Fast Encryption and Authentication:
XCBC Encryption and XECB Authentication Modes

Virgil D. Gligor* Pompiliu Donescu

VDG Inc
6009 Brookside Drive
Chevy Chase, Maryland 20815
{gligor, pompiliu}@eng.umd.edu

March 30, 2001
April 20, 2001 (revision)

Abstract

We present the eXtended Ciphertext Block Chaining (XCBC) schemes or modes of encryption
that can detect encrypted-message forgeries with high probability even when used with typical non-
cryptographic Manipulation Detection Code (MDC) functions (e.g., bitwise exclusive-or and cyclic re-
dundancy code (CRC) functions). These modes detect encrypted-message forgeries at low cost in per-
formance, power, and implementation, and preserve both message secrecy and integrity in a single pass
over the message data. Their performance and security scale directly with those of the underlying block
cipher function. We also present the XECB message authentication modes. These modes have all the
operational properties of the XOR-MAC modes (e.g., fully parallel and pipelined operation, incremental
updates, and out-of-order verification), and have better performance. They are intended for use either
stand-alone or with encryption modes that have similar properties (e.g., counter-based XOR encryption).
However, the XECB-MAC modes have higher upper bounds on the probability of adversary’s success in
producing a forgery than the XOR-MAC modes.

1 Introduction

No one said this was an easy game !
Paul van Oorschot, March 1999.

A long-standing goal in the design of block encryption modes has been the ability to provide message-
integrity protection with simple Manipulation Detection Code (MDC) functions, such as the exclusive-or,
cyclic redundancy code (CRC), or even constant functions [5, 7, 9]. Most attempts to achieve this goal in
the face of chosen-plaintext attacks focused on different variations of the Cipher Block Chaining (CBC)
mode of encryption, which is the most common block-encryption mode in use. To date, most attempts,
including one of our own, failed [8].

*This work was performed while this author was on sabbatical leave from the University of Maryland, Department of
Electrical and Computer Engineering, College Park, Maryland 20742.

mailto:pompiliug@eng.umd.edu

In this paper, we define the eXtended Ciphertext Block Chaining (XCBC) modes that can be used with
an exclusive-or function to provide the authentication of encrypted messages in a single pass over the data.
These modes detect integrity violations at a low cost in performance, power, and implementation, and
can be executed in a parallel or pipelined manner. They provide authentication of encrypted messages in
real-time, without the need for an additional processing path over the input data. The performance and
security of these modes scale directly with the performance and security of the underlying block cipher
function since separate cryptographic primitives, such as hash functions, are unnecessary.

We also present the XECB modes for message authentication (i.e., XECB-MAC modes) and their salient
properties. These message authentication modes have all the operational properties of the XOR message
authentication (XOR-MAC) modes (e.g., they can operate in a fully parallel and pipelined manner, and
support incremental updates and out-of-order verification [2]), and have better performance; i.e., they use
only about half the number of block-cipher invocations required by the XOR-MAC modes. However, the
XECB-MAC modes have higher bounds on the adversary’s success of producing a forgery than those of
the XOR-MAC modes. The XECB modes are intended for use either stand-alone to protect the integrity
of plaintext messages, or with encryption modes that have similar properties (e.g., counter-based XOR,
encryption [1] a.k.a “counter mode”) whenever it is desired that separate keys be used for secrecy and
integrity modes.

2 Integrity Modes for Encryption

Preliminaries and Notation. In defining the encryption modes we adopt the approach of Bellare et
al. (viz., [1]), who show that an encryption mode can be viewed as the triple (E, D, KG), where E is the
encryption function, D is the decryption function, and KG is the probabilistic key-generation algorithm.
(Similarly, a message authentication (MAC) mode can be viewed as the triple (S, V, KG), where S is the
message signing function, V' is the message verification function, and K G is the probabilistic key-generation
algorithm.) Our encryption (and authentication) modes are implemented with block ciphers, which are
modeled with finite families of pseudorandom functions (PRFs) or pseudorandom permutations (PRPs).

In this context, we use the concepts of pseudorandom functions (PRFs), pseudorandom permutations
(PRPs), and super-pseudorandom permutations (SPRPs) ([1], [14]). Let R“" the set of all functions
{0,1}} — {0,1}. We use F to denote either a family of pseudorandom functions or a family of super-
pseudorandom permutations, as appropriate (e.g., for the encryption schemes, F' will be a family of super-
pseudorandom permutations, while for our MAC schemes, F' can be a family of pseudorandom functions).

Given encryption scheme IT = (E, D, KG) that is implemented with SPRP F, we denote the use of the key

K & KG in the encryption of a plaintext string by EF%(z), and in the decryption of ciphertext string
y by DF%(y). The most common method used to detect modifications of encrypted messages applies a
MDC function g (e.g., a non-keyed hash, cyclic redundancy code (CRC), bitwise exclusive-or function [15])
to a plaintext message and concatenates the result with the plaintext before encryption with E¥%(z). A
message thus encrypted can be decrypted and accepted as valid only after the integrity check is passed;
i.e., after decryption with D% (y), the concatenated value of function g is removed from the plaintext, and
the check passes only if this value matches that obtained by applying the MDC function to the remaining
plaintext [5, 7, 15]. If the integrity check is not passed, a special failure indicator, denoted by Null herein,
is returned. This method! has been used in commercial systems such as Kerberos V5 [17, 21] and DCE

!Note that other methods for protecting the integrity of encrypted messages exist; e.g., encrypting the message with a
secret key and then taking the separately keyed MAC of the ciphertext [15, 3]. These methods require two passes over the

[6, 21], among others. The encryption scheme obtained by using this method is denoted by II-g = (E-g,D-
g,KG), where II is said to be composed with MDC function g. In this mode, we denote the use of the key
K in the encryption of a plaintext string = by (EF%-g)(x), and in the decryption of ciphertext string y by

(DT-g)(y)-

A design goal for II-g = (E-g, D-g, KG) modes is to find the simplest encryption mode IT = (E,D,KG) (e.g.,
comparable to the CBC modes) such that, when this mode is composed with a simple, non-cryptographic
MDC function g (e.g., as simple as a bitwise exclusive-or function), message encryption is protected against
ezistential forgeries. For any key K, a forgery is any ciphertext message that is not the output of EFf'x-g.
An existential forgery (EF) is a forgery that passes the integrity check of Df%-g upon decryption; i.e., for
forgery o', (D¥5-g)(y’) # Null, where Null is a failure indicator. Note that the plaintext outcome of an
existential forgery need not be known to the forgerer. It is sufficient that the receiver of a forged ciphertext
decrypt the forgery correctly.

Message Integrity Attack: Existential Forgery in a Chosen-Plaintext Attack. The attack is
defined by a protocol between an adversary A and an oracle O? as follows.

