
TMAC: Two-Key CBC MAC

Submission to NlST

June 21, 2002

Kaoru Kurosawa

Department of Computer and lnformation Sienes,

lbaraki University

4-12-1 Nakanarusawa, Hitahi, lbaraki 316-8511, Japan

+81-294-38-5135 oÆe

+81-294-38-5135 fax

kurosawa�is.ibaraki.a.jp

and

Tetsu Iwata

Department of Computer and lnformation Sienes,

lbaraki University

4-12-1 Nakanarusawa, Hitahi, lbaraki 316-8511, Japan

+81-294-38-5266 oÆe

iwata�is.ibaraki.a.jp

http:iwata��is.ibaraki.a�.jp
http:kurosawa��is.ibaraki.a�.jp

TMAC: Two-Key CBC MAC

Kaoru Kurosawa a n d T etsu lwata

Department of Computer and Information Sienes,

Ibaraki University

4-12-1 Nakanarusawa, Hitahi, Ibaraki 316-8511, Japan

{kurosawa, iwata}�is.ibaraki.a.jp

Abstrat. In this paper, we propose TMAC, Two-Key CBC Message

Authentiation Code. TMAC is a refnement of X CBC (whih is a variant

of CBC MAC) shown by Blak and Rogaway. e use only (k + n)-bit

key for TMAC while XCBC uses (k + 2 n)-bit key, w he re k is the key

length of the underlying blok ipher and n is its blok length. The ost

for reduing the size of seret keys is almost negligible; only one shift

and one onditional XOR. Similarly to XCBC, our algorithm orretly

and eÆiently handles messages of arbitrary bit length.

1 Introdution

Let E : {0, 1}k { 0, 1}n { 0, 1}n be a blok ipher: it uses a k-bit key K E

{0, 1}k to enrypt an n-bit blok X E { 0, 1}n into an n-bit iphertext Y =

EK(X).

1.1 CBC MAC

The CBC MAC [8, 10] is the simplest and most well-known algorithm to make a

MAC from a blok ipher. Let M = M1IIM2II IIMm

be a message string suh

that IM1I = IM2I = = IMmI = n. Then CBC EK

(M), the CBC MAC of M

under key K, is defned as Cm, where

C�

= EK(M�

�C��1)

for i = 1 , , m and Co

= 0

n.

Bellare, Kilian, and Rogaway p r o ved the seurity o f t h e C B C M A C for fxed

message length mn [3]. lt is well known, however, that the CBC MAC i s not

seure if the message length varies.

1.2 EMAC

To deal with variable message length in bloks m, Enrypted MAC (E M A C)

was developed. EMAC enrypts CBCEK�

(M) using a new blok ipher key K2.

That is,

EMACEK�
 EK�

(M) = EK�

(CBCEK�

(M))

http:iwata}��is.ibaraki.a�.jp

�

�

�

EMAC w as developed for the RACE projet [4]. Petrank and Rakof then proved

the seurity [12].

A problem is that the message length is limited to a positive m ultiple of n,

that is, the domain is limited to ({0, 1}n)+. The simplest approah to deal with

messages whose lengths are not a multiple of n is to append the minimal 10 to

M as a padding so that the length is a multiple of n. Note that the padding is

appended even if the size of the message is already a multiple of n.

ln this way, E M A C an deal with ompletely variable message length. ln

other words, the domain is {0, 1}*. e all this EMAC*.

1.3 RMAC

Jaulmes, Joux, and Valette proposed RMAC [11] whih is an extension of EMAC.

RMAC enrypts CBCEK�

(M) with K2

R, w here R is an n-bit random string

and it is a part of the tag. That is,

RMACEK�
 EK�

(M) = (EK�

��(CBCEK�

(M)), R)

They showed that the seurity o f R M A C i s b e y ond the birthday paradox

limit. However, the tag length is n bits longer than the other CBC MAC v ariants.

1.4 XCBC

EMAC* and RMAC require 1 + I(IM I + 1) /nl blok ipher invoations. Blak

and Rogaway proposed XCBC [5] whih requires only IIM I/nl blok ip h er

invoations.

XCBC takes three keys: one blok i p h e r k ey K1, and two n-bit keys K2

and K3. X CBC makes two ases to deal with arbitrary length messages: M E

({0, 1})+ and M E ({0, 1})+. lf M E ({0, 1})+ then XCBC omputes exatly the

same as the CBC MAC, exept XORing an n-bit key K2

before enrypting the

last blok. lf M E ({0, 1})+ then minimal 10 padding (i 2 0) is appended to

M so that the length is a multiple of n, a n d X CBC omputes exatly the same

as the CBC MAC, exept XORing another n-bit key K3

before enrypting the

last blok.

1.5 Our Contribution

The key length of XCBC is (k + 2 n) bits in total. To redue the key length, the

authors suggested the following solution [6] for n : k : 2n. A seret key is a

single key K of E. Then for some distint onstants C1a, C1b, C2, and C3, let

K1

= the frst k bits of EK

(C1a)IIEK(C1b),

K2

= EK

(C2),

K3

= EK

(C3)

This key derivation uses one k-bit key, but it has two problems:

2

�

�

1. The number of blok ipher invoations is no longer optimal sine it requires

3 or 4 additional blok ipher invoations.

