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Abstract 

When using an authenticated-encryption scheme (a shared-key mechanism that provides 
both privacy and authenticity) it is sometimes useful, when encrypting a message, to also authen­
ticate some additional information which is not privacy protected. We address this associated-
data problem, wherein a Sender can bind to an authenticated ciphertext C a string AD, called 
its associated-data, and where the Receiver must provide the identical associated-data AD when 
processing C—otherwise, the ciphertext will, almost certainly, be deemed invalid. We explain 
the utility of this problem, give a formal definition for it, and provide efficient solutions, both 
in general and for the authenticated-encryption scheme OCB. 

Keywords: associated-data problem, authenticated encryption, block-cipher usage, crypto­
graphic standards, modes of operation, OCB mode. 

Introduction 

The problem. During the last year and half there have emerged new block-cipher modes of op­
eration which integrate privacy and authenticity protection in a single, compact mode. The first 
such scheme was suggested by Jutla [12], with Gligor et al. [9] and Rogaway et al. [18] soon of­
fering related schemes. The new modes are an alternative to the generic composition approach, 
as named and analyzed by [4], where one glues together an arbitrary encryption scheme and an 
arbitrary MAC. Compared to doing that, the integrated modes promise several advantages, includ­
ing improved efficiency and ease-of-correct-use. But the new modes would seem to have at least 
one disadvantage: an apparent inability to authenticate data without actually encrypting it and 
transmitting the associated ciphertext. 

As an example showing where this can matter, consider a protocol that flows a message 
Msg = Header I Ciphertext I Tag, where Ciphertext is determined by encrypting some under­
lying Plaintext under a key Kenc, and Tag is determined by MACing Header I Ciphertext under 
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a key Kmac. Suppose we wish to modify this flow to employ an authenticated-encryption scheme 
such as OCB [18]. We can not just OCB-encrypt Header I Plaintext and send the resulting 
CiphertextHeader 1 Plaintext in place of Msg because, presumably, Header had to be in the clear for 
purposes of routing or parsing the message. Nor can we OCB-encrypt Plaintext alone, sending 
the resulting CiphertextPlaintext along with Header, for in this case we would have done nothing 
to authenticate Header. We could send CiphertextHeader 1 Plaintext appended to Header, encrypting 
Header only to provide for its authenticity, but doing this would lengthen the message sent, which 
we certainly don’t want. 

In general, when a Receiver R gets an authenticated ciphertext C allegedly sent by a given 
Sender S, the Receiver R may wish to ensure not only that Sender S sent C, but also that that 
Receiver R shares with Sender S a common understanding as to some further aspect of their 
current situation. This “further aspect of their situation” is encoded in a string AD, called the 
associated-data. The Sender and Receiver are expected to provide identical associated-data or else 
the Receiver should, almost certainly, detect the mismatch and reject the transmission C. 

In our earlier example, the associated-data would be Header. Here one anticipates that it is sent 
to the Receiver in the clear. In other examples, AD might represent information implicitly shared 
between the Sender and Receiver (eg., as a result of an earlier session-setup) such as cryptographic 
parameters that are in use, or the Sender’s or Receiver’s name or IP address. In cases like these 
the associated-data will be static over the course of the communication session. When this is the 
case, we aim for a solution that adds essentially zero per-message cost. 

Origin of the problem. The associated-data problem was first described to the author by 
Burt Kaliski [13]. Shortly afterwards, it was independently suggested by Nancy Cam-Winget and 
Jesse Walker [7], and then by other individuals. Everyone who has asked about this problem has 
been involved in standardization efforts in which it became clear that one would sometimes like to 
bind to a ciphertext some additional, non-secret data. People wanted a cheap and secure way to 
do this when using an mechanism that integrates privacy and authenticity. 

The naive solution, and doing better than it. As suggested earlier, one way to bind 
associated-data AD to an authenticated ciphertext is to have the Sender encode AD together with 
the plaintext M that he wants to communicate, and then encrypt-with-authenticity the resulting 
string AD I M . The drawbacks of this are that it lengthens the ciphertext, and that it costs the 
Sender and Receiver additional computation time with every message that is sent, even when the 
associated-data AD is static during the entire session. We could try to erase the first inefficiency by 
having the Sender encrypt-with-authenticity AD I M , and then drop from the resulting ciphertext 
that segment which corresponds to AD (assuming that the ciphertext has such a structure). But 
such an approach does not, in general, work; an authenticated-encryption mode may fail to provide 
authenticity if a portion of the ciphertext is not transmitted. Indeed modes like OCB [18] and 
IAPM [12] do fail to provide authenticity if ciphertext blocks are dropped. Here we seek a solution 
which applies to any authenticated-encryption scheme, rests on sound analysis, leaves fixed the 
length of a ciphertext, and adds essentially no overhead if AD is absent or static. Further efficiency 
goals, like avoiding the use of a new cryptographic key, will also be of interest. 