1. A and O select encryption mode II-g = (E-g,D-g,KG), and O selects, uniformly at random, a key K
of KG.

2. A sends encryption queries (i.e., plaintext messages to be encrypted) zP, p =1,- -, ¢, to the encryp-
tion function of O. Oracle O responds to A by returning y? = (Ef%-g)(z?), p = 1,- -,qe, where 2P
are A’s chosen plaintext messages. A records both its encryption queries and O’s responses to them.

3. After receiving O’s encryption responses, A forges a collection of ciphertexts 3,1 < i < ¢, where
y' # yPVp = 1,- -,qe, and sends each decryption query 3" to the decryption function of O. O
returns a success or failure indicator to A, depending on whether of (DF%-g)(y") # Null.

Adversary A is successful if at least one decryption query 4" such that (D¥%-g)(y"") # Null for 1 < i < qy;
i.e., y'" is an existential forgery. The mode II-g = (E-g,D-g,KG) is said to be secure in a message-integrity
attack if the probability of an existential forgery in a chosen-plaintext attack is negligible. (We use the
notion of negligible probability in the same sense as that of Naor and Reingold [16].)

Attack Parameters. A is allowed ¢, encryption queries (i.e., queries to Ef%-g), and g, decryption
queries (i.e., queries to D"5-g) totaling p + p, bits, and taking time t. + t,.

Parameters g, e, te are bound by the parameters (¢', p',t', €’) which define the chosen-plaintext security
of Il = (E,D,KG) in a secrecy attack (e.g., in the left-or-right sense [1], for instance), and a constant ¢
determined by the speed of the function g. Since parameters (¢', ', ', €') are expressed in terms of the
given parameters (t,q,€) of the SPRP family F', the attack parameters can be related directly to those of
the SPRP family F.

Parameters g, fte, te, Gu, by, by are also bound by the parameters (¢, q,€) of the SPRP family F, namely
te + iy < ql, and t, + t, < t. (The parameters g, q, are determined by ., t,.) These parameters can be
set to specific values determined by the desired probability of adversary’s success. Note that ¢, > 0 since
A must be allowed verification queries. Otherwise, A cannot test whether his forgeries are correct, since A
does not know key K.

message data, require more power, and are more complex to implement than the modes we envision for most common use.
Nevertheless these methods are useful whenever key separation is desired for secrecy and integrity.
20 can be viewed as two oracles, the first for the encryption function of O and the second for the decryption function of O.

The message-integrity attack defined above is not weaker than an adaptive one in the sense that the
success probability of adversary A bounds from above the success probability of another adversary A’ that
intersperses the g, encryption and ¢, verification queries; i.e., the adversary is allowed to make his choice
of forgery after seeing the result of legitimate encryptions and other forgeries. (This has been shown for
chosen-message attacks against MAC functions [2], but the same argument holds here.) To date, this is
the strongest of the known goal-attack combinations against the integrity (authentication) of encrypted
messages [3, 10].

3 Definition of the XCBC and XCBC-XOR Modes

We present three XCBC modes, namely (1) stateless, (2) stateful-sender, and (3) stateful modes, and
some implementation options. In general, the fewer state variables the more robust the mode is in the
face of failures (or disconnections) and intrusion. This might suggest that, in practice, stateless modes
are preferable. However, this may not always be the case because a good, high-performance, source of
randomness that can be used for each message may be unavailable or may be hard to protect in terms of
confidentiality, integrity and availability. Further, the new random number used in each message encryption
by the sender must be securely transmitted to the receiver, which usually costs at least an additional block-
cipher invocation. The stateful-sender mode (e.g., a counter-based mode) eliminates the need for a good
source of randomness but does not always eliminate the extra block-cipher invocation and the need to
protect the extra sender state variables; e.g., the source of randomness is replaced by the enciphering of
a message counter but the counter must be maintained and its integrity must be protected by the sender
across multiple message authentications. (The other advantage of counter-based modes, namely the ability
to go beyond the “birthday barrier” when used with pseudo-random functions, does not materialize in the
context of the Advanced Encryption Standard (AES) since AES is modeled as a family of pseudo-random
permutations.)

Maintaining secret shared-state variables, as opposed to just sender-state, helps eliminate the extra block-
cipher invocations. Extending the shared keying state with extra, per-key, random variables shared by
senders and receivers is a fairly straight-forward matter; e.g., these shared variables can be generated and
distributed in the same way as the shared secret key, or can be generated using the shared key (at some
marginal extra cost per message) by encrypting constants with the shared key. However, maintaining the
shared state in the face of failures (or disconnections), and intrusion presents an extra challenge for the
mode user; e.g., enlarging the shared state beyond that of a shared secret key may increase the exposure
of the mode to physical attacks. The above discussion suggests that none of the three types of operational
modes is superior to the others in all environments, and hence all of them should be supported in a general
mode definition.

In the encryption modes presented below, the key generation algorithm, K G, outputs a random, uniformly
distributed, k-bit string or key K for the underlying SPRP family F, thereby specifying f = Fg and
= 1;1 of [-bits to [-bits. If a separate second key is needed in a mode, then a new string or key
K' is generated by KG identifying f' = Fx+ and f'~!' = F.!. The plaintext message to be encrypted is
partitioned into a sequence of I-bit blocks (padding is done first, if necessary), * = 1 x,. Throughout
this paper, @ is the ezclusive-or operator and + represents modulo 2! addition.

Stateless XCBC Mode (XCBCS$)
The encryption and decryption functions of the stateless mode,
E&XCBCS$T% (z) and DX CBCO$HE (y), are defined as follows.

function £&XCBCS/ (z)
o < {07]-}l

Yo = f(ro); z0 = f'(ro)
fori=1, ,ndo{

zZi = f((IIZ D Zi—l)
Yi=zi+ixry }

function D<XCBCS/ (y)
Parse y as yolly1 =~ ¥n

ro = f""(yo); 20 = f'(ro)
fori=1, ,ndo{

Zi =Y &1 X T

i =f"Nz) D21}

return y = yolly1ve Yn return z = 172 T,

Stateful-Sender XCBC Mode (XCBCC)
The encryption and decryption functions of the stateful-sender mode,
E&XCBCCOFE (x, ctr) and DX CBCCTE (y), are defined as follows.

function £&XCBCC/ (z, ctr)
ro = f(ctr); zo = f'(ro)
fori=1, ,ndo{

zZi = f(.’L‘Z D Zi—l)

yi =2z +iXry}

ctr' « ctr +1

y=cirllyiyz yn
return y

function DXCBCC/ (y)
Parse y as ctrlly1 yn

ro = f(ctr); zo = f'(ro)
fori=1, ,ndo{

2z =Y 1 X 1
zi=f""z) ®zi1 }
return z = z;z9 Tn

Note that in the XCBCC mode the counter ctr can be initialized to a known constant such as <1 by
the sender. ctr’ represents the updated ctr value. In both of the above modes the complexity is n + 2
block-cipher invocations, where n in the length of input string « in blocks.

