it may be desirable to use it in applications that
require block ciphers with 64-bit blocks. Unlike other dual-use modes that are based on counter
mode, the way that GCM processes its nonce lends itself to practical implementations in such an
environment: the same IV format can be used with both the 128-bit and 64-bit versions. In this
section, we define GCM for 64-bit block ciphers, which has some slight but important differences.
The notations used in this section follow that of Section 2, with the exception that the blocks Pi, Ci,
and Ai are 64 bits long. The length u of the final blocks P ∗ and C∗ is no greater than 64 bits, as isn n
the length v of the final block A∗ .n

GHASH has several minor differences. First, it uses a field polynomial appropriate to the block
size: 1 + α + α3 + α4 + α64 . Second, the way that the lengths are handled is slightly different.
GHASH64(H, A, C) is defined by the following equations:

Xi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for i = 0

(Xi−1 ⊕ Ai) · H for i = 1, . . . , m − 1

(Xm−1 ⊕ (A∗
mi064−v)) · H for i = m

(Xi−1 ⊕ Ci) · H for i = m + 1, . . . , m + n − 1

(Xm+n−1 ⊕ (C∗
mi064−u)) · H for i = m + n

((Xm+n ⊕ len(A)) · H ⊕ len(C)) · H for i = m + n + 1.

The authenticated encryption operation for 64-bit ciphers is defined by the following equations:

H = E(K, 064)

032iIV if len(IV) = 32
Y0 =

GHASH64(H, {}, IV) otherwise.

Yi = incr(Yi−1) for i = 1, . . . , n

Ci = Pi ⊕ E(K, Yi) for i = 1, . . . , n − 1

Cn = Pn ⊕ MSBu(E(K, Yn))
T = MSBt(GHASH64(H, A, C) ⊕ E(K, Y0))

25

GCM

The equations for the authenticated decryption operation for 64-bit ciphers are:

H = E(K, 064)

032iIV if len(IV) = 32
Y0 =

GHASH64(H, {}, IV) otherwise.
' T = MSBt(GHASH64(H, A, C) ⊕ E(K, Y0))

Yi = incr(Yi−1) for i = 1, . . . , n

Pi = Ci ⊕ E(K, Yi) for i = 1, . . . , n

Pn = Cn ⊕ MSBu(E(K, Yn))

26

GCM

B AES Test Vectors

This appendix contains test cases for AES GCM, with AES key sizes of 128, 192, and 256 bits. These
cases use the same notation as in Equations 1 and 2, with the exception that Ni is used in place of
Xi when GHASH is used to compute Y0, in order to distinguish that case from the later invocation
of GHASH. All values are in hexadecimal, and a zero-length variable is indicated by the absence
of any hex digits. Each line consists of 128 bits of data, and variables whose lengths exceed that
value are continued on successive lines. The leftmost hex digit corresponds to the leftmost four
bits of the variable. For example, the lowest 128 bits of the field polynomial are represented as
e100000000000000000000000000000000.

Test Case 1

Test Case 2

Variable Value
K 00000000000000000000000000000000
P

IV 000000000000000000000000
H 66e94bd4ef8a2c3b884cfa59ca342b2e
Y0 00000000000000000000000000000001

E(K, Y0) 58e2fccefa7e3061367f1d57a4e7455a
len(A)||len(C)

GHASH(H, A, C)
00000000000000000000000000000000
00000000000000000000000000000000

C
T 58e2fccefa7e3061367f1d57a4e7455a

Variable

K
P

IV
H
Y0

E(K, Y0)
Y1

E(K, Y1)
X1

len(A)||len(C)
GHASH(H, A, C)

C
T

Value

00000000000000000000000000000000
00000000000000000000000000000000
000000000000000000000000
66e94bd4ef8a2c3b884cfa59ca342b2e
00000000000000000000000000000001
58e2fccefa7e3061367f1d57a4e7455a
00000000000000000000000000000002
0388dace60b6a392f328c2b971b2fe78
5e2ec746917062882c85b0685353deb7
00000000000000000000000000000080
f38cbb1ad69223dcc3457ae5b6b0f885
0388dace60b6a392f328c2b971b2fe78
ab6e47d42cec13bdf53a67b21257bddf