Contributions. Our main contributions are as follows: 
First, we give a definition for the security of an authenticated-encryption scheme allowing 

associated-data, an AEAD-scheme. The definition is very strong; in particular, the attack-model 
gives the adversary the ability to control AD, while the notion of adversarial success generalizes 
the notion of authenticity of ciphertexts [5, 14]. 
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Second, we describe generic solutions to the associated-data problem. One technique, suggested 
by Cam-Winget and Walker [7], we call nonce stealing. The method is simple and useful, but 
somewhat limited in its applicability, as the string AD can only be a few bytes. A less restrictive 
approach, ciphertext translation, transforms an authenticated-encryption scheme that does not 
provide for associated-data (an AE-scheme) into an authenticated-encryption scheme that does (an 
AEAD-scheme). For this method one applies an xor-universal hash-function F to the string AD, and 
then xors the result Δ with a corresponding number of ciphertext bits, leaving the other bits alone: 
EN, AD ¯ ' (M) = EN (M) ⊕ 0∗Δ, where Δ = FK' (AD). Notice that if FK' (ε) is defined to be a string KK K 
of 0-bits (where ε is the emptystring) then the constructed AEAD-scheme will be an extension of 

N, ε ¯the original AE-scheme, in the sense that EKK' (M) = EN (M). Also notice that if associated-data K 
AD is held fixed during a communications session then the corresponding offset Δ = FK' (AD) may 
be precomputed, essentially eliminating the per-message cost of authenticating AD. We prove that 
the constructed AEAD-scheme is secure as long as the AE-scheme one starts from is secure. 

Third, we concretize and adjust the generic solution to yield a specific suggestion for OCB [18]. 
The solution retains OCB’s use of a single block-cipher key. A nonempty message M is OCB-
encrypted using a key K to get a ciphertext C which includes some τ bits of tag, and associated-
data AD is PMAC-authenticated [19] under the same key K to get a τ -bit PRF-output of Δ. The 
final ciphertext is C with its last τ bits xored with Δ. Under this definition, OCBN,AD (M) is fully K 
parallelizable in both M and AD, and the function can be used as a pseudorandom function by 
fixing M = ε. 

Comments. When using an xor-universal hash-function, the correctness of the AE⇒AEAD con­
version relies on the AE-scheme meeting a strong definition of privacy: ciphertexts should be 
indistinguishable from random bits (when the adversary launches a chosen-plaintext attack), which 
we call IND$-CPA. This is stronger than asking that ciphertexts be indistinguishable from the en­
cryption of random bits, IND-CPA. The IND$-CPA property is the one OCB was proven to achieve 
in [18]. The current note provides evidence that IND$-CPA is a useful strengthening of IND-CPA. 
The IND$-CPA property also allows the direct use of an encryption scheme as a pseudorandom 
generator or as a pseudorandom function from n-bit inputs to arbitrary-length outputs. 

Preliminaries 

AE-schemes. We follow [18] (which builds on [1, 5, 11]) in defining nonce-using authenticated-
encryption schemes and their security. An authenticated-encryption scheme (an AE-scheme) is a 
three-tuple Π = (K, E , D). There are associated sets of strings Nonce = {0, 1}n and Message, the 
latter having a simple (linear-time) membership test. The key space K = {0, 1}k is a nonempty set 
of strings. Algorithm E is a deterministic algorithm that takes strings K ∈ K, N ∈ Nonce, and M ∈ 
Message, and returns a string C = EN (M) = EK (N, M). Algorithm D is a deterministic algorithm K 
that takes strings K ∈ K, N ∈ Nonce, and C ∈ {0, 1} ∗ . The algorithm returns DN (C), which is K 
either a string in Message or the distinguished symbol Invalid. We require that DN (EN (M)) = MK K 
for all K ∈ K, N ∈ Nonce, and M ∈ Message. 

An adversary with access to an oracle is nonce-respecting if the adversary never repeats the first 
argument to its oracle, regardless of oracle responses: if the adversary asks a query (N, M) then it 
never asks a subsequent query of (N, M '). 

Fix an AE-scheme Π = (K, E , D). Let A be an algorithm having access to an oracle EK (·, ·), for 
a randomly chosen key K. We say that A forges if A is nonce-respecting and A outputs a triple 
(N, C) where DN (C) = Invalid and A did not ask a query EN (M) which resulted in a response K K 

Let Advauth Let AdvauthC. (A) be the probability that A forges. (q, µ) denote the maximal Π Π 
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value of Advauth(A) over all nonce-respecting adversaries that ask at most q queries, the sum of Π 
Let Advauththese queries, plus the length of the forgery attempt, being at most µ bits. (t, q, µ)Π 

be identical, except that the adversary is also limited to running time plus description size of t, 
relative to some standard and fixed model of computation. 