2. lt needs two k ey shedulings for two b l o k ipher keys K and K1.

These problems may be signifant if one frequently hanges the seret key.

ln this paper, we propose TMAC, Two-Key CBC Message Authentiation

Code. TMAC is a refnem ent of XCBC shown by Blak and Rogaway. e use only

(k+n)-bit key for TMAC while XCBC uses (k+2 n)-bit key. The ost for reduing

the size of seret keys is almost negligible; only one shift and one onditional

XOR. Similarly to XCBC, the domain is {0, 1}* and it requires IIM I/nl blok

ipher invoations.

e show a omparison of CBC MAC and its variants in Table 1, where M

is the message and E is a blok ipher. The third olumn gives the numbe r o f

invoations of E, assuming IM I > 0. The fourth olumn gives the numbe r o f

diferent k eys used for E.

Table 1. Comparison of CBC MAC and Its Variants.

Name Domain #E Invoations #E Keys Key Length

CBC MAC [8, 10, 3] ({0, 1}n)m IM I/n 1 k

EMAC� [4, 12] {0, 1}� 1 + I(IM I+ 1) /nl 2 2k

RMAC [11] {0, 1}� 1 + I(IM I+ 1) /nl 2 2k

XCBC [5, 6] {0, 1}� IIM I/nl 1 k + 2 n

TMAC (Our proposal) {0, 1}� IIM I/nl 1 k + n

1.6 Other Related Works

Reently, some researhers proposed parallelizable MAC algorithms. Bellare,

Gueerin, and Rogaway proposed XOR MAC [2]. Gligor, and Donesu proposed

XECB-MAC [9]. Blak and Rogaway proposed PMAC [7].

However, these MAC algorithms have o verhead as follows. XOR MAC r e -
quires muh m o r e i n voations of E than the other MAC algorithms. XECB-MAC

requires modulo 2n arithmeti and three more invoations of E than XCBC and

TMAC. PMAC needs to generate a sequene of masks.

Therefore, TMAC and XCBC are better than these algorithms in non-parallelizable

environment.

2 Mathematial Preliminaries

2.1 Notation

lf A is a fnite set then #A denotes the numbe r of elem ents in A. or a set A,

x f A means that x is randomly hosen from A. lf a E { 0, 1}* is a string then

IaI denotes its length in bits. lf a, f E { 0, 1}* are equal-length strings then a f

is their bitwise XOR.

3

 �

� �

� �

�

�
�

�

�
� �

�

 � �
�

� �

�

 �

 �

�
�

�
� � �

�

or an n-bit string a = an 1

a1ao

E { 0, 1}n , let

a :: 1 = an 2an 3

a1ao0

Similarly, let

a >> 1 = 0 an 1an 2

a2a1

2.2 The Field with 2� Points

e i n terhangeably think of a point a in G (2n) i n a n y of the following ways:

1.	 as an abstrat point in a feld;

2.	 as an n-bit string an 1

a1ao

E { 0, 1}n;

3.	 as a formal polynomial a(u) = an 1u

n 1 + + a1u + ao

with binary oeÆ-
ients.

To add two points in G (2n), take their bitwise XOR. e denote this oper-
ation by a b.

To m ultiply two points, fx some irreduible polynomial f(u) h a ving binary

oeÆients and degree n. T o be onrete, hoose the lexiographially frst poly-
nomial among the irreduible degree n polynomials h a ving a minimum numbe r

of oeÆients. e list some indiated polynomials. f(u) = u + u + u

3 + u + 1 for n = 64,

128 7 2f(u) = u + u + u + u + 1 for n = 128, and 2 1o 2f(u) = u + u + u + u + 1 for n = 256.

To	 m ultiply two p o in ts a E G (2n) and b E G (2n), regard a and b as polyno-
nmials a(u) = an 1u

n 1 + + a1u + ao

and b(u) = bn 1u

1 + + b1u + bo,

form their produt (u) where one adds and multiplies oeÆients in G (2), and

take the remainder when dividing (u) by f(u).

Note that it is partiularly easy to multiply a point a E { 0, 1}n by u. e

128 7 2show a method for n = 128, where f(u) = u +u +u +u + 1. T hen m ultiplying

a = a127

a1ao

by u yields a produt an 1u

n + an 2u

n 1 + + a1u

2 + aou.

128Thus, if an 1

= 0, then a u = a :: 1. lf an 1

= 1, then we m ust add u to

128 7 2	 128 7 2a :: 1. Sine u + u + u + u + 1 = 0 we have u = u + u + u + 1, so adding

u128 means to xor by 0

12o10000111. ln summary, when n = 128,

a :: 1	 if a127

= 0,
a	 u = (1)

(a :: 1) 012o10000111 otherwise,

where a u = a(u) u mod f(u).