27

GCM

Test Case 3

Variable Value
K feffe9928665731c6d6a8f9467308308
P d9313225f88406e5a55909c5aff5269a

86a7a9531534f7da2e4c303d8a318a72
1c3c0c95956809532fcf0e2449a6b525
b16aedf5aa0de657ba637b391aafd255

IV cafebabefacedbaddecaf888
H b83b533708bf535d0aa6e52980d53b78
Y0 cafebabefacedbaddecaf88800000001

E(K, Y0) 3247184b3c4f69a44dbcd22887bbb418
Y1 cafebabefacedbaddecaf88800000002

E(K, Y1) 9bb22ce7d9f372c1ee2b28722b25f206
Y2 cafebabefacedbaddecaf88800000003

E(K, Y2) 650d887c3936533a1b8d4e1ea39d2b5c
Y3 cafebabefacedbaddecaf88800000004

E(K, Y3) 3de91827c10e9a4f5240647ee5221f20
Y4 cafebabefacedbaddecaf88800000005

E(K, Y4) aac9e6ccc0074ac0873b9ba85d908bd0
X1 59ed3f2bb1a0aaa07c9f56c6a504647b
X2 b714c9048389afd9f9bc5c1d4378e052
X3 47400c6577b1ee8d8f40b2721e86ff10
X4 4796cf49464704b5dd91f159bb1b7f95

len(A)||len(C)
GHASH(H, A, C)

00000000000000000000000000000200
7f1b32b81b820d02614f8895ac1d4eac

C 42831ec2217774244b7221b784d0d49c
e3aa212f2c02a4e035c17e2329aca12e
21d514b25466931c7d8f6a5aac84aa05
1ba30b396a0aac973d58e091473f5985

T 4d5c2af327cd64a62cf35abd2ba6fab4

28

GCM

Test Case 4

Variable Value
K feffe9928665731c6d6a8f9467308308
P d9313225f88406e5a55909c5aff5269a

86a7a9531534f7da2e4c303d8a318a72
1c3c0c95956809532fcf0e2449a6b525
b16aedf5aa0de657ba637b39

A feedfacedeadbeeffeedfacedeadbeef
abaddad2

IV cafebabefacedbaddecaf888
H b83b533708bf535d0aa6e52980d53b78
Y0 cafebabefacedbaddecaf88800000001

E(K, Y0) 3247184b3c4f69a44dbcd22887bbb418
X1 ed56aaf8a72d67049fdb9228edba1322
X2 cd47221ccef0554ee4bb044c88150352
Y1 cafebabefacedbaddecaf88800000002

E(K, Y1) 9bb22ce7d9f372c1ee2b28722b25f206
Y2 cafebabefacedbaddecaf88800000003

E(K, Y2) 650d887c3936533a1b8d4e1ea39d2b5c
Y3 cafebabefacedbaddecaf88800000004

E(K, Y3) 3de91827c10e9a4f5240647ee5221f20
Y4 cafebabefacedbaddecaf88800000005

E(K, Y4) aac9e6ccc0074ac0873b9ba85d908bd0
X3 54f5e1b2b5a8f9525c23924751a3ca51
X4 324f585c6ffc1359ab371565d6c45f93
X5 ca7dd446af4aa70cc3c0cd5abba6aa1c
X6 1590df9b2eb6768289e57d56274c8570

len(A)||len(C)
GHASH(H, A, C)

00000000000000a000000000000001e0
698e57f70e6ecc7fd9463b7260a9ae5f

C 42831ec2217774244b7221b784d0d49c
e3aa212f2c02a4e035c17e2329aca12e
21d514b25466931c7d8f6a5aac84aa05
1ba30b396a0aac973d58e091