Stateful XCBC Mode (XCBCS)
Let IV be a random and uniformly distributed variable that is part of the keying state shared by the sender
and receiver.

E&XCBCSS$' (z) and D&XCBCS$T (y), are defined as follows.

function £&XCBCSS$/ (z)
ro < {0, l}l

yo = f(ro); z0o =1V + 19
fori=1, ,ndo{

2z = f(z; ® zi—1)

Yi =2 +1ixry}

function DXCBCS$/ (y)
Parse y as yolly1 ~ ¥n

ro = fﬁl(yo); 20 =1V 4+ rg
fori=1, ,ndo{

Zi =Y &1 X T

zi = (z) @21 }

return y = yollv1y2 Yn return z = 120z,

Note that in the XCBCS mode the shared IV value can be generated randomly by K G and distributed
to the sender and receiver along with key K thereby saving one block cipher invocation, or can be can
be generated using key K by standard key-separation techniques thereby requiring an additional block
encryption operation per key. In the former case, the complexity of the mode is exactly n 4+ 1 block-cipher
invocations and, in the latter, is asymptotically n + 1 block-cipher invocations.

Chaining Sequence. The block chaining sequence is that used for the traditional CBC mode, namely
zi = f(xz; ® zi—1), where 2y is the initialization vector, z; is the plaintext and z; is the ciphertext of

block 4,2 =1, ,n. In contrast with the traditional CBC mode, the value of z; is not revealed outside
the encryption modes, and, for this reason, z; is called a hidden ciphertext block. The actual ciphertext
output, y;, of the XCBC modes is defined using extra randomization, namely y; = z; + % X ro, where
i X 1o is the modulo 2' addition of the random, uniformly distributed, variable rg, i times to itself; i.e.,
1 X T déf?”o—i— + 7.

e
Examples for why the randomization is necessary include those which show that, without randomization,
the swapping of two z; blocks of a ciphertext message, or the insertion of two arbitrary but identical blocks
into two adjacent positions of a ciphertext message, would cause the decryption of the resulting forgery
with probability one whenever an bitwise exclusive-or function is used as the MDC (which is what we
intend to use, since these functions are among the fastest known). Correct randomization sequences, such
as i X rp, ensure that, among other things, collisions between any two z; values is negligible regardless of
whether these values are obtained during message encryption, forgery decryption, or both. Note that this
probability is negligible even though the randomization sequence i x r¢ allows low-order bits of some z;’s to
become known. (A detailed account of why such collisions contribute to an adversary’s success in breaking
message integrity is provided in the proof of the XCBC$ mode; viz., Appendix A.) Examples of incorrect
randomization sequences can be readily found; e.g., the sequence whereby each element 7 is computed as
an bitwise exclusive-or of ¢ instances of rg.

Initialization. In stateless implementations of the XCBC modes rq < {0,1}!; i.e., rg is initialized to
a random, uniformly distributed, [-bit value for every message. The value of ry is sent by the sender
to the receiver as yo = f(ro). In contrast, in stateful-sender implementations, which avoid the use of a
random number generator, a counter, ctr, is initialized to a new [-bit constant (e.g., -1) for every key K,
and incremented on every message encryption. In stateful implementations, a random initialization-vector
value IV that is shared by the sender and receiver is generated for every key K, and used to create a
per-message random initialization vector zj.

In all XCBC modes, the initialization vector zy is independent of ryg. While non-independent zy and rg
values might yield secure initialization, simple relationships between these values can lead to the discovery
of ro with non-negligible probability, and integrity can be easily broken.? Since we use zy in the definition
of function g(z) (see below), zy should also be unpredictable so that g(z) has a per-message unpredictable
value.

The choice of encrypting rg with a second key K’ to obtain zy (i.e., 20 = f'(rp)) is made exclusively
to simplify the both the secrecy [1] and the integrity proofs; e.g., such a zj is independent of ry and is
unpredictable. To eliminate the use of the second key and still satisfy the requirements for zy suggested
above, we can compute zy = f(rg+ 1) in stateless and stateful sender implementations, whereas in stateful
implementations we compute zy = IV +ry, where the per-message ry can be generated as a random value,
or as an encryption of ctr in the XORC mode. This eliminates the additional block-cipher invocations
necessary in the stateless and stateful-sender modes at the cost of maintaining an extra shared state variable
(IV). This choice still satisfies the requirements for z.

Generalization. The above method for protecting message integrity against existential forgeries in chosen-
plaintext attacks can be generalized as follows. Let the output ciphertext y; be computed as y; = z; op E;,
where op is the randomization operation, F; are the elements of the randomization sequence, and z; the
hidden ciphertext. The encryption mode II (1) must be secure in adaptive chosen-plaintext attacks with
respect to secrecy, and (2) must use the input plaintext blocks z; to generate the input to f. The PCBC

3As a simple example illustrating why this is the case, let zo = ro + 1, choose x1 such that zo ® z1 = ro with non-negligible
probability, and then compute y; — yo = ro. With a known ro, one can cause collisions in the values of z; and break integrity.

[12, 15], and the “infinite garble extension” [5] modes are suitable, but counter-mode/XORC and XOR$
are not (since they fail condition (2)). Operation op must be invertible, so @, modular 2! addition and
subtraction are appropriate. Elements E; must be unpredictable such that collisions among z;’s (discussed
above) could only occur with negligible probability. Other sequences can be used. For example E; = a’ x g
can be used, where FE; is a linear congruence sequence with multiplier a, where a can be chosen so that
the sequence passes spectral tests to whatever degree of accuracy is deemed necessary. (Examples of good
multipliers are readily available in the literature [11].)

XCBC-XOR Modes. To illustrate the properties of the XCBC modes in integrity attacks, we choose
g(x) =20®x1® @ xy for plaintext © =21 x,, where 2y is defined as the initialization vector of the
mode. In this example, block g(z) is appended to the end of a n-block message plaintext z, and hence
block 41 = 20 D21 ® @ z,. For this choice of g(x), the integrity check performed at decryption
becomes 20 @21 @ D zn = f (2ni1) ® zn, where 2,11 = ypp1 & (n+ 1) X 7o, and 2, = y, Sn X 7g.

Message Padding. Standard padding methods (e.g., ASN.1), which typically require that a bit pattern
and its length be added to the last block of a message to obtain an integer number of (padded) plaintext
blocks, have the undesirable consequence that an additional block cipher invocation is required for the extra
block of padding added for plaintexts of an integer number of blocks. Alternatives that avoid standard
padding are known [4], but they require use of an extra (shared secret) key — a somewhat less desirable
alternative when maintaining the unpredictability of the redundant padding information added by a mode
is not an operational goal.