Also, note that it is easy to devide a point a E { 0, 1}n by u, meaning that

one multiplies a by t h e m ultipliative i n verse of u in the feld: a u

1 . e show a

method for n = 128. Then multiplying a = a127

a1ao

by u

1 yields a produt

n	 2 n 3 1 1an 1u +an 2u + +a2u+a1+aou . T h us, if ao

= 0, then a u = a >> 1.

1 128 7 2lf ao

= 1, then w e m ust add u to a >> 1. Sine u + u + u + u + 1 = 0 we

4

 � �

 �

�

127 1 127have u = u + u + 1 + u

1, so adding u = u + u + u + 1 means to xor

by 10

12o1000011. ln summary, whern n = 128,

a >> 1 if ao

= 0,

a u

1 = (2)
(a >> 1) 1012o1000011 otherwise.

3 Speifation

3.1 Basi Speifation

To use TMAC, one must speify a blok ipher E.

The blok ipher E is a funtion E : KE { 0, 1}n { 0, 1}n, where eah

E(K,) = EK

() is a p erm utation on {0, 1}n , KE

is the set of possible keys and

n is the blok length. The popular blok ipher to use with TMAC is likely to

be AES, but any other blok ipher is fne.

TMAC is a funtion taking two k eys K1

E K E

, K2

E { 0, 1}n and a message

M E { 0, 1}*, and returning a string in {0, 1}n . T he key spae K of TMAC is

K = KE { 0, 1}n. The funtion is defned in ig. 1 and illustrated in ig. 2.

Algorithm TMACEK�

.K�

(M)

if M E ({0, 1}n)+

then K + K2 u and P + M

else K + K2

and P + M II10i, where i + n - 1 - I M I mod n

Let P = P1IIP2II IIPm, w here IP1I = IP2I = = IPmI = n

co

+ 0n

for i + 1 to m - 1 do

ci

+ EK�

(Pi

E ci�1

)

return T = EK�

(Pm

E cm�1

E K)

Fig. 1. Defnition of TMAC.

M1

E�K1

�

M2

�

E�K1

�

M�

�

E�K1

�K2 u

M1

EK1

�

�

M2

�

EK1

�

�

M� 10i � �� �

�

EK1

�

�K2

T T

Fig. 2. Illustration of TMAC.

ln the third line of ig. 1 and in the last blok of left hand side in ig. 2,

K2

u is a multipliation in G (2n). lt an be omputed with only one shift and

one onditional XOR as shown in (1).

5

 �

� �

�

3.2 User Option

e h a ve t wo options on the omputation of K2

u. The frst option is to keep

both K2

and K2

in the memory. lt uses a memory of 2n bits.u

The seond option uses a memory of only n bits. e frst keep K2

in the

memory. hen K2

is needed, we ompute K2

u from K2. e then replae u

K2

with K2

in the memory. Next when K2

is needed, we ompute K2

fromu

K2

u and replae K2

u with K2

in the memory. Repeat this proess.

Note that it is easy to ompute K2

from K2

u sine multipliation by u

1

an be omputed with only one shift and one onditional XOR as shown in (2).

3.3 Comparison with XCBC

XCBC is obtained by replaing K2

x with K3

in ig. 2, where K3

E { 0, 1}n

is a random string. ln another way around, TMAC is obtained from XCBC by

replaing K3

with K2

x. The size of keys is redued from (k+2 n) bits to (k+ n)

bits in this way.

4 Seurit o f M C

4.1 Seurity Defnitions

An adversary A is an algorithm with an orale (or orales). The orale omputes

some funtion. ithout loss of generality, a d v ersaries are assumed to never ask

a query outside the domain of the orale, and to never repeat a query.

A b l o k ipher is a funtion E : KE { 0, 1}n { 0, 1}n where KE

is a fnite

set and eah EK

() = E(K,) is a p erm utation on {0, 1}n. Let Perm(n) denote

the set of all permutations on {0, 1}n . e sa y that P is a random permutation

if P is randomly hosen from Perm(n).

Note that {EK

() I K E K E} should look like P erm(n). or an adversary A,

we defne ���

���

i?i

���

: AEK

() A� () = 1) � Pr(P f Perm(n) :(A) Pr(K fK 1)
Adv =
 =
 EE

The adversary A annot distinguish {EK() I K E K E

} from Perm(n) if Adv
i?i(A)E

is negligible.

Similarly, a M A C funtion family from {0, 1}* to {0, 1}n is a map F : KF

{0, 1}* { 0, 1}n where KF

is a set with an assoiated distribution. e w r i t e

FK() for F (K,). e sa y that AFK

() forges if A outputs (x, FK(x)) where A

never queried x to its orale FK

(). Then we defne

����� : AFK

()AdvF

(A) = Pr(K fK F

forges)

Let Rand(*, n) denote the set of all funtions from {0, 1}* to {0, 1}n. This set is

given a probability measure by asserting that a random element R of Rand(*, n)

6

���
��� � �

� �
���

���

��� ���

��� � �

�
� �

���

assoiates to eah string x E { 0, 1}* a random string R(x) E { 0, 1}n . Then we

defne

vii?f : AFK

() () AdvF

(A) = Pr(K fK F

= 1) Pr(R f Rand(*, n) : A = 1)

Also we w rite

i?i i?i

AdvE

(t, q) = max {AdvE

(A)} ,
;

where the maximum is over all adversaries who run in time at most t and make

at most q queries. urther we write � �

AdvF

��(t, q, p) = m a x

;

{AdvF

��(A)} and Adv

vii?f

F

(t, q, p) = m a x

;

Adv

vii?f

F

(A) ,

where the maximum is over all adversaries who run in time at most t, m ake at

most q queries, eah of whih is a t m o st p-bits.