Let Π = (K, E , D) be an AE-scheme for which the length of any ciphertext is a given function, 
£(|M |), of the length of the plaintext M . Let $(·, ·) be an oracle that, on input N, M , returns a 
random string of length £(|M |). Let A be a adversary having access to an oracle. Let Advpriv(A) = Π 

R
AEK (·,·)Pr[K ← K : = 1] − Pr[A$(·,·) = 1]. We name this notion IND$-CPA: indistinguishability 

Let Advprivfrom random bits under a chosen-plaintext attack. (q, µ) denote the maximal value Π 

of Advpriv(A) over all nonce-respecting adversaries A that ask at most q queries, the sum of the Π 

message-lengths in these queries being at most µ bits. Let Advpriv(t, q, µ) be identical, except that Π 
the adversary is also limited to running time plus description size of t. 

Xor-universal hash functions. Function families and universality conditions on them originate 
with Carter and Wegman [8]. A function-family is a function F : K × X → {0, 1}τ , where K has 
an associated distribution and X ⊆ {0, 1} ∗ . We consider the security property called xor-universal, 
first defined by [15]. For a function-family F : K × X → {0, 1}τ , let Advxu(α) = maxx,x ' ,cF 

R{Pr[K ← K : FK (x) ⊕ FK (x ') = c]} where the maximum is over all c ∈ {0, 1}τ and over all 
'distinct x, x ∈ X subject to |x|, |x ' | ≤ α. For a complexity-theoretic analog, let Advxu(t, α) = F 

R R' maxA{Pr[K ← K; (x, x , c) ← A(α) : FK (x) ⊕ FK (x ') = c]} where the maximum is over all 
'adversaries A that have running time plus description size of at most t and A outputs (x, x , c) such 

'that |x|, |x ' | ≤ α and x = x . 

Pseudorandom functions. The notion of a pseudorandom function originates with [10]; our 
treatment is a concrete-security one that follows [3]. Let F : K × X → {0, 1}τ be a function-
family. Let Rand(X , τ) be the set of all functions from X to {0, 1}τ . Then define Advprf (A) = F 

R RPr[K ← K : AFK (·) = 1] − Pr[ρ ← Rand(X , τ) : Aρ(·) = 1]. Let Advprf (q, µ) be the maximal F 

value of Advprf (A) over all adversaries A that ask at most q oracle queries, these queries totaling F 

at most µ bits. Let Advprf (t, q, µ) be identical except that A is also limited to running time plus F 
description size of t. If X = {0, 1}n one omits the redundant resource parameter µ. Let Perm(n) be 
the set of all permutation from n bits to n bits. If F : K× {0, 1}n → {0, 1}n define Advprp(A) = F 

R R
AFK (·) Aπ(·)Pr[K ← K : = 1] − Pr[π ← Perm(n) : = 1]. LetAdvprp(q) be the maximal value of F 

Advprp(A) among adversaries that ask q queries, and let Advprp(t, q) be the value for adversaries F F 
also limited to running time plus description size of t. 

Pseudorandom functions are xor-universal. The pseudorandom function requirement is 
stronger than the xor-universal one: for any function-family F with a τ -bit output, Advxu(α) ≤F 
Advprf (2, α)+2−τ , since one possible statistical test is to ask oracle queries FK (x) and FK (x '), for 
selected x, x ', and test if the xor of these points is some particular value c. Similarly, Advxu(t, α) ≤F 
Advprf (t ' , 2, α) + 2−τ , where t ' = Ω(t + α + τ). 

Definition AEAD-Security 

AEAD-schemes. An authenticated-encryption scheme allowing associated-data (henceforth an 
AEAD-scheme) is a three-tuple Π = (K, E , D). There are associated sets of strings Nonce = {0, 1}n , 
Assoc, and Message, the last two having a simple (linear-time) membership test. The key space K 
is a nonempty set of strings. Algorithm E is a deterministic algorithm that takes strings K ∈ K, 
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EN,AD N ∈ Nonce, AD ∈ Assoc, and M ∈ Message. The algorithm returns a string C = (M) = K 
EK (N, AD,M). Algorithm D is a deterministic algorithm that takes strings K ∈ K, N ∈ Nonce, 
AD ∈ Assoc, and C ∈ {0, 1} ∗ . The algorithm returns DN,AD (C), which is either a string in MessageK 

(EN,AD or the distinguished symbol Invalid. We require that DN,AD (M)) = M for all K ∈ K,K K 
N ∈ Nonce, AD ∈ Assoc, and M ∈ Message. 

An adversary with access to an oracle is nonce-respecting if the adversary never repeats the first 
argument to its oracle, regardless of oracle responses: so if the adversary asks a query (N, AD,M) 
then it never asks a subsequent query of (N, AD ' ,M '). 