Known Padding Pattern. The goal of the first padding option for the XCBC modes is two-fold: (1)
avoid extra block-cipher invocations, and (2) avoid the use of extra keying material. Padding with a
known pattern is performed as follows: (1) use a pattern that always starts with a “1” bit followed by
the minimum number of “0” bits necessary to fill the last block of plaintext [4]; (2) if the last block of a
message is unpadded, use block ¢'(z) = Zg @21 ® @ xz, as the z,; plaintext block, where Zj is the
bitwise complement of zp; otherwise, use g(z) =20 ®z1 & D Zy.

At decryption, the integrity check performs the exclusive-or of f~!(z,11) ® 2, with) & @ /,, where
x}, ,zl are the plaintext blocks obtained at decryption, and then compares the result with the zg
computed during decryption; if this check fails, the result is compared with Zy, the complement of zg
computed at decryption, and only if this second comparison for equality fails the ciphertext-message
decryption returns failure. If the the comparison check with 2y passes, meaning that the message was
padded at encryption, the padding pattern is checked, extracted (providing some extra confidence, if
found) and removed. It follows that the decryption of unpadded (but unforged) messages would fail first
the first equality check but not the second. Of course, the extra check would be required only for unpadded
messages and forgeries. This padding scheme satisfies our goals at a modest cost; i.e., that of including
padding bits in the ciphertext and an extra check for equality.

Unpredictable Padding Pattern. The goal of the second padding option for the XCBC modes, in addition
to (1) above, is to retain the unpredictability of the redundant information added by these modes to user
input. This goal is set for pragmatic reasons, since these modes are secure with respect to chosen-plaintext
attacks. It stems from the long-standing belief that a mode of encryption should avoid adding redundant
information that provides an adversary additional conditions to verify the success of his attacks (e.g.,
key guessing) beyond those already available to him from knowledge of user input; e.g., in a ciphertext-
only attack, the adversary who knows nothing about the plaintext would benefit from added predictable
redundancy by padding and integrity checks.

In the XCBC modes, padding with an unpredictable pattern is performed as follows. Let Mask be a

random and uniformly distributed block that that is part of the keying state shared by the sender and
receiver. The Mask can be generated and distributed along with the key or is can be generated by any
of the available standard methods (e.g., encrypt a constant with the shared secret key to initialize Mask).
For each plaintext input whose last block is incomplete, fill the last block with the known bit pattern used
in the Known-Padding-Pattern option above (i.e., the pattern that always starts with a “1” bit followed by
the minimum number of “0” bits necessary to fill the last block of plaintext) Perform the bitwise exclusive-
or operation between the Mask and the filled last plaintext block. Use the result as the plaintext block
Zp in the computation of the x,11 = g(x) block. Use zy to compute g(z) for padded messages and Zg
for unpadded ones as in the Known-Padding-Pattern option above. At decryption, use the same integrity
check as that used in the Known-Padding-Pattern option (defined above), and if the check for padded
messages passes, perform the bitwise exclusive-or of the Mask and the recovered block z],, and check and
extract the known padding bit pattern from 2/, before returning the plaintext to the user.

The stateless and stateful encryption modes II-g obtained by the use of schemes IT = XCBCS$, IT = XCBCC,
or IT = XCBCS with function g(z) = 2o ® 21 ® x, are denoted by XCBC$-XOR, XCBCC-XOR, and
XCBCS-XOR respectively.

Examples of Other Encryption Modes that Preserve Message Integrity.

Recently, C.S. Jutla [13] proposed an interesting scheme in which the output blocks z; of CBC encryption
are modified by (i.e., bitwise exclusive-or operations) with a sequence F; of pairwise independent elements.
In this model, E; = (i x IVy + IV3)mod p, where IVy, IV, are random values generated from an initial
random value 7, and p is prime, and the complexity is n + 3, where n is the length of the plaintext input
in blocks. In contrast with C.S. Jutla’s scheme, the elements of the XCBC sequence, F; = (i x ro)mod 2!,
are not pairwise independent, and the complexity is n + 2 for the stateless and stateful-sender cases, and
n + 1 for the stateful case. Also, the performance of the required modular 2* additions is slightly better
than that of mod p additions, where p is prime. However, the pairwise independence of C.S. Jutla’s E;
sequence should yield a slightly tighter bound on the probability of successful forgery illustrating, yet again,
a fundamental tradeoff between performance and security. (The bound is tighter by a fraction of a logy
factor depending on the value of p, which would mean that the attack complexity is within the same order
of magnitude of the XCBC bound viz., Section 5).

More recently, P. Rogaway [19] has proposed other schemes that use interesting variations of non-independent
and pairwise-independent elements for the E; sequence, similar to the sequences presented in this paper
and C.S. Jutla’s, to achieve n+ 1 complexity. Under the same assumptions regarding stateful and stateless
implementations, C.S. Jutla’s modes require an extra block enciphering over the XCBC and P. Rogaway’s
modes. We note that all modes for authenticated encryption include an extra block cipher operation for
the enciphering of the exclusive-or MDC.

Interleaved-Parallel or Pipelined Encryption. The choice of g(z) = 20 ® 21 ® & 1z, allows
the interleaved-parallel or pipelined implementation of the XCBC modes. Other non-cryptographic MDC
functions g(x) would also allow such implementation, since they be executed in a parallel or a pipelined
manner (by definition). This mode is useful when the number of processors available for encryption and
decryption in parallel is a priori known or negotiated. For example, for interleaved-parallel execution using
g(x), each plaintext message x is partitioned into L segments, (M 2 each of length ng, s =1, L,
after customary block-level padding (n.b., this L should not be confused with the output length of a PRF,
which is typically denoted by L, also). Each segment, #8),s =1, L, consists of one or more [-bit blocks,
and if g(z(®)) = z[()s) @ wgs) & o 3:7({0'5) is used, then an additional /-bit block is included in each segment.
Each segment is encrypted/decrypted in parallel on a separate processor.

In interleaved-parallel or pipelined implementations of the XCBC modes, the initialization and computation
of the block chaining sequence is performed on a per-segment basis starting with a common value of g,
which is a random, uniformly distributed, I-bit value for every message. Also, the per-message value
yo is computed as yp < f(ro) in stateless implementations. The initialization of the block chaining
sequence for message segment s can be r(()s) =r1g + s, z(()s) =f (r(()s)), and the encryption sequence can be
zgs) = f(acz(s) &) zl(i)l), ygs) = zl(s) + 7 X 7"(()8). In stateful implementations ctr is updated to ctr + L after the
encryption of each message. (Other functions, not just addition modulo 2, can be used for the computation

of the per-segment, block chaining sequence, and initialization sequence can be used for 7“(()8) and z(()s).)

