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1 PMAC 

1 Introduction 

Popular ways to authenticate a message, like the CBC MAC [27] and HMAC [1], are inherently 
sequential: one cannot process the i-th message block until all previous message blocks have been 
processed. The sequential nature of these algorithms can limit performance. While this has not 
been too big an obstacle in the past, the issue can be expected to increase in importance, both 
for hardware and for software. Special-purpose hardware will get limited by the latency of the 
underlying cryptographic primitive, while performance on commodity processors will be limited by 
an inability to fully exploit the multiple instruction pipes provided. Thus it seems a ripe time to 
develop a fully parallelizable message authentication code (MAC). 

This submission describes such a message authentication code, PMAC (which stands for Paral­
lelizable MAC). Using an n-bit block cipher, PMAC authenticates an arbitrary string M ∈ {0, 1} ∗ 

using I|M |/nl block-cipher calls. (The empty string is an exception; it requires one block-cipher 
call.) Overhead beyond the block-cipher calls is low—about 8% more than with the basic CBC MAC 
when one is in a non-parallelizable environment. PMAC works correctly across messages of arbi­
trary and varying bit lengths. It uses a single key for the underlying block cipher. The length of the 
computed MAC is an arbitrary number of bits τ ∈ [1..n], with the corresponding forging probability 
being about 2−τ . PMAC is stateless and deterministic: MAC generation does not require a nonce 
or random value. 

We prove PMAC secure, in the sense of reduction-based cryptography. Specifically, we prove 
that PMAC is a good variable-input-length pseudorandom function (PRF), and is therefore a good 
MAC, as long as the underlying block cipher is good as a pseudorandom permutation (PRP) [5, 22]. 
The actual results are quantitative; the security analysis is in the concrete-security paradigm. 

Parallelizable MACs related to PMAC are the XOR MAC of Bellare, Guérin and Rogaway [4], 
the variant of this construction due to Bernstein [9], and the XECB-MAC of Gligor and Donescu [13]. 
For details on these and other works, see Section 4.4. 

2 Mathematical Preliminaries 

Notation. If a and b are integers, a ≤ b, then [a..b] is the set {a, a + 1, . . . , b}. If i ≥ 1 is an 
integer then ntz(i) is the number of trailing 0-bits in the binary representation of i (equivalently, 
ntz(i) is the largest integer z such that 2z divides i). So, for example, ntz(7) = 0 and ntz(8) = 3. 

A string is a finite sequence of symbols, each symbol being 0 or 1. The string of length 0 is 
called the empty string and is denoted ε. Let {0, 1} ∗ denote the set of all strings. Let i, n be 
nonnegative integers. Then 0i and 1i denote the strings of i 0’s and 1’s, respectively. Let {0, 1}n 

denote the set of all strings of length n. If A ∈ {0, 1} ∗ then |A| denotes the length of A, in bits, 
while IAIn = max{1, I|A|/nl} denotes the length of A in n-bit blocks, where the empty string 
counts as one block. If A, B ∈ {0, 1} ∗ then A B, or A I B, is their concatenation. If A ∈ {0, 1} ∗ 

and A  ε then firstbit(A) is the first bit of A and lastbit(A) is the last bit of A.= If A ∈ {0, 1} ∗ 

and i ∈ [0..|A|] then A [first i bits] and A[last i bits] denote the strings containing the first i 
bits of A and the last i bits of A, respectively. Both of these values are the empty string if 
τ = 0. If A = an−1 · · · a1a0 ∈ {0, 1}n is a string (each ai ∈ {0, 1}) then str2num(A) is the number T n−1 2iai. If a ∈ [0..2n − 1] then num2strn(a) is the n-bit string A such that str2num(A) = a.i=0 
Let lenn(A) = num2strn(|A|). We omit the subscript when n is understood. If A, B ∈ {0, 1} ∗ 

then A ⊕ B is the bitwise xor of A [first £ bits] and B [first £ bits], where £ = min{|A|, |B|} (where 
ε ⊕ ε = ε). So, for example, 1001 ⊕ 11 = 01. If A ∈ {0, 1} ∗ and |A| < n then pad (A) is the string n

A 10n−|A|−1 . If A ∈ {0, 1}n then pad (A) = A. With n understood we write pad(A) for pad (A).n n
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If A = an−1an−2 · · · a1a0 ∈ {0, 1}n then A<<1 = an−2an−3 · · · a1a00 is the n-bit string which is 
a left shift of A by 1 bit (the first bit of A disappearing and a zero coming into the last bit), while 
A>>1 = 0an−1an−2 . . . a2a1 is the n-bit string which is a right shift of A by one bit (the last bit 
disappearing and a zero coming into the first bit). 

In pseudocode we write “Partition M into M [1] · · · M [m]” as shorthand for “Let m = IMIn 

and let M [1], . . . ,M [m] be strings such that M [1] · · · M [m] = M and |M [i]| = n for 1 ≤ i < m.” 

The field with 2n points. Recall that a finite field is a finite set together with an addition 
operation and a multiplication operation, each defined to take a pair of points in the field to 
another point in the field. The operations must obey certain basic axioms. (For example, there 
must be a point 0 in the field such that a + 0 = 0 + a = a for every a; there must be a point 1 in 
the field such that a · 1 = 1 · a = a for every a; and for every a = 0 there must be a point a−1 in the 

−1 −1field such that a · a = a · a = 1.) If one fixes a positive integer n, then there turns out to be 
a unique finite field (up to the naming of the points) that has 2n elements. It is called the Galois 
field of size 2n, and it is denoted GF(2n). 

Example 1 The field GF(2) has two points, 0 and 1, and operations ⊕ (addition) and · (multipli­
cation) are defined by 0 ⊕ 0 = 0, 0 ⊕ 1 = 1, 1 ⊕ 0 = 1, 1 ⊕ 1 = 0, 0 · 0 = 0, 0 · 1 = 0, 1 · 0 = 0, and 
1 · 1 = 1. 

We interchangeably think of a point a in GF(2n) in any of the following ways: (1) as an 
abstract point in a field; (2) as an n-bit string an−1 . . . a1a0 ∈ {0, 1}n; (3) as a formal polynomial 
a(x) = an−1xn−1 + · · · + a1x + a0 with binary coefficients; (4) as a nonnegative integer between 0 
and 2n − 1, where the string a ∈ {0, 1}n corresponds to the number str2num(a). For example, one 
can regard the string a = 0125101 as a 128-bit string, as the number 5, as the polynomial x2 + 1, or 
as a particular point in the finite field GF(2128). We write a(x) instead of a if we wish to emphasize 
that we are thinking of a as a polynomial. 

To add two points in GF(2n), take their bitwise xor. We denote this operation by a ⊕ b. 
Before we can say how to multiply two points we must fix some irreducible polynomial pn(x) 

having binary coefficients and degree n. (Saying that pn(x) is irreducible means that if q(x) and 
q'(x) are polynomials over GF(2) which multiply to give pn(x), then one of these polynomials is 
1 and the other is pn(x).) For PMAC, choose the lexicographically first polynomial among the 
irreducible degree n polynomials having a minimum number of coefficients. For n = 128, the 
indicated polynomial is 

128 + xp128(x) = x 7 + x 2 + x + 1 

64 +x 96 +x10 +x 160 +xA few other pn(x)-values are x 4 +x3 +x+1 and x 9 +x6 +1 and x 5 +x3 +x2 +1 
192 + x 224 + x 256 + x10 + xand x 7 + x2 + x + 1 and x 9 + x8 + x3 + 1 and x 5 + x2 + 1. 

To multiply points a, b ∈ GF(2n), which we denote a · b, regard a and b as polynomials a(x) = 
an−1xn−1 + · · · + a1x + a0 and b(x) = bn−1xn−1 + · · · + b1x + b0, form their product c(x) where one 
adds and multiplies coefficients in GF(2) (the coefficient of degree j in c(x), where j ∈ [0..2n − 2], is 
cj = ⊕j (bi · aj−i)) and take the remainder one gets when dividing c(x) by the polynomial pn(x).i=0 

By convention, the multiplication operator has higher precedence than addition operator so, for 
example, γ1 · L ⊕ R means (γ1 · L) ⊕ R. 

Example 2 Assume n = 128. Suppose one multiplies a(x) = x127 + x + 1 by b(x) = x + 1. The 
128 + x 128 + x127 + xresult is c(x) = x 2 + x + x127 + x + 1 = x 2 + 1. If one divides c(x) by p(x) one 

127 + xgets a quotient of q(x) = 1 and a remainder (which is the answer) of r(x) = x 7 + x. In string 
notation, 1012511 · 012611 = 1011910000010. 
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It is particularly easy to multiply a point a ∈ {0, 1}n by x. We illustrate the method for 
128 + xn = 128, where p(x) = x 7 + x2 + x + 1. Then multiplying a = an−1 · · · a1a0 by x yields a 

product an−1xn + an−2xn−1 + a1x2 + a0x. Thus, if the first bit of a is 0, then a · x = a<<1. If the 
128 128 + xfirst bit of a is 1 then we must add x to a<<1. Since x 7 + x2 + x + 1 = 0 we know that 

128x = x7 + x2 + x + 1, so adding x128 means to xor by 012010000111. In summary, when n = 128,  
a<<1 if firstbit(a) = 0 

a · x =
(a<<1) ⊕ 012010000111 if firstbit(a) = 1 

Example 3 Let us again compute 1012511 · 012611. Since the latter string is x + 1, we should 
multiply the first string by x and then add it to (xor it with) the first string. As the first bit of 
1012511 is 1, multiplying this point by x yields 0125110 ⊕ 012010000111 = 012010000001, and xoring 
this with 1012511 gives a final answer of 1011910000010, as before. 

iIf L ∈ {0, 1}n and i ≥ 0, we write L(i) as shorthand for L · x . We have an easy way to 
compute L(1), L(2), . . . , L(µ)-values, where µ is a small number. Namely, set L(0) = L and compute 
L(i) = L(i − 1) · x for all i ∈ [1..µ]. 