4.2 Theorem Statements

e give the following information-theoreti bound on the seurity of TMAC. A

proof of this lemma is given in the next setion.

e idealize a blok ipher by a random permutation drawn from Perm(n).

Lemma 4.1. Let A be an adversary whih asks at most q queries, eah of whih

is at most nm-bits. Mssume m : 2n/4. Then

: ATMAC��

�K�

() Pr(P1

f Perm(n); K2

f { 0, 1}n = 1)

2 q2(3m + 1)() Pr(R f Rand(*, n) : A = 1) :

2n

rom the above theorem, it is standard to pass to the omplexity-theoreti

result. (or example, see [3, Setion 3.2].) Then we h a ve the following orollary.

Corollary 4.1. Let E : KE { 0, 1}n { 0, 1}n be the underlying blok ipher

used i n TTM C. Then

2 q2

vii?f

(3m + 1) i?i

AdvTMAC(t, q, nm) : + Adv (t1 , q

1) ,
2n E

where t1 = t + O(mq) and q1 = mq.

The seurity o f M A C is also derived in the usual way. (or example, see [3,

Proposition 2.7].) Then we h a ve the following theorem.

Theorem 4.1. Let E : KE { 0, 1}n { 0, 1}n be the underlying blok ipher

used i n TTM C. Then

2 q2

��

(3m + 1) + 1

AdvTMAC(t, q, nm) : + Adv

i?i (t1 , q

1) ,
2n E

where t1 = t + O(mq) and q1 = mq.

7

�

�

� �

�

�

�

�

�

�

� �

�

�

�� �� �

�

�
�

���
�

���
 �

��� � � � � � � �

�
� � � �

���

Algorithm FCBCEK�

.EK�

.EK�

(M)

if M E ({0, 1}n

c

)+

then K + K2, and P + M

else K + K , and P + M II10i , w here i + n - 1 - I M I mod n

Let P = P1IIP2II II Pm, w here IP1I = IP2I = = IPmI = n

o

+ 0n

for i + 1 to m - 1 do

ci

+ EK�

(Pi

E ci�1)

return EK

(Pm

E cm�1

)

Fig. 3. Defnition of FCBC.

M1

EK1

M2

EK1

M

EK2

M1

EK1

M2

EK1

M 10i

EK

T T

Fig. 4. Illustration of FCBC.

4.3 Proof of Lemma 4.1

or a random permutation P and a random n-bit string K, let

Q1(x) = P (K x),

Q2(x) = P ((K u) x)

e frst show that P (), Q 1(), Q 2() are indistinguishable from three independent

random permutations P1(), P 2(), P 3().

Lemma 4.2. Let A be an adversary whih asks at most q queries. Then

() (K) ((K �))Pr(P f Perm(n); K f { 0, 1}n : A = 1)

2q
�

() �

() �

() Pr(P1, P 2, P 3

f Perm(n) : A = 1) :

2n

A proof is given in the appendix.

Next we reall CBC whih appeared in the analysis of XCBC [5]. CBC

is a funtion taking three keys K1, K 2, K 3

E K E

and a message M E { 0, 1}* ,

and returning a string in {0, 1}n, where E is the underlying blok ipher. The

funtion is defned in ig. 3 and illustrated in ig. 4. Blak and Rogaway s h o wed

the following result for CBC [5].

Proposition 4.1 (Blak and Rogaway 5] . Let A be an adversary whih

asks at most q queries, eah of whih is at most nm-bits. Mssume m : 2n/4.

8

��� �
� �� ��

�
� �

���

��� � �
�

�
� �

���
��� �

� �� ��

�
� �

���
��� � �

�

�
�

� �� ��
���

��� � � � � � � �

�
� � � �

���

Then

AFCBC

�

()

� �Pr(P1, P 2, P 3

f Perm(n) : = 1)

(2m2 + 1) q2

() Pr(R f Rand(*, n) : A = 1) :

2n

e fnally give a proof of Lemma 4.1.