Authenticity of an AEAD-scheme. Fix an AEAD-scheme Π = (K, E , D). Let A be an 
algorithm having access to an oracle EK (·, ·, ·), for some randomly chosen key K. We say that A 
forges if A is nonce-respecting and A outputs a triple (N, AD, C) where DN,AD (C) = Invalid and AK 

Let AdvAUTH did not ask a query EN,AD (M) which resulted in a response C. (A) be the probability K Π 
that A forges. Let AdvAUTH (q, µ, α) be the maximal value of AdvAUTH (A) over all nonce-respecting Π Π 
adversaries A that ask at most q queries, these, along with the forgery attempt and all associated 
data, totaling at most µ bits, and each associated-data string, including that in the forgery attempt, 
limited to α bits. Let AdvAUTH (t, q, µ, α) be identical, except that the adversary is also limited to Π 
running time plus description size of t. 

Comments. The definition above is very strong—arguably stronger than what is “necessary” to 
capture the underlying intuition. In particular, the attack model is strong insofar as the adversary 
is allowed to manipulate both the nonce and the associated-data (subject to the constraint that 
no nonce is repeated), and the adversary’s goal is modest insofar as she “gets credit” even for 
forgeries that use bizarre nonces and associated-data values, whether new or repetitions. In a real 
system, the message and the nonce will primarily be controlled by the Sender (for example, the 
nonce may be a counter) while the associated-data will primarily be chosen by the Sender and/or 
the Receiver. Still, an adversary may be able to influence these values. For example, an adversary 
might force a nonce to be incremented by thwarting a transmission from reaching its destination; 
or an adversary might induce the Sender to utilize bogus associated-data by manipulating flows in 
an unauthenticated handshake that proceeds the use of the AEAD-scheme. Allowing the adversary 
to manipulate all of M , N , and AD, and giving the adversary credit for any new (N, AD, C), is a 
pessimistic approach that allows one to develop a robust definition. 

The definition uses a space Assoc, with AD ∈ Assoc, rather than referring to an arbitrary 
vector of strings AD ∈ ({0, 1} ∗)∗ , say. This turns out to be more convenient, and involves no real 
loss of generality: to allow vector-valued associated-data one has only to specify an injective and 
efficiently-computable encoding from ({0, 1} ∗)∗ → Assoc, for some convenient set Assoc. 

As usual, there is a certain degree of arbitrariness in how we have chosen to bound the resource 
parameters; the definitions of q, µ, α are made with an eye towards what our theorems will say. 

Privacy of an AEAD-scheme. Let Π = (K, E , D) be an AEAD-scheme. Assume that the length 
of any ciphertext is a given function, £(|M |), of the length of the plaintext M . Let $(·, ·, ·) be an 
oracle that, on input (N, M, AD), returns a random string of length £(|M |). Let A be a adversary 

RLet AdvPRIV AEK (·,·)having access to an oracle. (A) = Pr[K ← K : = 1] − Pr[A$(·,·,·) = 1].Π 
RLet AdvPRIV AEK (·,·)(q, µ) = Pr[K ← K : = 1] − Pr[A$(·,·,·) = 1] denote the maximal value of Π 

AdvPRIV(A) over all nonce-respecting adversaries A that ask at most q queries whose total length— Π 
message length plus associated-data length— totals at most µ bits. Let AdvPRIV(t, q, µ) be identical, Π 
except that the adversary is also limited to running time plus description size of t. 
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4 Nonce Stealing 

We now provide a first suggestion, due to Nancy Cam-Winget and Jesse Walker [7], for incorporating 
associated-data into an AE-scheme. We call the technique nonce stealing. 

Suppose that the nonce in an AE-scheme is n bits, but that the application that uses this AE-
scheme is content to use n0 < n bits for a nonce. For example, the nonce for the AE-scheme may be 
n = 128 bits, but an “application-layer nonce” of n = 64 bits may suffice for a given application. (A 
nonce of 32–64 bits would normally be adequate for applications that uses a counter for a nonce.) 
In such a case, associated-data may be packed into the “unused” n − n0 bits of the AE-scheme’s 
nonce. 

At first glance, nonce stealing would sound to be of limited use, because so few bits of associated-
data can be accommodated in this way. But often a few bytes is all that one needs, making the 
technique useful. The technique adds essentially no overhead, as well. 

As an example, nonce stealing is anticipated for the IEEE 802.11 standard. The draft standard 
uses OCB-AES128, so the nonce is n = 128 bits. Of these 128 bits, the standard’s designers 
currently anticipate that only 28 will be needed for the application nonce, which is a counter. The 
remaining 100 bits are associated-date: a source and destination address comprising 48 bits each, 
plus a quality-of-service indicator which is another 4 bits. 