If a = 0 is a point in {0, 1}n, we can divide a by x, meaning that one multiplies a by the 
−1 −1multiplicative inverse of x in the field: a · x . It is easy to compute a · x . To illustrate, again 

assume that n = 128. Then if the last bit of a is 0, then a · x−1 is a>>1. If the last bit of a is 1, then 
128 127 −1we must add (xor) to a>>1 the value x−1. Since x = x7 +x2 +x+1 we have x = x6 +x+1+x

−1 127 + xand so x = x 6 + x + 1 = 101201000011. In summary, for n = 128,  
a>>1 if lastbit(a) = 0−1 a · x =
(a>>1) ⊕ 101201000011 if lastbit(a) = 1 

−1We point out that, for any n = 128, the value huge = x will be an enormous number (when 
viewed as a number); in particular, huge starts with a 1 bit, so 2n−1 ≤ huge. For the remainder of 
this submission, we will use huge as a synonym for x−1 whenever this seems to add to clarity. We 
will later assume that any messages M = M [1] · · · M [m] to be MACed has block length m < huge, 
for otherwise our theorem statements assert a non-result. Thus for any message M = M [1] · · · M [m] 
to be MACed, each of γ1, γ2, . . . , . . . , γm is different from huge. 

Gray codes. For £ ≥ 1, a Gray code is an ordering γ£ = γ£ γ£ . . . γ£ of {0, 1}£ such0 1 2e−1 
that successive points differ (in the Hamming sense) by just one bit. For n a fixed number, PMAC 
makes use of the “canonical” Gray code γ = γn constructed by 

γ1 = 0 1 

while, for £ > 0, 

γ£+1 = 0γ£ 0γ£ · · · 0γ£ 0γ£ 1γ£ 1γ£ · · · 1γ£ 1γ£ 
0 1 2e−2 2e−1 2e−1 2e−2 1 0 

It is easy to see that γ is a Gray code. What is more, for 1 ≤ i ≤ 2n −1, γi = γi−1 ⊕(0n−11<<ntz(i)). 
This makes it easy to compute successive points. 

Example 4 The canonical Gray code with 2 points is γ1 = γ1 γ1 = 0 1. The canonical Gray0 1 
code with 4 points is obtained by writing this once forward, then once backwards, prefixing each 
string in the first half by 0 and prefixing each string in the second half by 1: that is, γ2 = 
γ0

2 γ1
2 γ2

2 γ2 = 00 01 11 10 = 0 1 3 2. Repeating the process, the canonical Gray code with 8 points3 
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is γ3 = γ0
3 γ1

3 γ2
3 γ3

3 γ4
3 γ5

3 γ6
3 γ3 = 000 001 011 010 110 111 101 100 = 0 1 3 2 6 7 5 4. In PMAC we7 

2n−1use the Gray code γ = γn having 2n points: γ = γ0 γ1 γ2 γ3 · · · γ2n−1 = 0 1 3 2 6 7 5 4 12 · · · . 
To calculate γi from γi−1, xor γi−1 by 0n−11<<ntz(i). For example, γ8 = 12 can be computed from 
γ7 = 4 by xoring 4 with 0n−11<<3. 

We emphasize the following characteristics of the Gray-code values γ1, γ2, . . . , γ2n−1. First, they 
are distinct and different from 0. Second, that γ1 = 1. Third, that γi ≤ 2i. 

Let L ∈ {0, 1}n and consider the problem of successively forming the strings γ1 · L, γ2 · L, 
γ3 · L, . . ., γm · L. Of course γ1 · L = 1 · L = L. Now, for i ≥ 2, assume one has already produced 
γi−1 · L. Since γi = γi−1 ⊕ (0n−11<<ntz(i)) we know that 

γi · L = (γi−1 ⊕ (0n−11<<ntz(i))) · L 

= (γi−1 · L) ⊕ (0n−11<<ntz(i)) · L 

ntz(i))= (γi−1 · L) ⊕ (L · x 

= (γi−1 · L) ⊕ L(ntz(i)) 

That is, the ith word in the sequence γ1 · L, γ2 · L, γ3 · L, . . . is obtained by xoring the previous word 
with L(ntz(i)). 

3 Specification 

3.1 Definition of the Mode 

Parameters. To use PMAC one must specify two parameters: a block cipher and a tag length. 

•	 The block cipher E is a function E : K×{0, 1}n → {0, 1}n, for some number n, where each 
E(K, ·) = EK (·) is a permutation on {0, 1}n . Here K is the set of possible keys and n is the 
block length. Both are arbitrary, though we insist that n ≥ 64, and we discourage n < 128. 

•	 The tag length τ is an integer between 1 and n. By trivial means, the adversary will be 
able to forge a valid ciphertext with probability 2−τ . 

The popular block cipher to use with PMAC is likely to be AES, but any other block cipher is fine. 
As for the tag length, a suggested default of τ = 64 is reasonable, though both shorter and longer 
tags are likely to be common. Note that tags of τ = 32 bits have been standard for retail banking 
for many years, while tags of τ = 80 bits are used in IPSec. Using a tag of more than 80 bits adds 
questionable security benefit, though it does entail extra bits being transmitted or stored. 

With E : K × {0, 1}n → {0, 1}n and τ ∈ [1..n], we let PMAC[E, τ ] denote the PMAC mode 
of operation using block cipher E and tag length τ . This is a function from a key K ∈ K and a 
message M ∈ {0, 1} ∗ to a string in {0, 1}τ . 

Definition. Letting E : K × {0, 1}n → {0, 1}n and τ ∈ [1..n], the definition of the function 
PMAC[E, τ ] is given in Figure 1 and illustrated in Figure 2. 

3.2 Conformance Criteria 

An implementation of PMAC is said to conform to the specification if some specified subset 
MsgSpace ⊆ {0, 1} ∗ of messages can be presented to be MACed, and any message M carrying 
a tag Tag is deemed invalid if PMACK (M) = Tag . For example, 
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Algorithm PMACK (M) 

L ← EK (0n) 
Partition M into M [1] · · · M [m] 
for i ← 1 to m − 1 do 

Y [i] ← EK (M [i] ⊕ γi · L) 
Σ ← Y [1] ⊕ Y [2] ⊕ · · · ⊕ Y [m − 1] ⊕ pad(M [m]) 
if |M [m]| = n then X[m] = Σ ⊕ L · x−1 

else X[m] ← Σ 
Tag = EK (X[m]) [first τ bits] 
return Tag 

Figure 1: Definition of PMAC. Constants γ1, γ2, . . . and the meaning of the multiplication operator are 
defined in the text, but γi · L is simply γi−1 · L ⊕ L(ntz(i)) (where L(j) is defined in the text and easily 
computed from L). We let pad(A) = A 10n−|A|−1 if |A| < n and pad(A) = A if |A| = n. 

   

EK 

M [2] 

EK 

M [1] 

  

M [m] 

EK 

pad 

EK 

first τ bits 

M [m − 1] 

Tag 

        γ1 · L γ2 · L γm−1 · L 

X[1] X[2] X[m − 1]
      

Y [2] Y [m − 1]Y [1] 

_     _    _  _  
Σ  

0n  if |M [m]| < n _  −1L · x if |M [m]| = n

 

 
_τ

 

Figure 2: Illustration of PMAC. The message to MAC is M and the key is K. Message M is written 
as M = M [1] · · · M [m], where m = max{1, I|M |/nl} and |M [1]| = |M [2]| = · · · = |M [m − 1]| = n. Value 
L = EK (0n) is derived from K. 
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A conforming implementation might only be able to MAC byte strings, these strings limited
 
to 236 bytes.
 
A message M might be deemed invalid for reasons which go beyond its presenting an incorrect
 
tag. Replay detection would be the most typical reason.
 

3.3 An Equivalent Description 

The following description of PMAC may help to clarify what a typical implementation might choose 
to do. In what follows, fix a block length n, block cipher E : K × {0, 1}n → {0, 1}n, and a tag 
length τ . A PMAC implementation may work as follows. 

R
Key generation. Choose a random key K ← K for the block cipher. The key K is provided to 
both the party that generates MACs and the party that verifies them. 

Key setup. Once the key K is known, the following may be precomputed. 
1.	 Set up the block-cipher key. Both the party that generates the MACs and the party that ver­

ifies the MACs do any key setup useful for applying the block-cipher in its forward direction. 

2.	 Precompute L. Compute L ← EK (0n). 
∗3.	 Precompute L(i)-values. Let m bound the maximum number of n-bit blocks for any message 

which will be MACed. Let µ ← Ilog2 m ∗l. Let L(0) ← L and, for i ∈ [1..µ], compute 
L(i) ← L(i − 1) · x using a shift and a conditional xor, as described in Section 2. Compute 
L(−1) ← L · x−1 using a shift and a conditional xor, as described in Section 2. Save the 
values L(−1), L(0), L(1), L(2), . . . , L(µ) in a table. (Note: alternatively, if one wishes to 
save space, compute only the first few L(i)-values now, and compute any further ones only 
when needed, “on the fly.”) 