Proof (of Lemma 4.1). By the triangle inequality,

: ATMAC ()

�

�K�Pr(P1

f Perm(n); K2

f { 0, 1}n = 1)

(3)
() Pr(R f Rand(*, n) : A = 1)

is at most

AFCBC ()

� � �Pr(P1, P 2, P 3

f Perm(n) : = 1)

(4)
() Pr(R f Rand(*, n) : A = 1)

0, 1}n : ATMAC ()

�

�K�+ Pr(P1

f Perm(n); K2

f { = 1)

(5)

AFCBC

�

()

� �Pr(P1, P 2, P 3

f Perm(n) : = 1)

Proposition 4.1 [5] gives us an upper bound on (4). e next bound (5). (5) is at

most

() (K) ((K �))Pr(P f Perm(n); K f { 0, 1}n : A = 1)

(6)

�

() �

() �

() Pr(P1, P 2, P 3

f Perm(n) : A = 1)

sine any adversary whih d o e s w ell in the setting (5) ould be onverted to

one whih d o e s w ell in the setting (6), where we assume that A in (6) makes at

most mq total queries to her orales. By applying Lemma 4.2, (5) is bounded by

m2q2/2n. Therefore (3) is at most

2 2 2 2 2 2(2m + 1) q m q (3m + 1) q
+ =

2n 2n 2n

D�

5 Disussion

5.1 Summary of Properties

e give a summary of properties of TMAC i n T able 2.

9

Table 2. Summary of Properties.

Seurity F untion Message Authentiation Code. More generally,

TMAC i s a v ariable input length ({0, 1}�) pseudo-
random funtion (VIPRF) with fxed output length

({0, 1}n).

Error Propagation Not appliable.

Synhronization Not appliable.

Parallelizability Sequential.

Keying Material Two eys. One blok ipher key and one n-bit key,

where n is the blok length of the blok ipher.

Ctr/IV/None Requirements None. No ounter/IV/none is used.

Memory Requirements Very modest. Memory requirements for the CBC

MAC p l u s n bit for key.

Pre-proessing Capability Limited. Key-setup of the underlying blok ipher

and K2

u an be pre-omputed. Additional pre-
omputation is not possible.

Message-Length Requirements Arbitrarily length. Any bit string M E { 0, 1}� an

be omputed, inluding the empty string. The length

of the string need not be known in advane.

Ciphertext Expansion Not appliable.

5.2 Advantages

Short Key. TMAC requires only (k +n)-bit keys while XCBC uses (k +2 n)-bit

keys.

Provable Seurity. e p r o ved that TMAC i s a v ariable input length ({0, 1}*)

pseudorandom funtion (VlPR) with fxed output length ({0, 1}n) by as-
suming that the underlying blok ipher is a pseudorandom permutation.

EÆieny. TMAC uses max{1, IIM I/nl} blok ipher alls. The overhead be-
yond blok ipher alls is almost negligible.

Arbitrarily Message Length. Any bit string M E { 0, 1}* an be omputed,

inluding the empty string. The length of the string need not be known in

advane.

No Re-Keying. hereas some ompeting shemes (e.g., in [1, 4, 11]) would

require invoking E with two or three diferent k eys, TMAC requires only one

key as XCBC. Therefore any k ey-setup osts are minimized. This enhanes

eÆieny in both software and hardware.

No deryption. As for any CBC MAC v ariant, TMAC does not use deryption

of the blok ipher.

Bakwards Compatibility. TMAC with K2

= 0

n is bakwards ompatible

with the CBC MAC.

Simpliity. Beause TMAC is simple, it is easily implemented in both software

and hardware.

10

 �

�

� �

�

�

�

 �

�

�

�

� �

�

�

�� �� �
 �

�

�

5.3 Limitations

e note the following limitations. They apply to any C B C M A C v ariants and

therefore none of them is speif to TMAC.

Sequential Blok Cipher Calls. The CBC MAC and its variants, inluding

TMAC, are not parallelizable.

Limited Pre-proessing Capability. Key-setup of the underlying blok i -
pher and K2

u an be pre-omputed. Additional pre-omputation is not

possible without knowing the message.

5.4 Design Rationale

TMAC is generalized to TMAC family as follows. Let C1

and C2

in {0, 1}n be

two distint onstants. Let H : KH { 0, 1}n { 0, 1}n be a (universal) hash

funtion as follows, where KH

is the set of possible keys of H.

or any y E { 0, 1}n , # {K E K H

I HK(C1) = y} =

#
2
f
;
H , (7)

or any y E { 0, 1}n , # {K E K H

I HK(C2) = y} =

#
2
f
;
H , and (8)

or any y E { 0, 1}n , # {K E K H

I HK(C1) HK(C2) = y} =

#
2
f
;
H . (9)

By using C1, C 2

and H, T M A C family is speifed in ig. 5 and ig. 6.

Algorithm TMACEK�

.HK�

.c�

.c�

(M)

if M E ({0, 1}n

c

)+

then K + HK�

(c1) and P + M

else K + HK�

(c2

) and P + M II10i, where i + n - 1 - I M I mod n

Let P = P1IIP2II IIPm, w here IP1I = IP2I = = IPmI = n

o

+ 0n

for i + 1 to m - 1 do

ci

+ EK�

(Pi

E ci�1)

return EK�

(Pm

E cm�1

E K)

Fig. 5. Defnition of TMAC family.

M1

EK1

M2

EK1

M

EK1

HK�

(c1)

M1

EK1

M2

EK1

M 10i

EK1

HK�

(c2)

T T

Fig. 6. Illustration of TMAC family.

e an then prove the seurity o f T M A C family similarly to Lemma 4.1,

Corollary 4.1 and Theorem 4.1. The seurity bounds are exatly the same as

Lemma 4.1, Corollary 4.1 and Theorem 4.1.