Nonce-AD is also anticipated for an IETF Internet Draft which will describe the use of OCB­
AES128 as an IPsec transform [16]. This time the associated-data is the exact same data that is 
to be used as the application-level nonce: a 32-bit SPI and a 32-bit Sequence Number. In such 
a case, the way to authenticate the associated-data is to do nothing—we claim that the nonce of 
an AE-scheme is already automatically authenticated. We now justify this claim, thereby showing 
correctness for both forms of nonce stealing we have described. 

EN,N Given AE-scheme Π = (K, E , D), define AEAD-scheme Π̄ = (K, Ē , D̄) by setting ¯ (M) = K 

DN,N ĒN (M) and ¯ (C) = D̄N (C). Actually, this does not quite fit the syntax of an AEAD-scheme, K K K 
since it does not allow arbitrary associated-data AD within some specified set of strings; instead, 
the associated-data must coincide with the nonce. Still, the definition of AEAD-authenticity makes 
sense even with this new restriction, so we continue undeterred. An adversary would be deemed 

¯successful in breaking the authenticity of the constructed AEAD-scheme if, after asking E-queries 
of (N1, N1,M1), . . . , (Nq, Nq,Mq), getting responses C1, . . . , Cq, she produces a valid ciphertext 
(N, N, C) where there was no earlier Ē-query (N, N, Mi) that resulted in a response C. Thus, for the 
constructed AEAD-scheme, the adversary succeeds if, after asking E-queries (N1,M1), . . . , (Nq,Mq), 
getting responses C1, . . . , Cq, she produces a valid ciphertext (N, C) where there was no earlier E-
query (N, Mi) that resulted in a response C. But this is precisely the definition for authenticity for 
an AE-scheme. In other words, under our definitions, security of nonce stealing is immediate. 

The possibility of nonce stealing provides another reason, besides those enumerated in [18], why 
an AE-scheme is best designed to employ an arbitrary nonce. The possibility of nonce stealing also 
motivates the strong definition we have been using for authenticity of an AE-scheme: with a weaker 
definition of AE-scheme authenticity, nonce stealing likely would not work. 

5 Ciphertext Translation 

We now provide a solution to the AEAD-problem which permits arbitrary associated-data. The 
solution amounts to a method to transform an AE-scheme Π into an AEAD-scheme Π̄ with the 
help of an xor-universal function-family F . We call the technique ciphertext translation. 

First, a bit of notation. For C and Δ strings with |C| ≥ |Δ|, let us write C ⊕ 0∗ Δ for the 
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string C ⊕ (0|C|−|Δ| I Δ). (We are defining a binary operator named ⊕ 0∗.) That is, C ⊕ 0∗ Δ is 
C I T ⊕ Δ, where C = CT and |T | = |Δ|. For completeness, define C ⊕ Δ = ε if |C| < |Δ|. 

Let Π = (K, E , D) be an AE-scheme in which the length of any ciphertext is at least τ bits. 
Let Assoc ⊆ {0, 1} ∗ be a given set of strings (with a linear-time membership test, let us say) 
and let F : K ' × Assoc → {0, 1}τ be a function-family. Then we construct the AEAD-scheme 
¯ ¯ ¯Π = ( K̄, E , D) = Π[F ] as follows: 

¯The key space is K = K ×K ' .
 
EN, AD
 ¯Encryption is defined by (M) = EN (M) ⊕ 0∗ FK ' (AD).KK ' K 

DN, AD ¯Decryption is defined by ' (C) = DN (C ⊕ 0∗ FK ' (AD)).KK K 

That is, one takes the associated-data AD and computes from it Δ = FK ' (AD). Now, to 
encrypt, compute an authenticated ciphertext C without regards to AD, but then xor Δ with the 
last |Δ| bits of C. 

We comment that the security results that follow are indifferent to which bits of the ciphertext 
get modified by Δ. 

Ciphertext-translation has the following pleasant properties: (1) the method extends any AE-
scheme Π, and without regards to the internal structure of Π; (2) the method is parameterized by 
an arbitrary function-family F , with the requisite property of F soon to be explained; (3) when 
AD is static over the course of a session (or even over the course of several messages), the value 
Δ = FK ' (AD) may be profitably precomputed; (4) the approach adds essentially no overhead to 
an AE-scheme when associated-data is not used; (5) the method gives rise to a proper extension of 

EN, ε ¯the AE-scheme, ' (M) = EN (M), as long as one sees to it that FK ' (ε) = 0τ .KK K 
Ciphertext-translation has the following unpleasant property: (a) it uses a new key, K ', different 

from the keys used for Π. This disadvantage will be addressed in Section 9. 

Security of Ciphertext Translation 

We now show the following theorem on the security of ciphertext translation. 