MAC generation. To generate the MAC Tag for a message M ∈ {0, 1} ∗, do the following steps. 
1.	 Partition the message. Let m ← I|M |/nl. If m = 0 then let m ← 1. Let M [1], . . . ,M [m] be 

strings such that M [1] · · · M [m] = M and |M [i]| = n for i ∈ [1..m − 1]. 
2.	 Initialize variables. Let Offset ← 0n . Let Σ ← 0n . 
3.	 Encipher all blocks but the last one. For i ← 1 to m − 1, do the following:
 

Let Offset ← Offset ⊕ L(ntz(i)).
 
Let Y [i] ← EK (M [i] ⊕ Offset).
 
Let Σ ← Σ ⊕ Y [i].
 

4.	 Compute the MAC.
 
Let Σ ← Σ ⊕ pad(M [m]).
 
If |M [m]| = n then let Y [m] ← EK (Σ ⊕ L(−1)) else let Y [m] ← EK (Σ).
 
Let Tag be the first τ bits of Y [m].
 
Return Tag as the computed MAC.
 

MAC verification. To test if (M, Tag ') is authentic, do the following. 

1.	 Re-MAC the message. Generate the MAC Tag for the message M using the MAC generation 
procedure just described. 

'2.	 Compare the presented and the re-computed MACs. If Tag = Tag then regard the message 
' M	 as authentic. If Tag = Tag then regard the message M as inauthentic. 
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Security Message Authentication Code. The computed MAC would normally 
Function be used to provide message authenticity. But, more generally, PMAC is a 

pseudorandom function (PRF) having variable input-length ({0, 1} ∗) 
and fixed output-length ({0, 1}τ ). Besides their use as MACs, PRFs can 
be used, for example, for key separation and within entity-authentication 
and key-distribution protocols. 

Error 
Propagation 

Not applicable. (However, any accidental modification to (M, Tag) will 
be detected during MAC verification with probability about 1/2τ .) 

Synchronization Not applicable. 
Parallelizability Fully parallelizable. All block-cipher invocations (except the last one) 

may be computed at the same time. 
Keying Material One block-cipher key. One needs a single key, K, which keys all 

invocations of the underlying block cipher. 
Ctr/IV/Nonce 
Requirements 

None. No counter/IV/nonce is used. 

Memory 
Requirements 

Very modest. About 6n bits beyond the key are sufficient for internal 
calculations. Implementations may choose whether or not to save L(i)­
values, offering some tradeoff between memory and simplicity/speed. 

Pre-processing 
Capability 

Limited. During key-setup the string L would typically be pre-computed 
(one block cipher call), as would a few L(i)-values. Additional pre-
computation is not possible. 

Message-Length 
Requirements 

Any bit string allowed. Any string M ∈ {0, 1} ∗ may be MACed, 
including the empty string and strings which are not an integral number 
of bytes. The length of the string need not be known in advance. 

Ciphertext 
Expansion 

Not applicable. (But the MAC itself is of minimal length: τ bits are 
used to obtain a forging probability of approximately 1/2τ .) 

Other 
Characteristics 

Efficiency: PMAC uses I|M |/nl block-cipher calls when M = ε (uses 
one block-cipher call for M = ε). Overhead beyond block-cipher calls is 
low. Endian neutral: Can be implemented equally efficiently on big­
endian and little-endian machines (assuming the underlying block cipher 
has this property). No decryption. PMAC uses only the forward di­
rection of the block cipher. Incrementality. PMAC is incremental, in 
the sense of [3], with respect to replacement, truncation, and concate­
nation. Parsimonious PRF. This property lets one easily construct 
from PMAC a parallelizable block cipher which acts on any message 
M ∈ {0, 1} ∗ of at least n bits. Provable security: PMAC provably 
meets its goals, assuming the underlying block cipher meets a standard 
cryptographic assumption (security in the sense of a pseudorandom per­
mutation). 

Figure 3: Summary of properties of PMAC. Further discussion of these and other properties is given 
in Section 4.1. 
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4 Discussion 

4.1 Properties 

PMAC has been designed to have a variety of desirable properties. These properties are summarized 
in Figure 3. We now expand on some of the points referenced in that table. 

Security Function. PMAC is a (variable-length input, fixed-length output) pseudorandom 
function (PRF): as long as the underlying block cipher E is secure, an adversary will be unable to 
distinguish PMACK (·), for a random but hidden key K, from a random function ρ from {0, 1} ∗ to 
{0, 1}τ . It is a well-known observation, dating to the introduction of PRFs [15], that a pseudoran­
dom function is necessarily a good MAC. Of course the converse is not true, and PMAC, being a 
good PRF, has uses which go beyond its being a good MAC. 

Parallelizability. In settings where there is adequate opportunity for parallelism, PMAC will 
be faster than the CBC MAC or HMAC, which are inherently non-parallelizable. Parallelizability 
is becoming important for obtaining good performance from both high-speed hardware and com­
modity processors. In the former case, one may want to authenticate messages at speeds in excess 
of 10 Gbits/second—an impossible task for the CBC MAC or HMAC (with today’s technology). 
In the latter case, there is an architectural trend towards highly-pipelined machines with multiple 
instruction pipes and lots of registers. Optimally exploiting such features necessitates algorithms 
with plenty to do in parallel. 

Keying Material. Conceptually the key is (K, L), but L is defined from the underlying key K, 
and then key K is still used. Normally such “lazy key-derivation” would get one in trouble. For 
PMAC we prove that it does not. Avoiding multiple block-cipher keys is desirable for saving on 
memory and key-setup time. 

Ctr/IV/Nonce Requirements. Conventional MACs have always been deterministic. Main­
taining this characteristic results in shorter MACs and a scheme more robust against usage errors. 

Message-Length Requirements. Any string M ∈ {0, 1} ∗ can be MACed, and messages which 
are not a multiple of the block length are handled without the need for obligatory padding, which 
would increase the number of block-cipher calls. MAC generation is “on line,” meaning that one 
does not need to know the length of the message M in advance. Instead, the message can be 
MACed as one goes along, continuing until there is an indication that the message is now complete. 
An incremental interface (as is popular for cryptographic hash functions) would be used to support 
this functionality. 

Efficiency. Shaving off a few block-cipher calls may not seem important. But often one is 
dealing with short messages; for example, roughly a third of the messages on the Internet backbone 
are 43 bytes. If one is MACing messages of such short lengths, one should be careful about extra 
computational work since, by percentage, the inefficiencies can be large. 

Endian Neutrality. In contrast to a scheme based on mod p arithmetic or based on mod 2n 

arithmetic, there is almost no endian-favoritism implicit in the definition of PMAC. (The exception 
is that the one left shift used for forming L(i + 1) from L(i) is more convenient under a big-endian 
convention, as is the one right shift used for forming L(−1) = L · x−1 from L.) 
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Incrementality. The concept of incrementality for a cryptographic primitive was introduced 
by [15]. For a MAC, the idea is that, having already computed the MAC Tag of some (possibly 
long) message M , if M is modified into some similar message M ', the time to compute the MAC 

' ' Tag for the new message M should be proportional to the amount of change that M underwent 
' 'when being modified to M (as opposed to just computing the MAC of M from scratch, which 

would typically take Θ(|M ' |) time.) Assuming that τ = n (or that one retains a constant amount 
of extra information), PMAC is incremental with respect to three common operations for changing 

' M to M , namely, append, truncate, and replace. These operations are defined as follows: 
append(M, x) = M I x; truncate(M, ndrop) = M [first |M | − ndrop bits], where |M | ≥ ndrop; 
and replace(M, posn, x) = M [first posn − 1 bits] I x I M [last |M | − posn − |x| + 1 bits], where 
|M | ≥ posn + |x| − 1). For these three operations it is easy to see how to update the MAC of M 
in time proportional to |x|, ndrop, or |x|, respectively. 

Incrementality is useful when, for example, one wishes to continually maintain the MAC of a 
large file which is being edited, or the MAC of a file system. Various tree-based schemes offer 
solutions with logarithmic space overhead. For PMAC, there is zero or constant overhead. 

Parsimonious PRF. Partition M into M = M [1] · · · M [m−1]M [m] and assume |M | ≥ n. Assume 
a tag length of the full τ = n bits. We make the following observation: for any i ∈ [1..m] such 
that M [i] is a full block (that is, |M [i]| = n), there is a simple algorithm to recover M [i] given 

'the key K, the message M = M [1] . . .M [i − 1] M [i + 1] · · · M [m] which omits block M [i], and 
the MAC Tag = PMACK (M). This property of a PRF was identified in [7], where a PRF having 
this property was said to be parsimonious. As shown in [7], a parsimonious PRF can be combined 
with a block cipher E to yield a length-preserving pseudorandom permutation (that is, a “variable­
input-length block cipher”) that acts on messages of any number of bits £ greater than or equal 
to n. In particular, given K1,K2 ∈ K, one can encipher M under key K = K1 I K2 by first setting 
IV = PMACK1(M) and then encrypting M using CTR-mode using key K2 and an initial counter 
value of IV. This yields a ciphertext C = IV I C[1] · · · C[m − 1]C[m]. One can use C directly, as a 
deterministic (but not length-preserving) encryption of M , or one can drop n of the bits from C, 
the enciphered string being C = IV I C[1] . . . C[m − 2] C[m], say. In this way one has constructed 
a length-preserving pseudorandom permutation (PRP) that is fully parallelizable and that uses a 
number of block-cipher calls which is roughly twice that of CBC encryption. 