11

Our hoie for TMAC orresponds to KH

= {0, 1}n , HK

(x) = K x, C1

= u,

and C2

= 1, or equivalently HK(C1) = K u and HK(C2) = K, w here K E

{0, 1}n. lt is easy to see that our hoie meets the onditions (7),(8), and (9).

Below, we list reasons of this hoie.

 e adopted multipliations in G (2n) sine it is simple, easy to understand,

and easy to im plem ent for appropriate onstants.
 e adopted 1 and u as onstants, sine multipliations by 1 and u are both

easy to implement eÆiently as we h a ve seen in (1).
 The reason why w e let HK(C1) = K u and HK

(C2) = K (not HK(C1) = K

and HK(C2) = K u) is that, most of the ase we h a ve M E ({0, 1}n)+ ,

rather than M E ({0, 1}n)+, if the message is a random string. Therefore we

have hosen omputationally easier way for the ase M E ({0, 1}n)+ .

6 est Vetors

Test vetors will be provided in a separate paper.

7 Performane Estimation

Similarly t o X CBC, TMAC uses IIM I/nl blok ipher invoations for any n o n -
empty message M . (The empty string is an exeption; it requires one blok

ipher invoation.) Overhead beyond blok ipher alls is almost negligible.

The size of seret keys is n bits smaller than XCBC. The ost for this short

key is to use K2

u. lt is omputed with only one shift and one onditional XOR.

8 Intelletual Propert Statement

The authors of this paper have no patent related to TMAC. As far as we know,

TMAC i s o vered by no patents.

Referenes

1. ANSI X9.19.	 Amerian national standard - Finanial institution retail message

authentiation. ASC X9 Seretariat - Amerian Bankers Assoiation, 1986.

2. M. Bellare, R. Gueerin, and P. Rogaway. X OR MACs: New methods for message

authentiation using fnite pseudorandom funtions. Advanes in Cryptology -

CRYPTO '95, LNCS 963, pp. 15-28, Springer-Verlag, 1995.

3. M. Bellare, J. Kilian, and P. Rogaway.	 The seurity of the ipher blok haining

message authentiation ode. JCSS, vol. 61, no. 3, 2000. Earlier version in Ad

vanes in Cryptology - CRYPTO '94, LNCS 839, pp. 341-358, Springer-Verlag,

1994.

4. A. Berendshot, B. den Boer, J. P. Boly, A. Bosselaers, J. Brandt, D. Chaum,

I. Damgaard, M. Dihtl, . Fumy, M . v an der Ham, C. J. A. Jansen, P. L a n d r o k,

B. Preneel, G. Roelofsen, P. de Rooij, and J. Vandewalle. Final Report of RACE

Integrity Primitives. LNCS 1007, Springer-Verlag, 1995.

12

�

�

� �

�
� �

 �
� �

5. J. Blak and P. Rogaway. C B C M A Cs for arbitrary-length messages: The three

key onstrutions. Advanes in Cryptology - CRYPTO 2000, LNCS 1880, pp.

197-215, Springer-Verlag, 2000.

6. J. Blak a n d P . Rogaway. Comments to NIST onerning AES modes of operations:

A suggestion for handling arbitrary-length messages with the CBC MAC. Seond

Modes of Operation Workshop. Available at

http://www.s.udavis.edu/-rogaway/.

7. J. Blak and P.	 Rogaway. A blok-ipher mode of operation for parallelizable

message authentiation. Advanes in Cryptology - EUROCRYPT 2002, LNCS

2332, pp. 384-397, Springer-Verlag, 2002.

8. FIPS 113.	 Computer data authentiation. Federal Information Proessing Stan-
dards Publiation 113, U.S. Department of Commere/National Bureau of Stan-
dards, National Tehnial Information Servie, Springfeld, Virginia, 1994.

9. V. Gligor, and P. Donesu. Fast enryption and authentiation: XCBC enryption

and XECB authentiation modes. Fast Software Enryption, FSE 2001, to appear

in LNCS, pp. 97-111, 2001. Full version is available at

http://sr.nist.gov/enryption/modes/proposedmodes/.

10. ISO/IEC 9797-1. Information tehnology	 - seurity tehniques - data integrity

mehanism using a ryptographi hek funtion employing a blok ipher algo-
rithm. International Organization for Standards, Geneva, Switzerland, 1999. Se-
ond edition.

e

be y ond the birthday paradox limit: A new onstrution. Fast Software Enryption,

FSE 2002, to appear in LNCS, pp. 231-245, 2002. Full ve r s i o n i s a vailable at

11.	 E. Jaulmes, A. Joux, and F. Valette. On the seurity of randomized CBC-MAC

http://eprint.iar.org/2001/074/.

12. E. Petrank and C. Rakof.	 CBC MAC for real-time data soures. J.Cryptology,

vol. 13, no. 3, pp. 315-338, Springer-Verlag, 2000.