T 5bc94fbc3221a5db94fae95ae7121a47

29

GCM

Test Case 5

Variable Value
K feffe9928665731c6d6a8f9467308308
P d9313225f88406e5a55909c5aff5269a

86a7a9531534f7da2e4c303d8a318a72
1c3c0c95956809532fcf0e2449a6b525
b16aedf5aa0de657ba637b39

A feedfacedeadbeeffeedfacedeadbeef
abaddad2

IV cafebabefacedbad
H b83b533708bf535d0aa6e52980d53b78
N1 6f288b846e5fed9a18376829c86a6a16

len({})||len(IV)
Y0

00000000000000000000000000000040
c43a83c4c4badec4354ca984db252f7d

E(K, Y0) e94ab9535c72bea9e089c93d48e62fb0
X1 ed56aaf8a72d67049fdb9228edba1322
X2 cd47221ccef0554ee4bb044c88150352
Y1 c43a83c4c4badec4354ca984db252f7e

E(K, Y1) b8040969d08295afd226fcda0ddf61cf
Y2 c43a83c4c4badec4354ca984db252f7f

E(K, Y2) ef3c83225af93122192ad5c4f15dfe51
Y3 c43a83c4c4badec4354ca984db252f80

E(K, Y3) 6fbc659571f72de104c67b609d2fde67
Y4 c43a83c4c4badec4354ca984db252f81

E(K, Y4) f8e3581441a1e950785c3ea1430c6fa6
X3 9379e2feae14649c86cf2250e3a81916
X4 65dde904c92a6b3db877c4817b50a5f4
X5 48c53cf863b49a1b0bbfc48c3baaa89d
X6 08c873f1c8cec3effc209a07468caab1

len(A)||len(C)
GHASH(H, A, C)

00000000000000a000000000000001e0
df586bb4c249b92cb6922877e444d37b

C 61353b4c2806934a777ff51fa22a4755
699b2a714fcdc6f83766e5f97b6c7423
73806900e49f24b22b097544d4896b42
4989b5e1ebac0f07c23f4598

T 3612d2e79e3b0785561be14aaca2fccb

30

GCM

Test Case 6

Variable Value
K feffe9928665731c6d6a8f9467308308
P d9313225f88406e5a55909c5aff5269a

86a7a9531534f7da2e4c303d8a318a72
1c3c0c95956809532fcf0e2449a6b525
b16aedf5aa0de657ba637b39

A feedfacedeadbeeffeedfacedeadbeef
abaddad2

IV 9313225df88406e555909c5aff5269aa
6a7a9538534f7da1e4c303d2a318a728
c3c0c95156809539fcf0e2429a6b5254
16aedbf5a0de6a57a637b39b

H b83b533708bf535d0aa6e52980d53b78
N1 004d6599d7fb1634756e1e299d81630f
N2 88ffe8a3c8033df4b54d732f7f88408e
N3 24e694cfab657beabba8055aad495e23
N4 d8349a5eda24943c8fbb2ef5168b20cb

len({})||len(IV)
Y0

000000000000000000000000000001e0
3bab75780a31c059f83d2a44752f9864

E(K, Y0) 7dc63b399f2d98d57ab073b6baa4138e
X1 ed56aaf8a72d67049fdb9228edba1322
X2 cd47221ccef0554ee4bb044c88150352
Y1 3bab75780a31c059f83d2a44752f9865

E(K, Y1) 55d37bbd9ad21353a6f93a690eca9e0e
Y2 3bab75780a31c059f83d2a44752f9866

E(K, Y2) 3836bbf6d696e672946a1a01404fa6d5
Y3 3bab75780a31c059f83d2a44752f9867

E(K, Y3) 1dd8a5316ecc35c3e313bca59d2ac94a
Y4 3bab75780a31c059f83d2a44752f9868

E(K, Y4) 6742982706a9f154f657d5dc94b746db
X3 31727669c63c6f078b5d22adbbbca384
X4 480c00db2679065a7ed2f771a53acacd
X5 1c1ae3c355e2214466a9923d2ba6ab35
X6 0694c6f16bb0275a48891d06590344b0

len(A)||len(C)
GHASH(H, A, C)