Provable Security. In recent years provable security has become a popular goal for practical 
protocols. This is for good reason; demonstrating provable security is the best way to gain assurance 
that a cryptographic scheme does what it is supposed to do. For a scheme which enjoys provable 
security, one does not need to consider attacks, since successful ones imply successful attacks on 
some simpler object (e.g., the algorithm of the AES). Provable security represents a major departure 
from iterated, attack-directed design. 

Fix a block cipher E and a tag length τ . When we say that PMAC is provably secure we 
are asserting the existence of a particular theorem (namely, Theorem 1, or one of its corollaries). 
The theorem shows that if an adversary A could do a good job at distinguishing PMACK (·), for 
a random but hidden key K, from a random function ρ(·), where ρ : {0, 1} ∗ → {0, 1}τ , then there 
would be an adversary B, about as efficient as A, that does a good job at distinguishing block 
cipher EK (·), for a random key K, from a random permutation π(·), where π : {0, 1}n → {0, 1}n . 
A theorem of this sort is called a reduction. In cryptography, provable security means giving 
reductions (along with the associated definitions). 

Provable security begins with Goldwasser and Micali [16]. The style of provable security which 
we use here—where the primitive is a block cipher, the scheme is a usage mode, and the analysis 
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is concrete (no asymptotics)—is the approach of Bellare and Rogaway [2, 4, 5]. 
It is not really enough to know that there is a provable-security result for the scheme in ques­

tion: one should also understand the definitions and the bounds. We have already sketched the 
definitions. When we speak of the bounds we are addressing “how effective is the adversary B in 
terms of the efficacy of adversary A” (where A and B are the adversaries above). For PMAC, the 
bounds can be summarized as follows: the maximal advantage an adversary can get in attacking 
the constructed PRF is limited to about σ2/2n more than what a similarly powerful adversary can 
get in attacking the underlying block cipher. The advantage is a real number, between 0 and 1, 
with 0 meaning that the adversary is doing terribly and 1 meaning that the adversary is doing 
great. Here σ is the total number of messages the adversary sees the MACs of. The conclusion is 
that one is safe using PMAC as long as E is a good block cipher and σ is small compared to 2n/2 . 
This is the same security degradation one observes for the CBC MAC [5, 23]. This kind of security 
loss was the main motivation for choosing an AES block length of n = 128 bits, and it is the reason 
that we discourage the use of PMAC with n < 128. 

4.2 Design Rationale 

Avoiding state and randomness. A message authentication code is stateful if the authenticating 
party maintains state, typically a counter, across MAC-generation invocations. It is probabilistic if 
the authenticating party uses random bits to generate a MAC. (In both cases, MAC-verification is 
stateless and deterministic.) As in [4], construction of a stateful message authentication code would 
have facilitated obtaining a better concrete security bound than PMAC delivers. A randomized 
scheme would also have had a better bound. But PMAC anticipates the use of a block cipher 
with a block length of n ≥ 128, and so the bound that we get—the customary Θ(σ22−n) bound— 
is quite acceptable. By insisting on a stateless and deterministic scheme one saves bits in the 
MAC compared to a probabilistic or stateful scheme, one eliminates the sender’s need to maintain 
state across MAC-generation invocations, and one largely eliminates concern about usage errors, 
since one does not have to worry about what happens if the sender reuses a nonce or provides a 
non-random value where a random value is called for. 

Not fixing the tag length. The number of bits that are necessary and appropriate for the 
tag length vary according to the application. In a context where the adversary obtains something 
quite valuable from a single successfully forgery, one may wish to choose a tag length of 80 bits or 
more. In contexts such as authenticating a video stream, where an adversary would have to forge 
a signficant fraction of the frames even to have a noticeable effect on the image, an 8-bit tag may 
be appropriate. With no universally appropriate value to choose, it is best to leave this parameter 
unspecified. 

We comment that short tags seem to be more appropriate for PMAC than for some other MAC, 
particularly Carter-Wegman MACs [12, 28]. Many Carter-Wegman MACs have the property that 
if you can forge one message with probability δ, than you can forge an arbitrary set of (all correct) 
messages with probability δ. This does not appear to be true for PMAC. 

Avoiding mod 2n addition. Our earlier designs included a scheme based on modular 2n addition 
(“addition” for the remainder of this paragraph) [25]. This is an interesting approach due to 
Gligor and Donescu [13]. Compared to our GF(2n)-based approach (“xor” for the remainder of 
this paragraph), an addition-based scheme is quicker to understand a specification for, and may be 
easier to implement. But the use of addition (where n ≥ 128) has signficant disadvantages: 

The bit-asymmetry of the addition operator implies that the resulting scheme will have a bias 
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towards big-endian architectures or little-endian architectures; there will be no way to achieve 
an endian-neutral scheme. The AES algorithm was constructed to be endian-neutral. We did 
not want to lose this nice attribute with our mode of operation. 
Modular addition of n-bit words is particularly unpleasant when programming in a high-level 
language, where one does not have access to the underlying add-with-carry instruction. 
Modular addition of n-bit words is not parallelizable. As a consequence, dedicated hardware 
will perform this operation more slowly than xor, and, correspondingly, modern processors 
can xor two n-bit quantities faster than they can add them. 
The concrete security bound is worse with an addition-based scheme: the degradation in the 

∗bound appears to be Θ(lg m ∗), where m is the maximal message length.
 
A correct proof for the addition scheme is substantially more complex than a correct proof
 
for the xor-scheme.
 

For all of these reasons, we eventually decided to reject the addition-based approach in favor of the 
xor-based one. 

4.3 Limitations 

We note the following limitations. None of these points are specific to PMAC—they apply to any 
MAC—but they are still important enough to single out. 

As with all modes of operation, the user should be careful not to use the MAC key K for any 
other purpose. Standard key-separation techniques should be used to derive a multiplicity of 
keys when keys are needed for a multiplicity of purposes. The key K itself must not be used 
to derive additional keys. 
A MAC does not, by itself, provide for replay detection. When replay detection is desired, it 
should be added, using well-known techniques, by a higher-level, protocol. 
One should be careful in combining an encryption scheme and a MAC: the keys must be 
distinct, and it is generally preferable to MAC the ciphertext than to encrypt the MAC (and 
when one wants privacy one should not transmit, in the clear, the MAC of a plaintext). See 
[6] for an analysis.
 
The utility of a MAC is eliminated if one encrypts using an authenticated-encryption scheme,
 
such as [13, 20, 26].
 

4.4 Related Work 

PMAC springs from ideas in [4], [9], and [13]. The lineage of ideas is from [4], to [9] and [13], and 
on to PMAC. Let us sketch representative constructions from [4, 9, 13]. 

The XOR MAC. Bellare, Guérin and Rogaway defined a fully parallelizable MAC they called 
the XOR MAC [4]. In this MAC the message M is divided into pieces M [1] · · · M [£] of length 
less than the block length. For concreteness, think of each M [i] as having 64 bits and the block 
length as having n = 128 bits. Each M [i] is preceded by the number i, encoded as the 64­
bit string i, and EK is applied to i I M [i]. Xor together all £ results to get an n-bit block 
Σ = EK (1 I M [1]) ⊕ · · · ⊕ EK (£ I M [£]). Block cipher EK is applied to one more block, 0 I IV, 
where IV is a counter or random value. This gives the ciphertext block P = EK (0 I IV). The 
MAC is (IV, Σ ⊕ P ). 

The XOR MAC requires £+1 ≈ 2m+1 block-cipher invocations to authenticate a message of m 
n-bit blocks. So one gets parallelizability at the cost of about a factor of two in serial speed. One 
also pays in the need for randomness or state, and in the length of the MAC (which is longer in 
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order to communicate this randomness or state). These two limitations—reduced serial efficiency 
and the use of randomness or state—are overcome individually in [13] and [9], respectively. 

Deterministic variants. Bernstein suggested the following variant of the XOR MAC [9]. He 
starts not with a block cipher but with a pseudorandom function F where, to illustrate, let us 
say that FK maps 384 bits to 256 bits. In such a case, break the message M into 256-bit blocks 
M [1], . . . ,M [£] and apply FK to each of 1 I M [1], 2 I M [2], . . ., £ I M [£], where i now means 
the 128-bit string corresponding to the number i. Xor the resulting ciphertext blocks to get a 
value Σ = FK (1 I M [1]) ⊕ · · · ⊕ FK (£ I M [£]). Then apply FK to 0 I Σ to give the MAC 
Tag = FK (0 I Σ). 

One could consider the following modification to Bernstein’s scheme, where one uses a block 
cipher E instead of the PRF F . Form Σ exactly as with the XOR MAC, but then form the MAC 
as Tag = EK' (Σ), where K ' is part of the MAC key Key = K I K ' . 

An alternative to i I · annotation. Gligor and Donescu suggested the following approach, 
which they called the XECB-MAC [13]. Let E : K × {0, 1}n → {0, 1}n be a block cipher and let 
K ∈ K. Given a counter ctr, let R = EK (ctr). Let M = M [1] · · · M [m] be the string we want to 
MAC, partitioned into n-bit words. Then encipher the following m strings using EK : M [1] + R, 
M [2] + 2R, . . ., M [m] + mR. The arithmetic is done modulo 2n . Xor together these m ciphertexts 
to get a value Σ = EK (M [1] + R) ⊕ · · · ⊕ EK (M [m] + mR). The MAC is ctr together with 
Σ ⊕ EK (ctr). The advantage of this approach is that one does not “waste bits” for i I -encoding; 
instead, symmetry has been broken by different means—by adding to the ith block of the message 
the ith multiple of a number unknown to the adversary. 