Theorem 1 Let Π = (K, E , D) be an AE-scheme in which each ciphertext has at least τ bits, and 
let F : K ' × Assoc → {0, 1}τ be a function-family. Then 

AdvAUTH Advauth(q, µ, α) ≤ (q, µ) + Advpriv(q, µ) + Advxu(α)Π[F ] Π Π F 

AdvPRIV Advpriv(q, µ) ≤ (q, µ) .Π[F ] Π 

Proof: We begin by proving the authenticity claim. Let A be an adversary that attacks the 
¯ ¯authenticity of Π[F ] = ( K̄, E , D) using resources (q, µ, α). We construct an adversary B that attacks 

(B) ≥ AdvAUTH the authenticity of Π, uses resources (q, µ), and achieves advantage Advauth (A) −Π Π 
Advpriv(q, µ) − Advxu(α).Π F 

Definition of the adversary B. Adversary B works as follows. First, B chooses a random 
R' K ← K ' . Then B runs A. When A makes its ith oracle query, (Ni, ADi,Mi), adversary B makes 

the query of (Ni,Mi) to it own oracle. Adversary B receives a response Ci = Ci I Ti, computes 
Δi = FK ' (ADi), and provides to A the ciphertext Ci ⊕ 0∗ Δi. After A makes its q oracle queries 
(and B makes the correspond q oracle queries), adversary A makes a forgery attempt (N, AD, C), 
where C = C I T . At that point adversary B computes Δ = FK ' (AD) and makes its own forgery 
attempt of (N, C ⊕ 0∗ Δ). Clearly B uses the claimed resources (q, µ). 
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Analysis of B’s forgery probability. Let predicate Aforges(a, K ' ,K) be true iff A forges 
¯when A’s internal coins are a and A interacts with an encryption oracle E that uses coins (K, K '). 

Let predicate Bforges(a, K ' ,K) be true iff B forges when B’s internal coins are (a, K ') and B 
interacts with an encryption oracle E that uses internal coins of K. 

We claim that for “most” values of (a, K ' ,K), we have that Aforges(a, K ' ,K) = Bforges(a, K ' ,K). 
Indeed a case analysis shows that the only time when Aforges(a, K ' ,K) could be different from 
Bforges(a, K ' ,K) is when (a, K ' ,K) results in A making a forgery attempt (Ni, AD, Ci I Ti) where 
AD = ADi. In that case it is possible that Aforges(a, K ' ,K) = true but Bforges(a, K ' ,K) = false. 
The case analysis is as follows. Run A in the manner determined by (a, K ' ,K), defining the variables 
(Ni, ADi,Mi), Δi, Ci = Ci I Ti, and (N, AD, C), where C = C I T . There is a corresponding 
execution of B with identical associated variables. One checks that, in the two executions, 

if N  ∈ {N1, N2, . . . , Nq} then A(a, K ' ,K) forges iff B(a, K ' ,K) forges.
 
if N = Ni (for some i) and C = Ci, then A(a, K ' ,K) forges iff B(a, K ' ,K) forges.
 
if N = Ni (for some i) and C = Ci and AD = ADi then A(a, K ' ,K) forges iff B(a, K ' ,K)
 
forges.
 

We are left to bound the probability, over (a, K ' ,K), that N = Ni (for some i), C = Ci, AD = ADi, 
Aforges(a, K ' ,K) = true, and Bforges(a, K ' ,K) = false. This event happens iff adversary A forges 
with (N, AD, C), where C = C I T , after having asked an earlier query (N, ADi,Mi) that resulted in 
ciphertext Ci = C I Ti, and Ti ⊕ FK ' (ADi) = T ⊕ FK ' (AD). In such a case, the forgery attempt 
can be valid for A (as AD is new) but invalid for B (the forgery attempt being a repetition). We wish 
to show that this case rarely occurs: over random (a, K ' ,K), almost certainly Ti ⊕ FK ' (ADi) = 
T ⊕ FK ' (AD). Now Pr[Ti ⊕ FK ' (ADi) = T ⊕ FK ' (AD)] = Pr[FK ' (ADi) ⊕ FK ' (AD) = c], where 
c = Ti ⊕ T , and we would like to conclude that this value is at most Advxu(α) by the definition F 
of xor-universality. However, this isn’t quite true: were adversary A’s the encryption oracle to leak 

' no information about K to A, then A could find c and distinct AD, ADi of length at most α such 
that FK ' (ADi) ⊕ FK ' (AD) = c with probability, over K ', of at most Advxu 

F (α). However, the 
encryption scheme Π is not perfectly private. 