Proof of Lemma 4.2

(1)	 () Let	 {A , , A

(q)} be a set of n-bit strings, that is, A E { 0, 1}n for 1 :

(1)	 () Vi : q. e say {A , , A

(q)} are distint as shorthand for A = A(j) for

1 : Vi : Vj : q.

Before proving Lemma 4.2, we need the following lemma.

Lemma A.1. Let q, q1, q2, q3

be p ositive integers suh that q = q1

+ q2

+ q3. Let

(1) (q�

) (1) (q�

) (1) (q�

)
x , , x , x , , x , x , , x1 1 2 2 3 3

(1) (q�)	 (1) (q�

)be fied n-bit strings suh that {x , , x } are distint, {x , , x } are 1 1	 2 2

(1) (q�

)
distint, and {x3

, , x3

} are distint. Similarly, Let

(1) (q�

) (1) (q�

) (1) (q�

)
y , , y , y , , y , y , , y1 1 2 2 3 3

(1) (q�

) (1) (q�

) (1) (q�

)
be 	 fi ed n-bit strings suh that {y , , y , y2

, , y2

, y3

, , y } are 1 1	 3

distint. Let P E Perm(n) and K E { 0, 1}n. Then the number of (P, K) whih

satisfes
() () P (x1

) = y1

for 1 : Vi : q1,

() ()

P (K x2

) = y2

for 1 : Vi : q2, and

(10) () ()

P ((K u) x3

) = y3

for 1 : Vi : q3

13

http://eprint.ia�r.org/2001/074
http://�sr�.nist.gov/en�ryption/modes/proposedmodes
http://www.�s.u�davis.edu/-rogaway

� �

 � � �

� � � �

� �

�
�

� �

� �

�
�

 �

� � �

�

�
 �

�
 �

� � �

� � � �

�
�

is at least (2n (q1

+ q2

+ q3))! (2n (q1q2

+ q1q3

+ q2q3)).

ne note that (2 (q1

+ q2

+ q3))! (2n (q1q2

+ q1q3

+ q2q3)) 2 (2n q)!
�

� � � �

q

q q q q
� � �2n

2 sine q1q2

+ q1q3

+ q2q3

= 2

.

Proof (of Lemma M.1). e frst ount the numbe r of K.

Number of K. irst, for any fxed i and j suh that 1 : i : q1

and 1 : j : q2,

() (j)we h a ve exatly one K suh that x1

= K x2

. Sine there are q1q2

hoie of

(i, j), we have

() (j)
#{K I x1

= K x2

for 1 : � i : q1

and 1 : � j : q2} : q1q2

(11)

Next, for any fxed i and j suh that 1 : i : q1

and 1 : j : q3, w e have

() (j)exatly one K suh that x1

= (K u) x3

. Sine there are q1q3

hoie of (i, j),

we have

() (j)#{K I x1

= (K u) x3

for 1 : � i : q1

and 1 : � j : q3} : q1q3

(12)

Next, for any fxed i and j suh that 1 : i : q2

and 1 : j : q3, w e have

() (j)
exatly one K suh that K x2

= (K u) x3

. Sine there are q1q3

hoie of

(i, j), we have

() (j)#{K I K x2

= (K u) x3

for 1 : � i : q2

and 1 : � j : q3} : q2q3

(13)

Then from (11), (12) and (13), we h a ve at least 2n (q1q2

+ q1q3

+ q2q3)

hoie of K E { 0, 1}n whih satisfes the following three onditions:

x
()

1

= K x
(j)

2

for 1 : V i : q1

and 1 : V j : q2,

x
()

1

= (K u) x
(j)

3

for 1 : V i : q1

and 1 : V j : q3, a n d

K x
()

2

= (K u) x
(j)

3

for 1 : V i : q2

and 1 : V j : q3.

e now fx any K whih satisfes these three onditions.

Number of P . Now K is fxed in suh a w ay th a t

(1) (q�

) (1) (q�

) (1) (q�

){x , , x , K x , , K x , (K u) x , , (K u) x }1 1 2 2 3 3

(whih are inputs to P) are distint. Also, the orresponding outputs

(1) (q�

) (1) (q�

) (1) (q�

){y , , y , y , , y , y , , y }1 1 2 2 3 3

are distint. ln other words, for P , the above q1

+ q2

+ q3

input-output pairs are

determined. The remaining 2n (q1

+ q2

+ q3) input-output pairs are undeter-
nmined. Therefore we h a ve (2 (q1

+ q2

+ q3))! possible hoie of P for any su h

fxed K.

14

 �
 �

�

 � �

� �

� �

�

� � �

��� ���

���

�

� �

Completing the Proof. To summarize, we h a ve:

at least 2n (q1q2

+ q1q3

+ q2q3) hoie of K, and

(2n (q1

+ q2

+ q3))! hoie of P when K is fxed.

This onludes the proof of the lemma. D

e n o w prove Lemma 4.2.

Proof (of Lemma 4.2). Let 01, 02, 03

be either P (), P (K), P ((K u))

or P1(), P2(), P3(). The adversary A has orale aess to 01, 02

and 03.