Further afield. A completely different way for improving parallelizability is to generically con­
struct a more parallelizable MAC from an arbitrary one. For example, one could break the message 

' '' M [1] · · · M [2m] into pieces M = M [1]M [3]M [5] · · · M [2m−1] and M = M [2]M [4]M [6] · · · M [2m], 
and separately compute MACK (M ') I MACK (M ''), and then MAC these MACs, under a separate 
key. But such an approach requires one to anticipate the maximal amount of parallelism that one 
aims to extract (the example here shows how to get a factor of two). We are not interested in such 
schemes; we want a MAC that is “fully parallelizable.” 

Another approach for making a parallelizable MAC is the Carter-Wegman paradigm [12, 28], 
as in [11, 18, 21], making sure to select a universal hash-function family that is fully parallelizable. 
In fact, most universal hash-functions that have been suggested are fully parallelizable. This is 
perfectly workable, but fast constructions for universal hash-functions have proven to be complex 
to specify or to implement well [9, 11]. 

4.5 Design History 

The initial version of PMAC, described in [25], came in three “forms”—one based on mod 2n 

addition, one based on GF(2n) addition, and one based on mod p addition. However, we eventually 
settled on the GF(2n) scheme, for the reasons discussed in Section 4.2. What is described in the 
current submission differs from the GF(2n)-scheme in [25] only in minor ways. 

This project was carried out in parallel with the design of an authenticated-encryption scheme, 
OCB [26]. We have attempted to give these two algorithms a similar flavor. However, the 
authenticated-encryption goal turns out to be much more complex than the message-authentication 
goal, and the design of OCB was much harder than the design of PMAC. 
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5 Theorems 

This section gives our security results on PMAC. The proofs of the two lemmas used are deferred 
to Appendix A. We begin with the requisite definitions, which are standard; see, for example, [5]. 

5.1 Security Definitions 

A block cipher is a function E : K × {0, 1}n → {0, 1}n where K is a finite set of strings and each 
EK (·) = E(K, ·) is a permutation on {0, 1}n . Let Perm(n) denote the set of all permutations on 
{0, 1}n . This set can be regarded as a block cipher by imagining that each permutation is named 
by a unique string. Let A be an adversary (a probabilistic algorithm) with access to an oracle, and 
suppose that A always outputs a bit. Define 

Advprp R R(A) = Pr[K ← K : AEK (·) = 1] − Pr[π ← Perm(n) : Aπ(·) = 1] E 

The above is the probability that adversary A outputs 1 when given an oracle for EK (·), minus the 
probability that A outputs 1 when given an oracle for π(·), where K is selected at random from K 
and π is selected at random from Perm(n). 

A function family from n-bits to n-bits is a map F : K×{0, 1}n → {0, 1}n where K is a finite set 
of strings. We write FK (·) for F (K, ·). Let Rand(n) denote the set of all functions from {0, 1}n to 
{0, 1}n . This set can be regarded as a function family by imagining that each function in Rand(n) 
is named by a unique string. Define 

R RAdvprf (A) = Pr[K ← K : AFK (·) = 1] − Pr[ρ ← Rand(n) : Aρ(·) = 1] F 

A function family from {0, 1} ∗ to {0, 1}τ is a map f : K × {0, 1} ∗ → {0, 1}τ where K is a set 
with an associated distribution. We write fK (·) for f(K, ·). Let Rand(∗, τ) denote the set of all 
functions from {0, 1} ∗ to {0, 1}τ . This set is given a probability measure by asserting that a random 
element ρ of Rand(∗, τ) associates to each string x ∈ {0, 1} ∗ a random string ρ(x) ∈ {0, 1}τ . Define 

R RAdvprf (A) = Pr[K ← K : AfK (·) = 1] − Pr[g ← Rand(∗, τ ) : Ag(·) = 1] f 

5.2 Theorem Statements [ DRAFT ] 

We give the following information-theoretic bound on the security of PMAC. 

Theorem 1 [PMAC[Perm(n), τ ] ≈ Rand(∗, τ)] Fix PMAC parameters n and τ . Let A be an 
adversary with an oracle. Suppose that A asks its oracle q queries, these queries having aggregate 
length of σ blocks. Let σ̄ = σ + q + 1. Then 

1.5 σ̄2 

Advprf (A) ≤PMAC[Perm(n),τ ] 2n 

In the theorem statement, and from now on, the aggregate length of messages M1, . . . ,Mq asked Tqby A of its oracle is the number σ = r=1 IMrIn. 
From the theorem above it is standard to pass to a complexity-theoretic analog. One gets the 

following. Fix PMAC parameters n and τ , and a block cipher E : K × {0, 1}n → {0, 1}n . Let A 
be an adversary with an oracle. Suppose these q queries have aggregate length of σ blocks. Let 
σ̄ = σ + q + 1. Let δ = Advprf (A) − 1.5 σ̄2/2n . Then there is an adversary B for attacking PMAC[E,τ ]
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10 L 
R← {0, 1}n 

11 for i ← 1 to m − 1 do { X[i] ← M [i] ⊕ γi · L; Y [i] R← {0, 1}n }
12 Σ ← Y [1] ⊕ · · · ⊕ Y [m − 1] ⊕ pad(M [m]) 
13 if |M [m]| = n then X[m] ← Σ ⊕ huge · L else X[m] ← Σ 
14 Equal ← {i ∈ [1.. min{m, m̄} − 1] : M [i] = ¯ M [i]}
15 Unequal ← [1.. ̄m] \ Equal 
16 for i ← 1 to m̄ − 1 do 
17 if i ∈ Equal then { ¯ X[i] ← X[i]; ¯ Y [i] ← Y [i] }
18 if i ∈ Unequal then { ¯ X[i] ← ¯ M [i] ⊕ γi · L; ¯ Y [i] R← {0, 1}n }
19 ¯ Σ ← ¯ Y [1] ⊕ · · · ⊕ ¯ Y [ ̄m − 1] ⊕ pad( ¯ M [ ̄m]) 
20 if | ¯ M [ ̄m]| = n then ¯ X[ ̄m] ← ¯ Σ ⊕ huge · L else ¯ X[ ̄m] ← ¯ Σ 
21 D ← {0n, X[1], . . . , X[m]} ∪ { ¯ X[i] : i ∈ Unequal}
22 if there is a repetition in D then bad ← true 

¯Figure 4: The pairwise-collision probability of M and M is defined using this game. In line 21, D is 
understood to be a multiset. The flag bad is set to true when a nontrivial collision occurs. Recall that huge 
is a synonym for x−1 . 

'block cipher E that achieves advantage Advprp(B) ≥ δ. Adversary B asks at most q = σ + 1 E 
oracle queries and has a running time which is equal to A’s running time plus the time to compute 

' E on q points, plus additional time which is cnσ, where the constant c depends only on details of 
the model of computation. 

It is a standard and easy result that being secure in the sense of a PRF implies an inability to 
forge with good probability. See [5, 17]. 

5.3 Structure of the Proof [ DRAFT ] 

The proof of Theorem 1 combines two lemmas. The first lemma, the structure lemma, measures 
the pseudorandomness of PMAC in terms of a function we call the pairwise-collision probability, 
colln(m, m̄). This function captures the probability of a “nontrivial collision” between a pair of 

¯distinct messages M and M having lengths m and m̄, respectively. The second lemma, the pairwise­
collision bound, gives an upperbound on colln(m, m̄). 

We begin by defining the pairwise-collision probability, colln(·, ·). Fix n and choose distinct 
¯ ¯ ¯ messages M and M , and partition them into M [1] . . .M [m] and M [1] . . . M [m̄]. Consider the 

experiment of Figure 4. When bad is set to true in the last line of this experiment, we say that 
¯ ¯there has been a nontrivial collision between M and M . Let colln(M, M) denote the probability of a 

¯ ¯nontrivial collision between M and M , and let colln(m, m̄) denote the maximal value of colln(M, M) 
¯over all distinct M and M having m and m̄ blocks, respectively. 

We can now state the structure lemma. 

Lemma 1 [Structure lemma] Fix n and τ . Let A be an adversary who asks q queries, these 
having aggregate length of σ blocks. Let colln(·, ·) denote the pairwise-collision probability. Then ⎫⎬ 

⎧⎨ (σ + 1)2 1
Advprf (A)PMAC[Perm(n),τ ] colln(mr,ms)≤ max
 +
 ·
 

2 2n⎩
 ⎭
m1,...,mq 
σ= mi 1≤r<s≤q 

The proof of this lemma is in Appendix A.1. 
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Explanation. Informally, colln(m, m̄) bounds the probability of running into trouble when the 
¯adversary asks some two different oracle queries, M and M , having lengths m and m̄, respectively. 

Trouble (a nontrivial collision) is defined as follows. Consider the m + m̄ + 1 points at which the 
¯block cipher is applied in processing M and M . There are m points X[1], . . . , X[m], another m̄

¯ ¯points X[1], . . . , X[m̄], and then there is the point 0n (the block cipher was applied at this point 
to define L). Some pairs of these m + m̄ + 1 points could coincide for a “trivial” reason: namely, 

¯ ¯we know that X[i] = X[i] if i < m and i < m̄ and M [i] = M [i]. We say that there is a nontrivial 
collision if any other pair of block-cipher inputs coincide. Rather pessimistically, we are going to 
“give up” in the analysis any time there is a nontrivial collision. The value colln(m, m̄) measures 
the probability of a nontrivial collision. 