To deal with this, let 

δ = Pr[A’s attack yields T, Ti, ADi = AD s.t. Ti ⊕ FK ' (ADi) = T ⊕ FK ' (AD)] − Advxu 
F (α) 

and note that there is an adversary D that distinguishes E-encrypted text from random bits that 
achieves advantage δ and that asks at most q queries and µ total bits. The adversary D behaves 
like the adversary B we have defined, but instead of outputting a forged ciphertext the adversary 
computes whether or not, for B’s forged ciphertext and earlier queries, C = Ci and Ti ⊕ FK ' (ADi) = 
T ⊕ FK ' (AD). If this inequality holds, D outputs 1; otherwise, D outputs 0. The adversary achieves 
advantage δ and runs with resources (q, µ). We conclude that δ ≤ Advpriv(q, µ). We conclude Π 
that AdvAUTH (α) + δ ≤ AdvAUTH (q, µ, α) ≤ Advauth(q, µ) + Advxu (q, µ, α) ≤ Advauth(q, µ) + Π[F ] Π F Π[F ] Π 

Advpriv(q, µ) + Advxu(α), finishing the authenticity claim in the theorem. Π F 

Privacy. The second inequality in the theorem statement is easy. For convenience, we reuse the 
¯ ¯names A and B. Let A be an adversary that attacks the privacy of Π[F ] = ( K̄, E , D) using resources 

(q, µ, α). We construct an adversary B that attacks the privacy of Π, uses resources (q, µ), and 
(B) ≥ AdvPRIVachieves advantage Advpriv (A). Adversary B works as follows. First, B chooses a Π Π 

R'random K ← K ' . Then B runs A. When A makes its ith oracle query, (Ni, ADi,Mi), adversary B 
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makes the query of (Ni,Mi) to it own oracle. Adversary B receives a response Ci = Ci I Ti, 
computes Δi = FK ' (ADi), and provides to A the ciphertext Ci ⊕ 0∗ Δi. After A makes its q 
oracle queries (and B makes the correspond q oracle queries), adversary A outputs a bit b. At that 
point adversary B outputs the same bit b. Clearly B uses the claimed resources (q, µ), and, since 

AdvprivB perfectly simulates the native environment for A, AdvPRIV(A) = (B), completing the Π[F ] Π 
theorem. 

As usual, there is a complexity-theoretic analog to Theorem 1. Let Π = (K, E , D) be an AE-
scheme in which each ciphertext has at least τ bits, and let F : K ' × Assoc → {0, 1}τ be a 
function-family. Then AdvAUTH (t, q, µ, α) ≤ Advauth(t ' , q, µ)+ Advpriv(t ' , q, µ)+ Advxu(t ' , α) and Π[F ] Π Π F 

AdvPRIV(t, q, µ) ≤ Advpriv(t ' , q, µ) where t ' = t + O(µ) + TimeF (q, µ), where TimeF (q, µ) denotes Π[F ] Π 
R'the time to compute K ← K ' plus the time to compute FK ' on at most q + 2 points, these points 

totaling at most µ bits. 

7 Using a PRF instead of an XOR-Universal Function-Family 

While the function-family F used by ciphertext translation needs only to be good in the sense of 
being xor-universal, there are a couple of advantages to selecting a function-family that meets the 
stronger notion of being a good PRF. One advantage of using a PRF for F is that it allows one to 
use an AE-scheme that meets a weaker notion of privacy, namely, IND-CPA. But this advantage 
may be of no practical significance, since all the proposed authenticated-encryption modes seem to 
meet the stronger IND$-CPA notion, anyway. 

A more significant advantage of using a good PRF is that it facilitates using the AEAD-scheme 
as a MAC. This addresses a question of Ron Rivest [17], who asked if OCB can be used in some 
simple manner to give a MAC, or to give other useful tools. Note that trying to use OCB or IAPM 
as a MAC by sending only the tag block does not work. But if one uses the ciphertext translation 
construction with a pseudorandom function, one gets a good MAC in a different way: just regard 
the message to encrypt as the empty string, and regarding the message to MAC as the associated-
data. In this way one actually gets something better than a MAC: there is now a pseudorandom 
function embedded within, and still accessible though, the AEAD-interface. In particular, set the 
nonce to N = 0, say, regard the message M which one wants to MAC or as associated-data, and 
then encrypt the emptystring. The scheme is deterministic and stateless: one can keep reusing the 
nonce N = 0 in this way, even though it is not normally acceptable to repeat a nonce. 

In order to ensure that the AEAD-scheme is an extension of the underlying AE-scheme, that 
¯is, that EN,ε = EN (M), it is desirable to arrange that FK ' (ε) = 0τ . Of course hardwiring KK ' (M) K 

FK ' (ε) = 0τ keeps F from being a PRF over the entire domain of F : one can distinguish g = FK ' 

from a random function g by asking for g at ε. But when F is used within the ciphertext-translation 
0,AD ¯construction with an AE-scheme meeting IND$-CPA security, EKK ' (ε) should again give a good 

PRF over the entire domain Assoc. In any case, being a good PRF across nonempty strings should 
be quite good enough for applications, so we do not pursue the question further. 