00000000000000a000000000000001e0
1c5afe9760d3932f3c9a878aac3dc3de

C 8ce24998625615b603a033aca13fb894
be9112a5c3a211a8ba262a3cca7e2ca7
01e4a9a4fba43c90ccdcb281d48c7c6f
d62875d2aca417034c34aee5

T 619cc5aefffe0bfa462af43c1699d050

31

GCM

Variable Value
K 00000000000000000000000000000000

0000000000000000
P

IV 000000000000000000000000

Test Case 7 H
Y0

aae06992acbf52a3e8f4a96ec9300bd7
00000000000000000000000000000001

E(K, Y0)
len(A)||len(C)

GHASH(H, A, C)

cd33b28ac773f74ba00ed1f312572435
00000000000000000000000000000000
00000000000000000000000000000000

C
T cd33b28ac773f74ba00ed1f312572435

Variable Value
K 00000000000000000000000000000000

0000000000000000
P 00000000000000000000000000000000

IV 000000000000000000000000
H aae06992acbf52a3e8f4a96ec9300bd7

Test Case 8
Y0

E(K, Y0)
Y1

E(K, Y1)
X1

len(A)||len(C)
GHASH(H, A, C)

C

00000000000000000000000000000001
cd33b28ac773f74ba00ed1f312572435
00000000000000000000000000000002
98e7247c07f0fe411c267e4384b0f600
90e87315fb7d4e1b4092ec0cbfda5d7d
00000000000000000000000000000080
e2c63f0ac44ad0e02efa05ab6743d4ce
98e7247c07f0fe411c267e4384b0f600

T 2ff58d80033927ab8ef4d4587514f0fb

32

GCM

Test Case 9

Variable Value
K feffe9928665731c6d6a8f9467308308

feffe9928665731c
P d9313225f88406e5a55909c5aff5269a

86a7a9531534f7da2e4c303d8a318a72
1c3c0c95956809532fcf0e2449a6b525
b16aedf5aa0de657ba637b391aafd255

IV cafebabefacedbaddecaf888
H 466923ec9ae682214f2c082badb39249
Y0 cafebabefacedbaddecaf88800000001

E(K, Y0) c835aa88aebbc94f5a02e179fdcfc3e4
Y1 cafebabefacedbaddecaf88800000002

E(K, Y1) e0b1f82ec484eea44e5ff30128df01cd
Y2 cafebabefacedbaddecaf88800000003

E(K, Y2) 0339b5b9b3db2e5e4cc9a38986906bee
Y3 cafebabefacedbaddecaf88800000004

E(K, Y3) 614b3195542ccc7683ae933c81ec8a62
Y4 cafebabefacedbaddecaf88800000005

E(K, Y4) a988a97e85eec28e76b95c29b6023003
X1 dddca3f91c17821ffac4a6d0fed176f7
X2 a4e84ac60e2730f4a7e0e1eef708b198
X3 e67592048dd7153973a0dbbb8804bee2
X4 503e86628536625fb746ce3cecea433f

len(A)||len(C)
GHASH(H, A, C)

00000000000000000000000000000200
51110d40f6c8fff0eb1ae33445a889f0

C 3980ca0b3c00e841eb06fac4872a2757
859e1ceaa6efd984628593b40ca1e19c
7d773d00c144c525ac619d18c84a3f47
18e2448b2fe324d9ccda2710acade256

T 9924a7c8587336bfb118024db8674a14

33

GCM

Test Case 10

Variable Value
K feffe9928665731c6d6a8f9467308308

feffe9928665731c
P d9313225f88406e5a55909c5aff5269a

86a7a9531534f7da2e4c303d8a318a72
1c3c0c95956809532fcf0e2449a6b525
b16aedf5aa0de657ba637b39