The structure lemma provides a simple recipe for measuring the maximal advantage of an adver­
sary who attacks the pseudorandomness of PMAC: namely, bound the pairwise-collision probability 
and then use the formula. The lemma simplifies the analysis of PMAC in two ways. First, it allows 
one to excise adaptivity as a concern. Dealing with adaptivity is a major complicating factor in 
proofs of this type. Second, it allows one to concentrate on what happens to fixed pairs of messages. 
It is easier to think about what happens with two messages than what is happening with all q of 
them. 

Bounding the pairwise-collision probability. The following lemma indicates that nontrivial 
collisions rarely occur. Its proof is given in Appendix A.2. 

Lemma 2 [Pairwise-collision bound] Let colln(·, ·) denote the pairwise-collision probability. Then   
m + m̄ + 1 1

colln(m, m̄) ≤ · 
2 2n 

Concluding the theorem. The pseudorandomness of PMAC follows by combining Lemmas 1 
and 2. Namely, ⎧ ⎫ ⎨ ⎬ (σ + 1)2 

Advprf ≤ max colln(mr,ms) +PMAC[Perm(n),τ ] m1,...,mq 2n+1⎩ ⎭ 
σ= mi 1≤r<s≤q ⎧ ⎫   ⎨ mr + ms + 1 1 ⎬ (σ + 1)2 

≤ max · + 
m1,...,mq 2n 2n+1⎩ 2 ⎭ 
σ= mi 1≤r<s≤q

which can be bounded by setting each mi to the (possibly non-integral) mi = σ/q. (When a is  
anon-integral, define = a(a − 1)/2.) This yields 2     

q 2σ/q + 1 1 (σ + 1)2 

Advprf ≤ · +PMAC[Perm(n),τ ] 2n+12 2 2n 

2q 4σ2/q2 + 4σ/q + 1 (σ + 1)2 

≤ · +
2n+1 2n+12 

2σ2 + 2σq + 0.5q2 + σ2 + 2σ + 1 ≤ 
2n+1 

1.5 σ2 σq + σ + 0.25q2 + 0.5 ≤ +
2n 2n 
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Algorithm 16 B 128 B 2 KB 

PMAC 22.1 18.7 18.4 
CBC MAC 18.9 17.4 17.1 

Figure 5: Performance results. Numbers are in cycles per byte, on a Pentium 3, for three message 
lengths, the code written in assembly. The underlying block cipher is AES-128. CBC MAC refers to the 
“basic” CBC MAC—no padding is performed and nothing extra is done to get security across messages of 
varying lengths. 

Using the fact that (σ + Δ)2 − σ2 ≥ 2σΔ and (σ + Δ)2 − σ2 ≥ Δ2, if we increase σ by 2/3(q/2 + 
1/2+ q/2+3/4) = 2/3(q +5/4) ≤ q +1, this will be enough to at least match the lower order terms. 
That is, letting σ̄ = σ + q + 1, we have that the quantity above is at most 1.5 σ̄2/2n, completing 
the proof of Theorem 1. 

Performance 

Abstract accounting. PMAC uses I|M |/nl block-cipher invocations for any nonempty mes­
sage M . (The empty string takes one block-cipher invocation). We compare with the CBC MAC: 

The “basic” CBC MAC, which assumes that the message is a nonzero multiple of the block 
length and which is only secure when all messages to be MACed are of one fixed length, uses 
the same number of block cipher calls: |M |/n. 
The version of the CBC MAC described in [10], which removes the two restrictions just 
mentioned, uses the same number of calls as PMAC, I|M |/nl. 
Obligatory padding (to support short-final-block messages) and standard methods to process 
the final block (double or triple encryption, to achieve security across variable-length messages) 
can raise the number of block-cipher calls to as much as I|M + 1|/nl + 2. 

Thus PMAC saves between 0 and 3 block-cipher calls compared to the various versions of the 
CBC MAC. 

As with any mode, there is further overhead beyond the block-cipher calls. Per block, this 
overhead is about three n-bit xor operations plus associated logic. The work for this associated 
logic will vary according to whether or not one precomputed L(i)-values, whether or not there is 
an ntz() instruction available, and on other factors. 

Though some of the needed L(i)-values are likely to be pre-computed, calculating these values 
“on the fly” is not too expensive. Starting with 0n we form successive offsets by xoring the previous 
offset with L, 2 · L, L, 4 · L, L, 2 · L, L, 8 · L, and so forth. So half the time we use L itself; a quarter 
of the time we use 2 ·L; one eighth of the time we use 4 · L; and so forth. Thus the expected number T∞of a · x-operations to compute an offset is at most i/2i+1 = 1. Each a · x instruction requires i=1 
an n-bit xor and a conditional 32-bit xor. Said differently, for any m > 0, the total number of a · xT moperations needed to compute γ1 · L, γ2 · L, . . . , γm · L is i=1 ntz(i), which is less than m. The 
above assumed that one does not retain or precompute any L(i) value beyond L = L(0). Suppose 
that one retains a few values: L(0), L(1), L(2), L(3). Computing and storing these three additional 
values is less overhead than computing L itself, which required an application of EK . But now the 
desired multiple of L has already been computed 1/2 + 1/4 + 1/8 + 1/16 ≈ 94% of the time. When 
it has not been pre-computed it must be calculated, starting from 8 · L, so the amortized number T∞of doubling steps has thus been reduced from 1 to = i/2i+4 = 0.125.i=1 

Experimental results. Our colleague Ted Krovetz implemented PMAC using AES-128 as the 
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underlying block cipher. He compared its performance in an entirely sequential setting to that 
of the CBC MAC. By the CBC MAC we mean the “basic” CBC MAC—nothing extra done to 
take care of length-variability or the possibility of strings which are not a multiple of the block 
length. The code was written in assembly. The OS was Windows 2000 sp1 and the compiler was 
Visual C++ 6.0 sp4. All data fit into L1 cache. 

Note that the basic CBC MAC needs to be modified to correctly handle length-variability and 
the possibility of short final blocks, and doing this is often done in a way that entails additional 
block-cipher calls. Ignoring these factors tends to make the performance comparison conservative. 

Disregarding the one-block message in Figure 6, we see that PMAC adds about 8% overhead 
compared to the basic CBC MAC. We emphasize that this is for an entirely serial execution envi­
ronment with a limited number of registers. In an environment with plenty of registers and multiple 
instruction pipes, PMAC, properly implemented, will of course be faster than the CBC MAC. 

Intellectual Property Statement and Disclosures 

Patent applications covering the ideas of this proposal were filed (Rogaway as inventor) on 13 Septem­
ber 2000, 12 October 2000, and 9 February 2001. 

The inventor hereby releases IP rights covering PMAC for all non-commercial, non-governmental 
applications. For commercial applications, the inventor will license PMAC under a non-exclusive 
license, on a non-discriminatory basis, based on reasonable terms and conditions. 

IBM has a patent covering the XOR MAC of [4]; this is US Patent #5,673,318 (September 30, 
1997). Though the submitter is in no position to render a legal opinion, it appears to him that the 
claims of US Patent #5,673,318 do not read upon the use of PMAC. Virgil Gligor indicates that 
he has made patent filings on 31 January 2000, 31 March 2000, and 24 August 2000. We know no 
more details. 

The IP status specified in this submission will be updated when more is known. 
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Initialization 

10 L← {0, 1}n; π(0n) ← L
 

When A makes its r-th query, Mr = Mr[1] · · · Mr[mr], where r ∈ [1..q]
 

R

20 for i ← 1 to mr − 1 do 
21 Xr[i] ← Mr[i] ⊕ γi · L 
22 if Xr[i] ∈ Domain(π) then Yr[i] ← π(Xr[i]) 
23 

24 
25 

else Yr[i]
R← {0, 1}n 

if Yr[i] ∈ Range(π) then { bad ← true; Yr[i]
R← {0, 1}n }

π(Xr[i]) ← Yr[i] 
26 Σr ← Yr[1] ⊕ Yr[2] ⊕ · · · ⊕ Yr[mr − 1] ⊕ pad(Mr[mr]) 
27 

28 

29 

30 
31 

if |Mr[mr]| = n then Xr[mr] ← Σr ⊕ huge · L else Xr[mr] ← Σr 

if Xr[mr] ∈ Domain(π) then { bad ← true; TAGr 
R← Range(π) }

else TAGr 
R← {0, 1}n 

if TAGr ∈ Range(π) then { bad ← true; TAGr 
R← Range(π) }

π(Xr[mr]) ← TAGr 

32 Tagr ← TAGr [first τ bits] 
33 return Tagr 

Figure 6: Game 1. This game accurately simulates PMAC[Perm(n), τ ]. 

A Proofs [ DRAFT ] 

A.1 Proof of the Structure Lemma (Lemma 1) 

Let A be an adversary that attacks PMAC[Perm(n), τ ]. Since A is computationally unbounded, 
there is no loss of generality to assume that A is deterministic. One can imagine A interacting with 
a PMAC[Perm(n), τ ] oracle as A playing a certain game, Game 1, as defined in Figure 6. This 
game perfectly simulates the behavior of PMAC[Perm(n), τ ]. It does so in a somewhat unusual 
way, sometimes setting a flag bad to true. We observe that if the flag bad is not set to true in an 
execution of the game, then the value Tag returned by the game at line 33 is a random one—the r 
first τ bits of the string randomly selected at line 29. It follows that AdvPMAC[Perm(n),τ ](A) is at 
most the probability that bad gets set to true in Game 1. The rest of the proof is devoted to 
bounding this probability. 