The encrypted segments of a message are assembled to form the message ciphertext. Segment assembly
encodes the number of segments L, the length of each segment ng and, implicitly, the segment sequence
in the message (e.g., all can be found in the ASN.1 encoding). If the segments of a message have different
lengths, segment assembly is also synchronized with the end of each segment encryption or decryption
within a message.

At decryption, the parsing of the message ciphertext yields the message length, L, segment sequence
number, s, and the length of each segment, n,. Message integrity is maintained both on a per segment

and per message basis by performing the per-segment integrity check; if g(xz) = 2o ® 1 ® @ xy, the
per-segment check is z(()s) ® mgs) & ® :1:7({? = f_l(Zf,ss)H) ® ngs) where zfzss)ﬂ = y;‘?+1 <(ns +1) x r(()s)

(s) (s) (s)

and 2z, = yn, &ng X ry . Failure of any per-segment integrity check, which also detects out-of-sequence
segments and message-length modifications, signals a message integrity violation.

We illustrate an interleaved- parallel implementation of the stateless XCBC mode below. Stateful parallel
schemes can be implemented in a similar manner, using the same methods as those illustrated for the
sequential implementation.

Stateless Parallel XCBC Mode (ipXCBCS$)
The encryption and decryption functions of the stateless mode,
E<ipXCBC$T% (z) and D<ipX CBO$IE (y), are defined as follows.

function D<ipXCBC$/ (y)

function £<ipXCBC$/ ()
partition z into L segments (%)
each of length ng;

ro +{0,1}5 yo = f(ro) ;

for segment s,s =1, ,L,do {
T_(()s) =1 + 5, z(()s) _ f’(T’(()s))
fori=1, ,nsdo{

2 = f @ 42)

ygs) = zlgs) +14 X r(()s) }

g =y)

assemble y = yolly™H) 3,
return y.

parse y into yo and L segments ys)
each of length ng;

ro = 7' (yo)

for segment s,s =1, ,L do {

Parse y() as ygs) yq(fs)

r(()s) =1y + S; z(()s) = f’(r(()s))
fori=1, ,nsdo{

zZ(s) = Z(s) S X 7‘[()5)
r) =[5 @2)
z(8) = wgs) w%s) }
assemble z = () z(L);
return z.

8

Incremental Updates of Encrypted Data. The segmentation of a message used for parallel and pipelined
implementation of the XCBC modes can also be used in sequential encryption of data structures (e.g.,
a file, a message) whenever incremental updates of data structures are anticipated. Such segmentation
enables the localization of the decryption, plaintext update, and encryption to single segments saving the

decryption and encryption of other segments unaffected by the updates. Note that message integrity is
retained after such incremental updates.

Architecture-Independent Parallel Encryption. C.S. Jutla’s recent parallel mode [13] requires that both the
input to and output of the block cipher are randomized using a sequence of pairwise-independent random
blocks. Our fully parallel modes achieve the same effect without using a sequence pairwise-independent
random blocks. For these modes, it is sufficient to randomize the input and output blocks of f using the
same type of sequence. In this case, the probability of input or output collisions, which would be necessary
to break security and integrity respectively, would remain negligible. An example is the stateful Fxtended
FElectronic Codebook-X OR encryption (XECBS-XOR) mode, in which for index 7,1 < i <n + 1,n = |z|,
the ciphertext block y; is obtained through the formulae:

yi = flzi+ctr x R+ix R)+ctr x R+i1x R*, Vi,1 <i<n,ctr <gq,
Ynt1 = f(znp1+etr X R) +ctr X R+ (n+1) x R,

where R, R* are two random, uniformly distributed and independent blocks each of [bits in length that
are part of the keying state shared by the sender and receiver, and ctr is the counter that serves as message
identifier. The counter ctr is initialized to 1 and increased by 1 on every message encryption up to g,
which is the bound of the number of allowable message encryptions (viz., Theorem 5 below). Note that the
sequence of elements E; = ctr X R+ 1 X R* can be precomputed for multiple messages, can be computed
incrementally, and in an out-of-order manner.

To provide authentication, the last block is computed using the following formula for the function g:
Tn+1 :g(ZE) =71 D D zn.

This authenticated encryption mode achieves optimal performance, i.e., n+ 1 parallel block cipher invoca-
tions, and has a throughput of a single block cipher invocation. The security of the XECBS-XOR mode
with respect to confidentiality in an adaptive chosen-plaintext attack can be demonstrated in the same
manner as that used for the CBC mode [1].

For the XECBS-X OR encryption scheme proposed above, padding follows the similar conventions as those
the XCBC-XOR modes to distinguish between padded and unpadded messages; i.e., use the following
formula for the enciphering of the last block.

Ynt1 = f(xps1 +ctr x Z) +ctr x R+ (n+ 1) x R*,

where Z = R is the bitwise complement of R and is used for unpadded messages and Z = R for padded
messages.

Stateless architecture-independent parallel modes and stateful-sender architecture-independent parallel
modes can be specified in the same manner as those for the XCBC modes; for example, R and R* can be
derived from the [-bit random number number 7y (e.g., R = f(ro + 1) and R* = f(rp + 2)), and, in the
stateful-sender 7o = f(ctr), where ctr is an I-bit counter initialized to a constant such as <1.

In the modes thus obtained (and other related variants), there would not be any ciphertext chaining, and
a priori knowledge of the number of processors would be unnecessary.

As noted earlier, the sequence E; = ctr x R+ x R* does not completely hide the low order bits of x; thereby
enabling verification of key guesses by an adversary. Resistance to such attacks can be implemented in
a similar manner as that of DESX [18], if deemed necessary. However, adoption of modern block ciphers
with long keys should reduce the need for this.

10

4 Definition of the XECB Authentication Modes

In this section, we introduce new Message Authentication Modes (MACs) that counter adaptive chosen-
message attacks [2]. We call these MACs the eXtended Electronic Codebook MACs, or XECB-MACs. The
XECB-MAC modes have all the properties of the XOR MACs [2], but they do not waste half of the block
size for recording the block identifier thereby avoid doubling the number of block cipher invocations. Many
variants of XECB-MACs are possible, and here we present stateless version, XECB$-MAC, a stateful-sender
version XECBC-MAC, and a stateful version, the XECBS-MAC.

Message Signing. In both the stateless and stateful-sender implementation, we generate a per-message
random value yg that is used to randomize each plaintext block of a message z, namely z;,1 <i < n,n = |z,
before it is fed to the block cipher function f, where f = Fi is selected from a PRF family F' by a key
K, which is random and uniform. The result of the randomization is xz; + ¢ X yp, and the result of
block enciphering with f is y; = f(z; + 4 X yo). The stateless mode initialization requires a random
number generator to create the random block rg; i.e., rg < {0,1}}. Then yo = f(r¢). Stateful-sender
implementations avoid the use of the random number generator, and instead, uses a counter ctr, to create
yo directly, namely yo = f(ctr). The counter ctr is initialized by the sender on a per-key basis to a constant,
such as <1, and is maintained across consecutive signing requests for the same key K.