8 Instantiating Function-Family F 

In this section we give some suggested functions F to use within the ciphertext-translation con­
struction: CBCMACτ , XORMACτ , or PMACτ . All of these functions are built from a block 
cipher E : K×{0, 1}n → {0, 1}n and target complexity-theoretic statements. Entirely information-
theoretic constructions, and constructions which do not use a block cipher, are certainly possible. 
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Proofs of the relevant bounds are omitted from this draft. 

Using CBCMAC. Let Assoc = ({0, 1}n)∗ and let E : K × {0, 1}n → {0, 1}n be a block cipher. 
Define CBCMACτ (ε) = 0τ and, for x ∈ ({0, 1}n)+, and define CBCMACτ (x1 · · · xm), where |x1| = a a

· · · = |xm| = n, as the first τ bits of ym, where y0 = 0n and yi = Ea(yi−1 ⊕ xi). Though CBCMACτ 

is not a PRF on the set Assoc, it is computationally xor-universal, with good bounds, on this set. 
This can be shown by adapting the proofs in [6], say. 

Using the XORMAC core. Fix £ ∈ [1..n − 1] (e.g., £ = 8 or £ = 32) and let Assoc = 
({0, 1}n−£)<2£ 

. For i ∈ [1..2i − 1], let (i) denote the encoding of i into £ bits. Let E : K×{0, 1}n → 
{0, 1}n be a block cipher. Define XORMACτ (ε) = 0τ and, for x = x1 . . . xm, |x1| = . . . = |xm| = a

n−£, define XORMACτ (x) as the first τ bits of Ea((1) I x1) ⊕ Ea((2) I x2) ⊕ · · · ⊕ Ea((m) I xm).a

Though XORMACτ is not a PRF on the set Assoc, it is computationally xor-universal on this set. 
This function-family is the core of the XOR MAC [2]. The function is computationally xor-universal, 
with good bounds, on the set Assoc. Note that this function is fully parallelizable. 

Using PMAC. Let Assoc = {0, 1} ∗ . Define PMACτ (ε) = 0τ , and, for all other values of x, define a

PMACτ (x) = PMAC[E, τ ] (x), as specified in [19]. By the results in [19], this function is a PRF a

on the set {0, 1}+ . This function is fully parallelizable, approximately as fast to compute as the 
CBC MAC, and is defined on all bit strings. 

Avoiding Multiple Keys when Using OCB 

According to what has been said so far, one needs to use two different keys to solve the associated-
N, AD data problem using ciphertext translation: we set Ē ' (M) = EN (M) ⊕ 0∗ FK ' (AD), and KK K 

EN, AD ¯the “key-reusing definition” of (M) = EN (M) ⊕ 0∗ FK (AD) certainly will not, in gen-K K 

EN, AD ¯eral, work. Nonetheless, we single out a case where the key-reusing definition (M) = K 

EN (M) ⊕ 0∗ FK (AD) does work: Couple OCB with PMAC, encrypting by OCBN, AD (M) = K K 
OCBN (M) ⊕ 0∗ PMACτ (AD).K K 

To prove the security of this scheme one needs to establish that there is no bad “interference” 
between the two schemes. The proof is non-trivial because there is “interaction” between OCB and 
PMAC when keyed by the same key: beyond the common definition of “L” in the two schemes, 
which is easily dealt with, OCB defines R = EK (N ⊕ L) and PMAC defines C[1] = EK (M [1] ⊕ L). 
In the formal model, both N and M [1] are under the adversary’s control. This type of interaction 
between the two schemes would seem to spell trouble. All the same, one can prove that PMACK 

remains a good pseudorandom function even in the presence of an oracle for OCB-encryption and 
ciphertext-validity verification, these under the same key K that keys PMAC. This fact can be 
used to justify key-reuse across these two functions. Details are postponed until the full paper. 
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A Other Proposals 

Phil Hawkes and Greg Rose [20] suggest to address the associated-data problem in Jutla’s IAPM 
by first modifying the definition of the checksum to be the xor of all plaintext blocks and all 
ciphertext blocks; then placing the associated-data in any understood locations of the plaintext, 
as long as it falls along block boundaries; and then omitting from the transmitted ciphertext all 
ciphertext blocks which correspond to plaintext blocks of associated-data. This suggestion may 
work—it seems plausible. However: (i) there are no definitions of the goal and no proofs; (ii) the 
change is specific to IAPM; (iii) the approach adds computational overhead (for the new xors) 
regardless of whether or not one has associated-data; and (iv) the approach adds computational 
overhead (for encrypting the AD blocks) even when the associated-data is static during the course 
of a communications session. 
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