We first consider the probability that bad gets set to true in line 24 or 30. In both cases, we 
have just chosen a random n-bit string and then we are testing it for membership in a set. The 
size of this set starts at 1 (after executing line 10) and grows one element at a time until, by the 
time just before the last addition of a point, it has size σ. Thus we have that 

1 + 2 + . . . + σ
Pr[bad gets set in lines 24 or 30 ] ≤ 
1 2n 

(σ + 1)2 

≤ (1)
2n+1 

Here the subscript of 1 in the probability reminds us that we are considering the behavior of Game 1. 
We can now modify Game 1 by changing the behavior when and only when bad is set, and 

adding as a compensating factor the bound given by Equation (1). In particular, we may simply 
omit lines 24 and 30, and the second statement in the compound statement of line 28 along with 
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Initialization 
R

10 L ← {0, 1}n; π(0n) ← L
 

When A makes its r-th query, Mr = Mr[1] · · · Mr[mr], where r ∈ [1..q]
 
20 for i ← 1 to mr − 1 do 
21 Xr[i] ← Mr[i] ⊕ γi · L 
22 if Xr[i] ∈ Domain(π) then Yr[i] ← π(Xr[i]) 
23 else { Yr[i] 

R← {0, 1}n; π(Xr[i]) ← Yr[i] }
24 Σr ← Yr[1] ⊕ Yr[2] ⊕ · · · ⊕ Yr[mr − 1] ⊕ pad(Mr[mr]) 
25 if |Mr[mr]| = n then Xr[mr] ← Σr ⊕ huge · L else Xr[mr] ← Σr 

26 if Xr[mr] ∈ Domain(π) then bad ← true 

27 TAGr[mr] 
R← {0, 1}n 

28 π(Xr[mr]) ← TAGr[mr] 
29 Tagr ← TAGr [first τ bits] 
30 return Tagr 

Figure 7: Game 2. A simplification of Game 1. Bounding the probability that bad gets set in this game, 
and then adding a correction factor, serves to bound Advprf .PMAC[Perm(n),τ ]

the following else. The modified game is rewritten in Figure 7. At this point we know that 

(σ + 1)2 

Advprf (A) ≤ Pr[bad gets set ] + (2)PMAC[Perm(n),τ ] 2n+12 

Notice in Game 2 that the value Tag returned in response to a query M is always a random r 
τ -bit string. But of course the game does more than just return these strings: it also chooses L 
at random, fills in π-values, and sets bad under certain conditions. We can defer doing all those 
things, and just return the random strings Tag1, . . . , Tag . This does not change the view of the q

adversary that interacts with the game, nor will it change the probability that bad is set to true. 
The modified game is called Game 3, and it is depicted in Figure 8. 

We need to bound the probability that bad gets set to true in Game 3. This probability is over 
the random TAGr-values selected at line 10, the random value of L selected at line 20, and the 
random Yr[i]-values selected at line 25. We want to show that, over these random values, bad will 
rarely be set. In fact, we will claim something stronger: that even if one arbitrarily fixes the values 
of TAG1, . . . , TAGq ∈ {0, 1}n (and takes the probability over just the remaining values), still the 
probability that bad will be set to true is small. Now since the oracle responses have now been 
fixed, and since the adversary itself is deterministic, the queries M1, . . . ,Mq that the adversary 
will generate have likewise been fixed. Interaction and the adversary itself are essentially gone at 
this point, replaced by universal quantification. The new game is show in Figure 9. It depends on 
constants C = (q, TAG1, . . . , TAGq, M1, . . . ,Mq). At this point in the proof we have that 

(σ + 1)2 

Advprf (A) ≤ max{Pr[ bad gets set to true in game 4[C]} + (3)Perm(n),τ 2n+1C 

where, if A is limited to q queries of aggregate length σ, then C specifies q, strings M1, . . . ,Mq of 
aggregate block length σ, and TAG1, . . . , TAGq ∈ {0, 1}n . 

The next step is to modify Game 4 so that the new game, Game 5, sets bad every time that 
Game 4 does, plus some additional times. Look at line 14 in Game 4. The value Xr[i] could have 
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When A makes its r-th query, Mr = Mr[1] · · · Mr[mr], where r ∈ [1..q] 
R

10 TAGr ← {0, 1}n 

11 return TAGr [first τ bits] 

When A is done making its q queries 
R

20 L ← {0, 1}n; π(0n) ← L 
21 for r ← 1 to q do 
22 for i ← 1 to mr − 1 do 
23 Xr[i] ← Mr[i] ⊕ γi · L 
24 if Xr[i] ∈ Domain(π) then Yr[i] ← π(Xr[i]) 
25 else { Yr[i] 

R← {0, 1}n; π(Xr[i]) ← Yr[i] }
26 Σr ← Yr[1] ⊕ Yr[2] ⊕ · · · ⊕ Yr[mr − 1] ⊕ pad(Mr[mr]) 
27 if |Mr[mr]| = n then Xr[mr] ← Σr ⊕ huge · L else Xr[mr] ← Σr 

28 if Xr[mr] ∈ Domain(π) then bad ← true 
29 π(Xr[mr]) ← TAGr 

Figure 8: Game 3. Like Game 2, but we defer all but the selection of TAGr-values. 

10 L 
R← {0, 1}n; π(0n) ← L 

11 for r ← 1 to q do 
12 for i ← 1 to mr − 1 do 
13 Xr[i] ← Mr[i] ⊕ γi · L 
14 if Xr[i] ∈ Domain(π) then Yr[i] ← π(Xr[i]) 
15 else { Yr[i] 

R← {0, 1}n; π(Xr[i]) ← Yr[i] }
16 Σr ← Yr[1] ⊕ Yr[2] ⊕ · · · ⊕ Yr[mr − 1] ⊕ pad(Mr[mr]) 
17 if |Mr[mr]| = n then Xr[mr] ← Σr ⊕ huge · L else Xr[mr] ← Σr 

18 if Xr[mr] ∈ Domain(π) then bad ← true 
19 π(Xr[mr]) ← TAGr 

Figure 9: Game 4[C]. This game depends on constants C which specify: q, TAG1, . . . , TAGq ∈ {0, 1}n , 
and M1 = M1[1] · · · Mq[mq ], . . . ,Mq = Mq[1] · · · Mq[mq]. 

10 L 
R← {0, 1}n; π(0n) ← L 

11 for r ← 1 to q do 
12 for i ← 1 to mr − 1 do 

13 Xr[i] ← Mr[i] ⊕ γi · L; Yr[i] 
R← {0, 1}n 

14 if Mr[i] = Ms[i] for some s < r and i < ms then Yr[i] ← π(Xs[i]) 
15 else if Xr[i] ∈ Domain(π) then bad ← true 
16 π(Xr[i]) ← Yr[i] 
17 Σr ← Yr[1] ⊕ Yr[2] ⊕ · · · ⊕ Yr[mr − 1] ⊕ pad(Mr[mr]) 
18 if |Mr[mr]| = n then Xr[mr] ← Σr ⊕ huge · L else Xr[mr] ← Σr 

19 if Xr[mr] ∈ Domain(π) then bad ← true 
20 π(Xr[mr]) ← 0n 

Figure 10: Game 5[C]. This game set bad at least as often as Game 4[C] does. It is this game that is 
related back to the one that defines the pairwise-collision probability. 
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10 L 
R← {0, 1}n; π(0n) ← L 

20 for i ← 1 to ms − 1 do 
21 Xs[i] ← Ms[i] ⊕ γi · L 
22 if Xs[i] ∈ Domain(π) then bad ← true 

23 Ys[i] 
R← {0, 1}n; π(Xs[i]) ← Ys[i] 

24 Σs ← Ys[1] ⊕ Ys[2] ⊕ · · · ⊕ Ys[ms − 1] ⊕ pad(Ms[ms]) 
25 if |Ms[ms]| = n then Xs[ms] ← Σs ⊕ huge · L else Xs[ms] ← Σs 

26 if Xs[ms] ∈ Domain(π) then bad ← true 
27 π(Xr[mr]) ← 0n 

30 for i ← 1 to mu − 1 do 

31 Xu[i] ← Mu[i] ⊕ γi · L; Yu[i] R← {0, 1}n 

32 if i < ms and Mu[i] = Ms[i] then Yu ← π(Xs[i]) else 
32 if Xu[i] ∈ Domain(π) then bad ← true 
33 π(Xu[i]) ← Yu[i] 
34 Σu ← Yu[1] ⊕ Yu[2] ⊕ · · · ⊕ Yu[mu − 1] ⊕ pad(Mu[mu]) 
35 if |Mu[mu]| = n then Xu[mu] ← Σu ⊕ huge · L else Xu[mu] ← Σu 

36 if Xu[mu] ∈ Domain(π) then bad ← true 

Figure 11: Game 6[Ms,Mu]. 

been in the domain of π for the “trivial” reason that Mr[i] = Ms[i] for some s < r and where 
i < ms, or for some other, “non-trivial” reason: Xr[i] = 0n, or Xr[i] = Xs[j] for some s < r and 
j = i, or Xr[i] = Xr[j] for some j < i. If Xr[i] was in the domain of π for a non-trivial reason, we 
effectively give up, setting bad to true. Thus in Game 5, line 15, we set bad if Xr[i] is already in 
the domain of π and it is not due to the trivial cause (which is tested for in line 14). 