A feedfacedeadbeeffeedfacedeadbeef
abaddad2

IV cafebabefacedbaddecaf888
H 466923ec9ae682214f2c082badb39249
Y0 cafebabefacedbaddecaf88800000001

E(K, Y0) c835aa88aebbc94f5a02e179fdcfc3e4
X1 f3bf7ba3e305aeb05ed0d2e4fe076666
X2 20a51fa2302e9c01b87c48f2c3d91a56
Y1 cafebabefacedbaddecaf88800000002

E(K, Y1) e0b1f82ec484eea44e5ff30128df01cd
Y2 cafebabefacedbaddecaf88800000003

E(K, Y2) 0339b5b9b3db2e5e4cc9a38986906bee
Y3 cafebabefacedbaddecaf88800000004

E(K, Y3) 614b3195542ccc7683ae933c81ec8a62
Y4 cafebabefacedbaddecaf88800000005

E(K, Y4) a988a97e85eec28e76b95c29b6023003
X3 714f9700ddf520f20695f6180c6e669d
X4 e858680b7b240d2ecf7e06bbad4524e2
X5 3f4865abd6bb3fb9f5c4a816f0a9b778
X6 4256f67fe87b4f49422ba11af857c973

len(A)||len(C)
GHASH(H, A, C)

00000000000000a000000000000001e0
ed2ce3062e4a8ec06db8b4c490e8a268

C 3980ca0b3c00e841eb06fac4872a2757
859e1ceaa6efd984628593b40ca1e19c
7d773d00c144c525ac619d18c84a3f47
18e2448b2fe324d9ccda2710

T 2519498e80f1478f37ba55bd6d27618c

34

GCM

Test Case 11

Variable Value
K feffe9928665731c6d6a8f9467308308

feffe9928665731c
P d9313225f88406e5a55909c5aff5269a

86a7a9531534f7da2e4c303d8a318a72
1c3c0c95956809532fcf0e2449a6b525
b16aedf5aa0de657ba637b39

A feedfacedeadbeeffeedfacedeadbeef
abaddad2

IV cafebabefacedbad
H 466923ec9ae682214f2c082badb39249
N1 9473c07b02544299cf007c42c5778218

len({})||len(IV)
Y0

00000000000000000000000000000040
a14378078d27258a6292737e1802ada5

E(K, Y0) 7bb6d647c902427ce7cf26563a337371
X1 f3bf7ba3e305aeb05ed0d2e4fe076666
X2 20a51fa2302e9c01b87c48f2c3d91a56
Y1 a14378078d27258a6292737e1802ada6

E(K, Y1) d621c7bc5690a7b1487dbaab8ac76b22
Y2 a14378078d27258a6292737e1802ada7

E(K, Y2) 43c1ca7de78f4495ad0b18324e61fa25
Y3 a14378078d27258a6292737e1802ada8

E(K, Y3) e1e0254a0f2f1626e9aa4ff09d7c64ec
Y4 a14378078d27258a6292737e1802ada9

E(K, Y4) 5850f4502486a1681a9319ce7d0afa59
X3 8bdedafd6ee8e529689de3a269b8240d
X4 6607feb377b49c9ecdbc696344fe22d8
X5 8a19570a06500ba9405fcece4a73fb48
X6 8532826e63ce4a5b89b70fa28f8070fe

len(A)||len(C)
GHASH(H, A, C)

00000000000000a000000000000001e0
1e6a133806607858ee80eaf237064089

C 0f10f599ae14a154ed24b36e25324db8
c566632ef2bbb34f8347280fc4507057
fddc29df9a471f75c66541d4d4dad1c9
e93a19a58e8b473fa0f062f7

T 65dcc57fcf623a24094fcca40d3533f8

35

GCM

Test Case 12

Variable Value
K feffe9928665731c6d6a8f9467308308

feffe9928665731c
P d9313225f88406e5a55909c5aff5269a

86a7a9531534f7da2e4c303d8a318a72
1c3c0c95956809532fcf0e2449a6b525
b16aedf5aa0de657ba637b39