There are three types of queries A an make: either (1, x) w h ih denotes the

query "what is 01(x)?," (2, x) whih denotes the query "what is 02(x)?," or

(3, x) w h i h denotes the query "what is 03(x)?." or the i-th query A makes to

() ()

0j, defne the query-answer pair (xj

, y j

) E { 0, 1}n { 0, 1}n , w here A's query

() ()

was (j, xj

) and the answer it got was yj

.
 ithout loss of generality, w e assume that A makes q1

queries to 01(x), q2

queries to 02(x), and q3

queries to 03(x), where q1

+ q2

+ q3

= q. urther, we

assume that A is deterministi (otherwise we onsider arbitrarily fxed random

tape).

Defne view v of A as

(1) (1) (q�

) (q�

)
v = ((x , y), , (x , y),1 1 1 1

(1) (1) (q�

) (q�

)
(x , y), , (x , y),2 2 2 2

(1) (1) (q�

) (q�

)(x3

, y 3

), , (x3

, y 3

))

e sa y that v is a possible view if the following three onditions are satisfed:

(1) (q�

)
{y1

, , y 1

} are distint,

(1) (q�

){y2

, , y 2

} are distint, and

(1) (q�

){y3

, , y 3

} are distint.

e note that sine A never repeats a query, w e h a ve

(1) (q�

){x1

, , x 1

} are distint,

(1) (q�

)
{x2

, , x 2

} are distint, and

(1) (q�

)
{x3

, , x 3

} are distint.

e also note that sine A is deterministi, the i-th query A makes is fully

determined by the frst i 1 query-answer pairs. Then the number of all possible

(2;)' (2;)' (2;)'view Nall

is Nall

= . Similarly, the fnal output of A(2; q�

)' (2; q�

)' (2; q�

)'

(0 or 1) depends only on v. Hene denote by C;(v) the fnal output of A as a

funtion of v.

Let �one

be a set of all possible view v suh that A outputs 1. That is,

�one

= {v I C ;(v) = 1 }. e let None

= # �one. Also, let �good

be a set of

(1) (q�

) (1) (q�

) (1) (q�

)
all possible view v suh that {y , , y , y , , y , y , , y } are1 1 2 2 3 3

(2;)'distint. e l e t Ngood

= # �good, then Ngood

= . Therefore we (2; (q�

+q�

+q�

))'

have

#{v I v E (�one �good)} 2 None

(Nall

Ngood) (14)

15

��� � � � �

� � �

� �

� �

� �

� � �

� � �

��� � � � � � � �

� � � � �

�
 �

�
�

 �

�
�

 �

Evaluation of P e frst evaluate rand.

�

() �

() �

() Prand

= Pr(P1, P2, P3

f Perm(n) : A = 1)

e have

�

() �

() �

() #{(P1, P2, P3) I A = 1 }
Prand

=

{(2n)!}3

or eah v E �one, the numbe r of (P1, P2, P3) su h that

() ()

P1(x1

) = y1

for 1 : V i : q1,

() ()

P2(x) = y for 1 : V i : q2, and2 2

() ()

P3(x) = y for 1 : V i : q33 3

is exatly (2n q1)! (2n q2)! (2n q3)!. Therefore, we h a ve

 #{(P1, P2, P3) I (P1, P2, P3) satisfying (15)}
Prand

=
{(2n)!}3

vE�one

(2n q1)! (2n q2)! (2n q3)!

= None

{(2n)!}3

=

oneN

Nal l

Evaluation of P e next evaluate real.

1}n () (K) ((K �))P = Pr(P f Perm(n); K f { 0, : A = real

e have

() (K) ((K �))#{(P, K) I A = 1 }
Preal

=

(2n)! 2n

Then from Lemma A.1, we h a ve

P

{(P, K) I (P, K) satisfying (10)}

real

2
(2n)! 2n

vE(�onen�good

) (2n q)! q2

2 1

(2n)! 2 2n

vE(�onen�good

)

rom (14) we h a ve

P

(2n q)! q2

real

2 (None

Nal l

+ Ngood

) 1

(2n)! 2 2n
2None

Ngood

(2n q)! q
= 1 + Nal l

1

2nNal l

Nal l (2n)! 2

(15)

1)

(16)

16

�
�

�

� � � �

� � � � � � � � � � � �

� �

�

�
 �

�

�

�

�

� �

� � �

� �

N

N

Completing the Proof. Now we have

good

q(q 1) (2n q)!
2 1 and Nal l

2 1

al l

2 2n (2n)!

The frst inequality f o l l o ws sine

� ��

1Ngood 1� �q 1 2;

= �

� � �

� � �

� �

Nal l

1 1 11� �q�

1 2; 1� �q�

1 2; 1� �q�

1 2; � i

2 1

2n

1� �q 1

1 + 2 + + (q 1)
2 1

P

2n

Then from (16) we h a ve

q(q 1) q2

real

2 Prand

1

2 2n 2 2n

2q
2 Prand

(17)
2n

Applying the same argument t o 1 Preal

and 1 Prand

yields that

2q
1 Preal

2 1 Prand

(18)
2n

�

 inally, (17) and (18) give IPreal

PrandI : 2
q

;

. D

17