Let us name coins used in Game 5 by L and R1 = R1[1] · · · R1[m1], . . ., Rq = Rq[1] · · · R1[mq]. 
(We use coins L at line 10, and then we use coins Rr[i] at line 13.) When running Game 5 on this 
vector of coins, if the flag bad get set to true then it gets set to true because there is a smallest 
s ∈ [1..q] such that, using the specified coins, 

Xs[i] = 0n, or 
Xs[i] = Xu[j] where u < s and j = i, or 
Xs[i] = Xs[j], where j < i. 

In particular, if we execute game 5 but restrict line 11 to only use the particular values r ∈ {s, u}, 
and we use coins L, Rs, Ru, the flag bad will still be set to true in this execution. Let Game 6 
denote this game. We have rewritten it, making some irrelevant simplifications, in Figure 11. (In 
particular, the image assigned to π(Xs[ms]) is irrelevant in this program—all that matters is that 
the domain point be defined.) At this point we know that if Game 5[C] sets bad to true using coins 
L, R1, . . . , Rq, then there is some s < u such that Game 6 sets bad to true using coins L, Rs, Rq. 
Letting coll' (ms,mu) be the maximal probability that Game 6 will cause bad to be set to truen

when using messages Ms and Mu having ms andTmu blocks, we have that the probability that 
Game 5[M1, . . . ,Mq] gets set to true is at most coll' (ms,mu). But game 6[ms,mu] is ms,mu n

equivalent to the game that defined the pairwise-collision probability in Figure 4. In particular, 
a pair of messages and a given set of coins causes a collision in one game if and only it causes a 
collision in the other. Thus coll' (m, m̄) = colln(m, m̄), and the proof is complete. n
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A.2 Proof of the Pairwise-Collision Bound (Lemma 2) 

We show that for any two points of 

D = {0n, X[1], . . . , X[m]} ∪ { X̄[i] : i ∈ Unequal} 

the probability that they coincide is at most 2−n . The lemma will follow since there are at most 
m+m̄+1 m + m̄ + 1 points listed above, so at most pairs of these points. 2 

Let Unequal ' = Unequal \ {X[m̄]} (multiset difference: remove one copy of X[m̄]). The points 
of D are the multiset union of the following multisets: 

1. D1 = {0n} 

2. D2 = {X[1], . . . , X[m − 1]} 

3. D3 = {X[m]} 

4. D4 = {X̄[j] : j ∈ Unequal ' } 

5. D5 = {X[m̄]} 
5We now go through all of the + 2 = 12 types of pairings (that is, an element of Di with an 2 

element of Dj , for i < j; or two elements from D2 or two elements from D4). For each type of 
pairing we show that the probability of a collision is at most 2−n . 

Case 1: (D1, D2): Pr[0n = X[i]] = Pr[M [i] ⊕ γi · L = 0n] = Pr[L = γ−1 · M [i]] = 2−n . We have i 
used the fact that γi is nonzero and we are working in a field. (We will continue to use this without 
mention.) 

Case 2: (D1, D3): If |M [m]| < n and m ≥ 2 then Σ is a random n-bit string and so Pr[0n = 
2−nX[m]] = Pr[0n = Σ] = Pr[0n = Y [1] ⊕ · · · Y [m − 1] ⊕ pad(M [m])] = . If |M [m]| = n and 

m ≥ 2 then Σ is a random n-bit string that is independent of L and so Pr[0n = X[m]] = Pr[0n = 
Σ ⊕ huge · L] = 2−n . If |M [m]| < n and m = 1 then Pr[0n = X[1]] = Pr[0n = pad(M [m])] = 0. If 
|M [m]| = n and m = 1 then Pr[0n = X[1]] = Pr[0n = pad(M [m]) ⊕ huge · L] = 2−n . 

¯ Case 3: (D1, D4): Pr[0n = X[i]] = Pr[ M̄ [i] ⊕ γi · L = 0n] = 2−n . 

¯ Case 4: (D1, D5): If M [m̄] < n and m̄ ≥ 2 then Σ is a random n-bit string and so Pr[0n = 
¯ ¯ 2−n ¯ X[m̄]] = Pr[0n = Σ] = . If M [m̄] = n and m̄ ≥ 2 then Σ is a random n-bit string which 

¯ ¯ 2−nis independent of L, and so Pr[0n = X[m̄]] = Pr[0n = Σ ⊕ huge · L] = . If M [m̄] < n 
¯and m̄ = 1 then Pr[0n = X[1]] = Pr[0n = pad(M [1])] = 0. If M [m̄] = n and m̄ = 1 then 

¯Pr[0n = X[1]] = Pr[0n = pad(M [1]) ⊕ huge · L] = 2−n . 

Case 5: (D2, D2): For i, j ∈ [1..m− 1], i < j, Pr[X[i] = X[j]] = Pr[M [i]⊕γi · L = M [j] ⊕γj · L] = 
Pr[M [i] ⊕ M [j] = (γi ⊕ γj ) · L] = 2−n because γi = γj for i = j. (Here one assumes that j < 2n 

because the lemma gives a non-result anyway if j were larger.) 

Case 6: (D2, D3): Assume that m ≥ 2, for otherwise there is nothing to show. Suppose first 
that |M [m]| < n. Then Pr[X[i] = X[m]] = Pr[M [i] ⊕ γi · L = Σ]. The value Σ is uniformly 
random and independent of L, so this probability is 2−n . Suppose next that |M [m]| = n. Then 
Pr[X[i] = X[m]] = Pr[M [i] ⊕ γi · L = Σ ⊕ huge · L] = Pr[M [i] ⊕ Σ = (γi ⊕ huge) · L]. This value is 
2−n since γi = huge. Here we are assuming that i < 2n−1, which is without loss of generality since 
a larger value of i, and therefore m, would give a non-result in the theorem statement. 
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¯ Case 7:	 (D2, D4): Let i ∈ [1..m − 1] and j ∈ Unequal ' and consider Pr[X[i] = X[j]] = Pr[M [i] ⊕ 
¯ ¯ γi · L = M [j] ⊕ γj · L] = Pr[M [i] ⊕ M [j] = (γi ⊕ γj ) · L. If i = j then γi = γj and this probability 

¯is 2−n . If i = j then the probability is 0 since, necessarily, M [i] = M [j]. 

¯	 ¯ Case 8: (D2, D5): Suppose that |M̄ [m̄]| < n. Then Pr[X[i] = X[m̄]] = Pr[M [i]⊕γi ·L = Σ] = 2−n 

¯because Σ ¯ is independent of L. Suppose that |M̄ [m̄]| = n. Then Pr[X[i] = X[m̄]] = Pr[M [i] ⊕ 
¯ ¯ γi · L = Σ ⊕ huge · L] = Pr[M [i] ⊕ Σ ¯ = (γi ⊕ huge) · L] = 2−n because Σ is independent of L and 

γi = huge. 

¯	 ¯ Case 9: (D3, D4): Suppose that |M [m]| < n. Then Pr[X[m] = X[j]] = Pr[Σ = M [j]⊕γj ·L] = 2−n 

¯because Σ is independent of L. Suppose that |M [m]| = n. Then Pr[X[m] = X[j]] = Pr[Σ ⊕ huge · 
¯ ¯ L = M [j] ⊕ γj · L] = Pr[Σ ⊕ M [j] = (γj ⊕ huge) · L] = 2−n because γj = huge. 

Case 10: (D3, D5): Suppose that |M [m]| < n and |M̄ [m̄]| < n. If m > m̄ then Pr[X[m] = 
¯ ¯ X[m̄]] = Pr[Σ = Σ] = 2−n because of the contribution of Y [m − 1] in Σ—a random variable that 

¯ ¯ ¯is not used in the definition of Σ. If m < m̄ then Pr[X[m] = X[m̄]] = Pr[Σ = Σ] = 2−n because 
¯ ¯of the contribution of Y [m̄ − 1] in Σ—a random variable that is not used in the definition of Σ. If 

¯ ¯ ¯ m = m̄ and there is an i < m such that M [i] = M [i] then Pr[X[m] = X[m̄]] = Pr[Σ = Σ] = 2−n 

¯because of the contribution of Y ̄[i] in Σ—a random variable that is not used in the definition of Σ. 
¯ ¯If m = m̄ and for every i < m we have that M [i] = M [i], then, necessarily, M [m] = M [m]. In this 

¯case Pr[Σ = Σ] = 0, as the two checksums differ by the nonzero value pad(M [m]) ⊕ pad(M̄ [m]). 
¯Suppose that |M [m]| = n and |M̄ [m̄]| = n. Then X[m] and X[m] are being offset by the same 

¯amount, huge ·L, so this offset is irrelevant in computing Pr[X[m] = X[m̄] and one proceeds exactly 
as above. 

¯	 ¯Suppose that |M [m]| < n and |M̄ [m̄]| = n. Then Pr[X[m] = X[m]] = Pr[Σ = Σ ⊕ huge · 
L] = 2−n since Σ and Σ ¯ are independent of L. Similarly, if |M [m]| = n and |M̄ [m̄]| < n, then 

¯Pr[X[m] = X[m]] = 2−n . 

Case 11: (D4, D4): This case mirrors Case 5, so it is omitted. 

Case 12: (D4, D5): This case mirrors Case 6, so it is omitted. 

This completes the proof. 

B Test Vectors 

PMAC-AES test vectors and reference code, prepared by Ted Krovetz (tdk@acm.org), are available 
at http://www.cs.ucdavis.edu/∼rogaway/ 
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