For the purposes of simplifying the proofs, we made the following choices for the generation and use
of random vector zy in both implementations: (1) an additional per-message unpredictable block zj is
generated and treated as an additional last block of the message plaintext before it is also randomized and
enciphered by f, namely x,11 = z0 and y,11 = f(20 + (n + 1) X yo); and (2) we set zp = f'(rg), where
f' = Fg+ is a PRF selected with the second key K'. Clearly, the generation of zy can be performed with
the same key, K, by block enciphering a simple function of r¢ (e.g., f(ro + 1)), and use of K’ becomes
unnecessary.

The block cipher outputs, y1, ,Yn,ynt1, are exclusive-or-ed to generate the authentication tag w =
Y1D BYnD®yYn+i1. Alternative implementation options include the ones whereby the block cipher outputs,
Yl, »Yn,Yn+1, are added modulo 2l <1, or subtracted modulo 2! <1, to generate the authentication tag.

The modes output the pair (rp, w) in the stateless mode, and (ctr,w) in the stateful-sender mode.
We include the stateless version and the stateful-sender version of the XECB modes below.

Stateless XECB-MAC Mode (XECB$-MAC)

function Sign-XECB$-MAC/ () function Verify-XECB$-MAC/ (z, ro, w)
ro + {0, 1} Yo = f(r0),20 = f'(r0)

Yo = f(ro), 20 = f'(ro) Tnt1 = 20

Tnt1 = 20 fori=1, ,n+1do{

fori=1, ,n+1do{ yi = f(zi +ixyo) }

yi = f(zi +ixyo) } w=y1® OYn DYnt1

w=yy1® DY DYnt1 if w=w' then return 1

return (rg, w) else return 0.

Stateful-Sender XECB-MAC Mode (XECBC-MAC)

11

function Sign-XECBC-MAC/(ctr, x)

yo = f(ctr),z0 = f'(yo)
Tn+1 = 20

fori=1, ,n+1do{
yi=f(zi+1ixyo) }

w =1y D D Yn D Yn+1
ctr’ < ctr +1

return (ctr,w)

function Verify-XECBC-MAC/ (z, ctr, w)

yo = fletr),zo = f'(yo)
Tp+1 = 20

fori=1, ,n+1do{
yi = f(zi+1ixyo) }
W= ® DYnDYnt1
if w = w' then return 1
else return 0.

Note that ctr’ represents the updated ctr value.

The following stateful variant of the XECB modes (whose proof is presented in Appendix C) comes close to
the optimal performance of any parallel MAC, namely n parallel block-cipher invocations and throughput
equivalent of a single block-cipher invocation.

Stateful XECB-MAC Mode (XECBS-MAC)
Let R, R* be two random, uniformly distributed and independent blocks that are part of the keying state
shared by the sender and receiver.

function Sign-XECBS-MAC/ (ctr, z) function Verify-XECBS-MAC/ (z, ctr, w)
for i — 1 n do { if ctr > ¢; then return 0

, fori=1 n do {
i = f(z; +ctr x R+1 x R* 0
?1::51(6; & Un) yi = f(zi+ctr x R+ix R*) }

r_
ctr’ < ctr +1 fv_yle? S Yn

if w = w' then return 1
return (ctr,w)

else return 0.

Note that ctr is initialized to 1, and ctr’ represents the updated ctr value.

Message Tag Verification. For verification, an adversary submits a forgery z = z; z, and a forged
pair (rg,w) or (ctr,w) depending upon the mode.* Message z is then signed and an authentication tag
w = 1y D @ Yn D yns1 is generated. The algorithm outputs a bit that is either 1, if the forged
authentication tag is correct, namely w = w', or 0, otherwise.

Message Padding. For the stateless and stateful-sender XECB-MAC schemes, padding follows the same
conventions as those the XCBC-XOR modes to distinguish between padded and unpadded messages; i.e.,
the authentication tag generation and verification use zy for unpadded messages and zy for padded messages.
For the stateful XECB-MAC scheme, padding follows the similar conventions as those the XCBC-XOR
modes to distinguish between padded and unpadded messages; i.e., the authentication tag generation and
verification use R for unpadded messages and R for padded messages. For all schemes, the padding pattern
is the typical one; i.e., the pattern that always starts with a “1” bit followed by the minimum number of
“0” bits necessary to fill the last block of plaintext.

Properties of the XECB Authentication Modes

1. Security. The XECB authentication modes are intended to be secure in adaptive chosen-message
attacks [2], and Theorems 3 and 4 below show the security bounds for the stateful-sender mode. The

“The forgery (z,70,w) or (z,ctr,w) are not a previously signed queries. Note also that the length n of the forged message
need not be equal to the length of any signed message.

12

XECB modes, as well as all the other modes that use similar types of randomization sequences, have
higher, but still negligible, upper bounds on the adversary’s success in producing a forgery than those of
the XOR-MAC modes.

2. Concurrent Block-Cipher Invocations and Mode Throughput. The goal of the XECB-MAC modes is
to allow the block-cipher (e.g., AES) computations on different blocks to be made in a fully parallel or
pipelined manner; i.e., to exploit any degree of parallelism or pipelining available at the sender or receiver
without apriori knowledge of the number of processors available.

We note that despite the fact that the throughput of a mode depends on the number of block cipher
invocations, and hence on the availability of enough parallel processing units, throughput also depends on
how a mode uses those units. For example, the number of block-cipher invocations in the stateless and
stateful-sender XECB modes can be reduced from n + 3 to n + 2 simply by eliminating the enciphering
of block x,1; e.g., the enciphering of the last plaintext block (i.e., n-th block) can be changed to y, =
f(xn ® 20 + n X yo) (without affecting the proofs significantly). Nevertheless, the throughput of these
modes is close to that of two sequential block cipher invocations, since the enciphering of yy precedes the
parallel enciphering of the input plaintext blocks. In contast, in the stateful XECB mode, the number of
block-cipher invocations is n, just as in the case of the PMAC [20] which is also a stateful mode. However,
the throughput of the XECB modes is close to that of a single block-cipher invocation, as opposed to that
of PMAC, which corresponds to that of two sequential block-cipher invocations since the tag is computed
after n <1 block cipher invocations regardless of the number of processors available. The performance
goal of n block-cipher parallel invocations and a throughput equivalent of a single block-cipher invocation
appears to be a achievable with stateful MAC modes.