A feedfacedeadbeeffeedfacedeadbeef
abaddad2

IV 9313225df88406e555909c5aff5269aa
6a7a9538534f7da1e4c303d2a318a728
c3c0c95156809539fcf0e2429a6b5254
16aedbf5a0de6a57a637b39b

H 466923ec9ae682214f2c082badb39249
N1 19aef0f04763b0c87903c5a217d5314f
N2 62120253f79efc978625d1feb03b5b5b
N3 b6ce2a84e366de900fa78a1653df77fb
N4 374ecad90487f0bb261ba817447e022c

len({})||len(IV)
Y0

000000000000000000000000000001e0
4505cdc367a054c5002820e96aebef27

E(K, Y0) 5ea3194f9dd012a3b9bc5103d6e0284d
X1 f3bf7ba3e305aeb05ed0d2e4fe076666
X2 20a51fa2302e9c01b87c48f2c3d91a56
Y1 4505cdc367a054c5002820e96aebef28

E(K, Y1) 0b4fba4de46722d9ed691f9f2029df65
Y2 4505cdc367a054c5002820e96aebef29

E(K, Y2) 9b4e088bf380b03540bb87a5a257e437
Y3 4505cdc367a054c5002820e96aebef2a

E(K, Y3) 9ddb9c873a5cd48acd3f397cd28f9896
Y4 4505cdc367a054c5002820e96aebef2b

E(K, Y4) 5716ee92eff7c4b053d44c0294ea88cd
X3 f70d61693ea7f53f08c866d6eedb1e4b
X4 dc40bc9a181b35aed66488071ef282ae
X5 85ffa424b87b35cac7be9c450f0d7aee
X6 65233cbe5251f7d246bfc967a8678647

len(A)||len(C)
GHASH(H, A, C)

00000000000000a000000000000001e0
82567fb0b4cc371801eadec005968e94

C d27e88681ce3243c4830165a8fdcf9ff
1de9a1d8e6b447ef6ef7b79828666e45
81e79012af34ddd9e2f037589b292db3
e67c036745fa22e7e9b7373b

T dcf566ff291c25bbb8568fc3d376a6d9

36

GCM

Variable Value
K 00000000000000000000000000000000

00000000000000000000000000000000
P

IV 000000000000000000000000

Test Case 13 H
Y0

dc95c078a2408989ad48a21492842087
00000000000000000000000000000001

E(K, Y0)
len(A)||len(C)

GHASH(H, A, C)

530f8afbc74536b9a963b4f1c4cb738b
00000000000000000000000000000000
00000000000000000000000000000000

C
T 530f8afbc74536b9a963b4f1c4cb738b

Variable Value
K 00000000000000000000000000000000

00000000000000000000000000000000
P 00000000000000000000000000000000

IV 000000000000000000000000
H dc95c078a2408989ad48a21492842087

Test Case 14
Y0

E(K, Y0)
Y1

E(K, Y1)
X1

len(A)||len(C)
GHASH(H, A, C)

C

00000000000000000000000000000001
530f8afbc74536b9a963b4f1c4cb738b
00000000000000000000000000000002
cea7403d4d606b6e074ec5d3baf39d18
fd6ab7586e556dba06d69cfe6223b262
00000000000000000000000000000080
83de425c5edc5d498f382c441041ca92
cea7403d4d606b6e074ec5d3baf39d18

T d0d1c8a799996bf0265b98b5d48ab919

37

GCM

Test Case 15

Variable Value
K feffe9928665731c6d6a8f9467308308

feffe9928665731c6d6a8f9467308308
P d9313225f88406e5a55909c5aff5269a

86a7a9531534f7da2e4c303d8a318a72
1c3c0c95956809532fcf0e2449a6b525
b16aedf5aa0de657ba637b391aafd255

IV cafebabefacedbaddecaf888
H acbef20579b4b8ebce889bac8732dad7
Y0 cafebabefacedbaddecaf88800000001