3. Incremental Updates. The XECB-MAC modes are incremental with respect to block replacement; e.g.,
a block z; of a long message is replaced with a new value z/. For instance, let us consider the stateful-
sender mode. Let the two messages have the same counter ctr; hence, the authentication tag of the new
message, w’, is obtained from the authentication tag of the previous message, w, by the following formula:
w =wd f(r;+iXyo)® f(z; +7 X yo). The replacement property can be easily extended to insertion and
deletion of blocks, and to the modes that use modular 2! <1 addition or subtraction in the place of the
exclusive-or of the block cipher outputs.

4. Out-of-order Verification. The verification of the authentication tag can proceed even if the blocks of
the message arrive out of order as long as each block is accompanied by its index and the first block has
been retrieved.

5 Security Considerations

In this section, we provide evidence for the security of the XCBC modes against both adaptive chosen-
plaintext and message-integrity attacks. We also present the security of the XECB modes in adaptive
chosen-message attacks.

We first address the security (i.e., secrecy) of the XCBC$ mode against adaptive chosen-plaintext attacks.
The theorems and proofs that demonstrate that the stateful mode (XCBC) and the two-key variations are
secure in a left-or-right sense [1] are similar to that for the XCBC$ mode and, therefore, will be omitted.

The Lemma and Theorem below, which establish the security (i.e., secrecy) of the XCBC$ mode are
restatements of Lemma 16 and Theorem 17 respectively, which are presented for the CBC mode in the full
version of the Bellare et al. paper ([1]). The proof of the Lemma and Theorem are similar to those for the

13

CBC mode and hence are omitted.

Lemma 1 [Upper bound on the security of the XCBC$ mode in random function model]
Let XCBC$"® be the implementation of the XCBC$ mode with the family of random functions R(l,1).
Let A be any adversary attacking XCBC$® in the left-or-right sense, making at most ¢’ queries, totaling
at most p’ bits. Then, the adversary’s advantage is

2 !
Adv'}] < dxcpes o <l;_2 @MT> %
The following theorem defines the security of the XCBC$ mode against an adaptive chosen-plaintext
attack when the XCBC$ mode is implemented with a (g, ¢, €)-pseudorandom function family F. F is
(q,t, €)-pseudorandom, or (g, t, €)-secure, if an adversary (1) spends time ¢ to evaluate f = F at ¢ input
points via adaptively chosen queries, and (2) has a negligible advantage bounded by € over simple guessing
in distinguishing the output of f from that of a function chosen at random from R.

Theorem 1 [Security of XCBC$ in Adaptive Chosen-Plaintext Attacks]
Suppose F' is a (t,q, €)-secure PRF family with block length [. There is a constant ¢ > 0 such that for any
number of queries ¢, totaling p' bits of memory and taking time t', the XCBCS$(F) is (t', ¢, i, €’)-secure

. . d / /
in the left-or-right sense, for p' = ¢'l, t' =t &cp’, and € = 2e + dxcpcg where dxcpcs = (1_22 (:)“T) %

The XCBC$ and XCBC modes can easily be analyzed assuming F' is a SPRP family (not a PRF family),
since AES is an intended block cipher for these modes. Hence only needs to apply the results of Proposition
8 of Bellare et al. [1] to the result of Theorem 1. A similar lemma and theorem hold for chosen-plaintext
attacks in a real-or-random sense, as defined by Bellare et al. [1].

In establishing the security of the XCBC$ mode against the message-integrity attack, let the parameters
used in the attack be bound as follows: ¢, < ¢/, since the XCBC$ mode is also chosen-plaintext secure,
te +t, <t,and p”’ = pe + py < ql. Let the forgery verification parameters gy, piy, t, be chosen within the
constraints of these bounds and to obtain the desired Prfg F[S’ucc].

Theorem 2 [Security of XCBC$-XOR in a Message-Integrity Attack]

Suppose F'is a (t, g, €)-secure SPRP family with block length [. The mode XCBC$-XOR is secure against
a message-integrity attack consisting of g + ¢, queries, totaling p. + p, < ¢l bits, and taking at most
te + ty, <t time; i.e., the probability of adversary’s success is

:U‘U(N”U <:;’l) Qe(Qe <:>1) (Qe + 1)[1"0 + Moy
[290+1 ol+1 12! [20+1

qg;e (log, He +3).

PrfEF[Succ] < e+]

(logsy Tv +3)+

(The proof of Theorem 2 can be found in Appendix A.) Note that parameters g, s, te can be easily stated
in terms of secrecy parameters (t',q’, ', €') above by introducing a constant ¢ defining the speed of the
XOR function.

Theorem 2 above allows us to estimate the complexity of a message-integrity attack.® In a successful attack,
Prng[Succ] € (negligible, 1]. To estimate complexity, we set the probability of success when f E plio

STechnically, the complexity of a successful integrity attack, and the bound of Theorem 2, should account for the success of
a secrecy attack; i.e., the secrecy bound shown of Lemma 1 above (adjusted for the use of PRPs) should be added to the bound
in Theorem 2. This is the case because, in general, in modes using the same key for both secrecy and integrity, a successful
secrecy attack can break integrity and, vice-versa, a successful integrity attack can break secrecy. (This can be shown using the
secrecy and integrity properties of the IGE mode; viz., hitp://csrc.nist.gov/encryption/modes/proposedmodes.) As suggested
below, the addition of the secrecy bound would not affect the complexity of a successful integrity attack.

14

http:jjcsrc.nist.govjencryptionjmodesjpropos

the customary 1/2, and assume that the attack parameters used in the above bound, namely £¢, £ are of
the same order or magnitude, namely 2%/, where 0 < o < 1. Also, since the shortest message has at least

three blocks, g, q, < [%J

In this case, by setting

Qe(qe 1) | po(pe 1) | (ge + 1)y
oI 1220+ 2l

+ oy oz B2 4 3) + B0 (log, B 4-3) = 172,

12! l

2204!604[3—34 + 2(1[3al?—)|—11 — 2!

12l+1 (

we obtain (by ignoring the |.| function) the equation , which allows us to
estimate « for different values of [. (In this estimate, we can ignore the term in 2°! since it is insignificant
compared to the other term of the sum.) For example, for [= 64, ~ gg, for [= 128, a =~ %, and for
l =256, = %‘é. Hence, this attack is very close to a square-root attack (i.e., a — % as | increases),
and remains this way even is the secrecy bound of Lemma 1 (adjusted for PRPs) is added to the integrity

bound. Thus the security payoff of improved bounds is limited when using families of SPRPs.

A variant of Theorem 2 can be proved for the stateful modes. Furthermore, similar theorems hold for
single-key stateless modes. The statement and proof for such theorems are similar to the statement and
proof for the integrity theorem for the stateless mode, and hence, are omitted.

The XECB-MAC modes are intended to be secure against adaptive chosen-message attacks [2] consisting of
up to g5 signature queries totaling at most us bits and using time up to ¢, and ¢, verification queries totaling
at most i, bits and using time at most ¢,. The security of the XECBC-MAC mode, when implemented
with a PRF family, is established by the following theorem. (The restatement of this theorem in terms of
a family of PRPs, such as AES, and the corresponding proof modifications are pretty much standard.)