E(K, Y0) fd2caa16a5832e76aa132c1453eeda7e
Y1 cafebabefacedbaddecaf88800000002

E(K, Y1) 8b1cf3d561d27be251263e66857164e7
Y2 cafebabefacedbaddecaf88800000003

E(K, Y2) e29d258faad137135bd49280af645bd8
Y3 cafebabefacedbaddecaf88800000004

E(K, Y3) 908c82ddcc65b26e887f85341f243d1d
Y4 cafebabefacedbaddecaf88800000005

E(K, Y4) 749cf39639b79c5d06aa8d5b932fc7f8
X1 fcbefb78635d598eddaf982310670f35
X2 29de812309d3116a6eff7ec844484f3e
X3 45fad9deeda9ea561b8f199c3613845b
X4 ed95f8e164bf3213febc740f0bd9c6af

len(A)||len(C)
GHASH(H, A, C)

00000000000000000000000000000200
4db870d37cb75fcb46097c36230d1612

C 522dc1f099567d07f47f37a32a84427d
643a8cdcbfe5c0c97598a2bd2555d1aa
8cb08e48590dbb3da7b08b1056828838
c5f61e6393ba7a0abcc9f662898015ad

T b094dac5d93471bdec1a502270e3cc6c

38

GCM

Test Case 16

Variable Value
K feffe9928665731c6d6a8f9467308308

feffe9928665731c6d6a8f9467308308
P d9313225f88406e5a55909c5aff5269a

86a7a9531534f7da2e4c303d8a318a72
1c3c0c95956809532fcf0e2449a6b525
b16aedf5aa0de657ba637b39

A feedfacedeadbeeffeedfacedeadbeef
abaddad2

IV cafebabefacedbaddecaf888
H acbef20579b4b8ebce889bac8732dad7
Y0 cafebabefacedbaddecaf88800000001

E(K, Y0) fd2caa16a5832e76aa132c1453eeda7e
X1 5165d242c2592c0a6375e2622cf925d2
X2 8efa30ce83298b85fe71abefc0cdd01d
Y1 cafebabefacedbaddecaf88800000002

E(K, Y1) 8b1cf3d561d27be251263e66857164e7
Y2 cafebabefacedbaddecaf88800000003

E(K, Y2) e29d258faad137135bd49280af645bd8
Y3 cafebabefacedbaddecaf88800000004

E(K, Y3) 908c82ddcc65b26e887f85341f243d1d
Y4 cafebabefacedbaddecaf88800000005

E(K, Y4) 749cf39639b79c5d06aa8d5b932fc7f8
X3 abe07e0bb62354177480b550f9f6cdcc
X4 3978e4f141b95f3b4699756b1c3c2082
X5 8abf3c48901debe76837d8a05c7d6e87
X6 9249beaf520c48b912fa120bbf391dc8

len(A)||len(C)
GHASH(H, A, C)

00000000000000a000000000000001e0
8bd0c4d8aacd391e67cca447e8c38f65

C 522dc1f099567d07f47f37a32a84427d
643a8cdcbfe5c0c97598a2bd2555d1aa
8cb08e48590dbb3da7b08b1056828838
c5f61e6393ba7a0abcc9f662

T 76fc6ece0f4e1768cddf8853bb2d551b

39

GCM

Test Case 17

Variable Value
K feffe9928665731c6d6a8f9467308308

feffe9928665731c6d6a8f9467308308
P d9313225f88406e5a55909c5aff5269a

86a7a9531534f7da2e4c303d8a318a72
1c3c0c95956809532fcf0e2449a6b525
b16aedf5aa0de657ba637b39

A feedfacedeadbeeffeedfacedeadbeef
abaddad2

IV cafebabefacedbad
H acbef20579b4b8ebce889bac8732dad7
N1 90c22e3d2aca34b971e8bd09708fae5c

len({})||len(IV)
Y0

00000000000000000000000000000040
0095df49dd90abe3e4d252475748f5d4

E(K, Y0) 4f903f37fe611d454217fbfa5cd7d791
X1 5165d242c2592c0a6375e2622cf925d2
X2 8efa30ce83298b85fe71abefc0cdd01d
Y1 0095df49dd90abe3e4d252475748f5d5

E(K, Y1) 1a471fd432fc7bd70b1ec8fe5e6d6251
Y2 0095df49dd90abe3e4d252475748f5d6

E(K, Y2) 29bd481e1ea39d20eb63c7ea118b1792
Y3 0095df49dd90abe3e4d252475748f5d7

E(K, Y3) e2898e46ac5cada3ba83cc1272618a5d
Y4 0095df49dd90abe3e4d252475748f5d8

E(K, Y4) d3c6aefbcea602ce4e1fe026065447bf
X3 55e1ff68f9249e64b95223858e5cb936
X4 cef1c034383dc96f733aaa4c99bd3e61
X5 68588d004fd468f5854515039b08165d
X6 2378943c034697f72a80fce5059bf3f3

len(A)||len(C)
GHASH(H, A, C)

00000000000000a000000000000001e0
75a34288b8c68f811c52b2e9a2f97f63

C c3762df1ca787d32ae47c13bf19844cb
af1ae14d0b976afac52ff7d79bba9de0
feb582d33934a4f0954cc2363bc73f78
62ac430e64abe499f47c9b1f

T 3a337dbf46a792c45e454913fe2ea8f2

40

GCM

Test Case 18

Variable Value
K feffe9928665731c6d6a8f9467308308

feffe9928665731c6d6a8f9467308308
P d9313225f88406e5a55909c5aff5269a

86a7a9531534f7da2e4c303d8a318a72
1c3c0c95956809532fcf0e2449a6b525
b16aedf5aa0de657ba637b39

A feedfacedeadbeeffeedfacedeadbeef
abaddad2

IV 9313225df88406e555909c5aff5269aa
6a7a9538534f7da1e4c303d2a318a728
c3c0c95156809539fcf0e2429a6b5254
16aedbf5a0de6a57a637b39b

H acbef20579b4b8ebce889bac8732dad7
N1 0bfe66e2032f195516379f5fb710f987
N2 f0631554d11409915feec8f9f5102aba
N3 749b90dda19a1557fd9e9fd31fed1d14
N4 7a6a833f260d848793b327cb07d1b190

len({})||len(IV)
Y0

000000000000000000000000000001e0
0cd953e2140a5976079f8e2406bc8eb4

E(K, Y0) 71b54d092bb0c3d9ba94538d4096e691
X1 5165d242c2592c0a6375e2622cf925d2
X2 8efa30ce83298b85fe71abefc0cdd01d
Y1 0cd953e2140a5976079f8e2406bc8eb5

E(K, Y1) 83bcdd0af41a551452047196ca6b0cba
Y2 0cd953e2140a5976079f8e2406bc8eb6

E(K, Y2) 68151b79baea93c38e149b72e545e186
Y3 0cd953e2140a5976079f8e2406bc8eb7

E(K, Y3) 13fccf22159a4d16026ce5d58c7e99fb
Y4 0cd953e2140a5976079f8e2406bc8eb8

E(K, Y4) 132b64628a031e79fecd050675a64f07
X3 e963941cfa8c417bdaa3b3d94ab4e905
X4 2178d7f836e5fa105ce0fdf0fc8f0654
X5 bac14eeba3216f966b3e7e011475b832
X6 cc9ae9175729a649936e890bd971a8bf

len(A)||len(C)
GHASH(H, A, C)

00000000000000a000000000000001e0
d5ffcf6fc5ac4d69722187421a7f170b

C 5a8def2f0c9e53f1f75d7853659e2a20
eeb2b22aafde6419a058ab4f6f746bf4
0fc0c3b780f244452da3ebf1c5d82cde
a2418997200ef82e44ae7e3f

T a44a8266ee1c8eb0c8b5d4cf5ae9f19a

41