Theorem 3 [Security of XECBC-MAC in an Adaptive Chosen-Message Attack]

Suppose F is a (t,q, €)-secure PRF family with block length /. The message authentication mode (Sign-
XECBC/, Verify-XECBC/, KG) is secure against adaptive chosen-message (gs,q,) attacks consisting of
qs + ¢y queries totaling pugs + pu, < ¢l bits and taking at most ts + ¢, < ¢ time; i.e., the probability of
adversary’s success is

Prfz [Succ] < e + & = (logy == + 3) + kv, (Qs +2q, + ﬁ) &(ng Ps o 3).

12! l 12! 20) 12141 l

The proof of this theorem is similar to that of Theorem 2 and is presented in Appendix B.

We also present a theorem for the security of the XECBS-MAC mode. (The restatement of this theorem
in terms of a family of PRPs, such as AES, and the corresponding proof modifications are pretty much
standard.)

Theorem 4 [Security of XECBS-MAC in an Adaptive Chosen-Message Attack]

Suppose F' is a (t, q, €)-secure PRF family with block length /. The message authentication mode (Sign-
XECBC/, Verify-XECBC/, KG) is secure against adaptive chosen-message (gs,q,) attacks consisting of
qs + q» queries (g, < g5) totaling us + p, < gl bits and taking at most ts + ¢, < ¢ time; i.e., the probability
of adversary’s success is

Qv s
Prng[SUCC] S ettt 12l+1 (logy 2 7t 3)+ (% +5) o T (logy gs +3) +
s Us s
(qv + 7) et (1082 7 +3)-

The proof of this theorem is similar to that of Theorems 2 and 3 and is presented in Appendix C.

15

A similar theorem can be provided for the stateless message authentication mode. The complexity of an
attack against XECB-MAC modes can be determined in a similar manner as that of an attack against the
XCBC$-XOR mode.

The security of the XECBS-XOR mode in a message-integrity attack is shown by the theorem bellow.

Theorem 5 [Security of XECBS-XOR in a Message-Integrity Attack]

Suppose F'is a (t, ¢, €)-secure SPRP family with block length [. The mode XECBS-XOR is secure against
a message-integrity attack consisting of g, + ¢, queries (g, < ge), totaling p. + p, < gl bits, and taking at
most t, + t, <t time; i.e., the probability of adversary’s success is

My (Nv <:>l) Qv My Ko
Pr g [Succ] < et =g+ o + o (loga - +3) +
He de He He He He (,UJe <:>l)
@+] gl (logy ge +3) + qv + VN (log, T +3) + Tzl

(The proof of Theorem 5 can be found in Appendix D). Note that maximum allowable values for ¢; and
ge in Theorems 4 and 5 can be determined by setting the probability of successful forgery to a desired value.

Acknowledgments

We thank David Wagner for pointing out an oversight in an earlier version of Theorem 2, Tal Malkin for
her thoughtful comments and suggestions, Omer Horvitz and Radostina Koleva for their careful reading
of earlier versions of this paper.

References

[1] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, “A Concrete Security Treatment of Symmetric
Encryption,” Proceedings of the 38th Symposium on Foundations of Computer Science, IEEE, 1997,
(394-403). A full version of this paper is available at http://www-cse.ucsd.edu/users/mihir.

[2] M. Bellare, R. Guerin, and P.Rogaway, “XOR MACs: New methods for message authentication using
finite pseudo-random functions”, Advances in Cryptology- CRYPTO 95 (LNCS 963), 15-28, 1995.
(Also U.S. Patent No. 5,757,913, May 1998, and U.S. Patent No. 5,673,318, Sept. 1997.)

[3] J. Black and P. Rogaway, “CBC MACs for Arbitrary-Length Messages: The Three-key Constructions,”
Advances in Cryptology - CRYPTO 00 Springer Verlag (LNCS 1880), pp. 197-215, Aug. 2000.

[4] M. Bellare and C. Namprempre, “Authenticated Encryption: Relations among notions and analysis of
the generic composition paradigm,” manuscript, May 26, 2000. http://eprint.iacr.org/2000.025.ps.

[5] C.M. Campbell, “Design and Specification of Cryptographic Capabilities,” in Computer Security and
the Data Encryption Standard, (D.K. Brandstad (ed.)) National Bureau of Standards Special Publica-
tions 500-27, U.S. Department of Commerce, February 1978, pp. 54-66.

[6] Open Software Foundation, “OSF - Distributed Computing Environment (DCE), Remote Procedure
Call Mechanisms,” Code Snapshot 3, Release, 1.0, March 17, 1991.

[7] V.D. Gligor and B. G. Lindsay, “Object Migration and Authentication,” IEEE-Transactions on Software
Engineering, SE-5 Vol. 6, November 1979. (Also IBM-Research Report RJ 2298 (3104), August 1978.)

16

http:jjeprint.iacr.orgj2000.025.ps
http:jjwww-cse.ucsd.edujusersjmihir

[8] V.D. Gligor, and P. Donescu, “Integrity-Aware PCBC Schemes,” in Proc. of the 7th Int’l Workshop
on Security Protocols, (B. Christianson, B.Crispo, and M. Roe (eds.)), Cambridge, U.K., LNCS 1796,
April 2000.

9] R.R. Juneman, S.M. Mathias, and C.H. Meyer, ”Message Authentication with Manipulation Detection
Codes,” Proc. of the IEEE Symp. on Security and Privacy, Oakland, CA., April 1983, pp. 33-54.

[10] J. Katz and M. Yung, “Complete characterization of security notions for probabilistic private-key
encryption,” Proc. of the 32nd Annual Symp. on the Theory of Computing, ACM 2000.

[11] D.E. Knuth, “The Art of Computer Programming - Volume 2: Seminumerical Algorithms,” Addison-
Wesley, 1981 (second edition), Chapter 3.

[12] J. T. Kohl, “The use of encryption in Kerberos for network authentication”, Advances in Cryptology-
CRYPTO ’89 (LNCS 435), 35-43, 1990.

[13] C.S. Jutla, “Encryption Modes with Almost Free Message Integrity,” IBM T.J. Watson Research
Center, Yorktown Heights, NY 10598, manuscript, August 1, 2000. hitp://eprint.iacr.org/2000/039.

[14] M Luby and C. Rackoff, “How to construct pseudorandom permutations from pseudorandom func-
tions”, SIAM J. Computing, Vol. 17, No. 2, April 1988.

[15] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone, Handbook of Applied Cryptography, CRC Press,
Boca Raton, 1997.

[16] M. Naor and O. Reingold, “From Unpredictability to Indistinguishability: A Simple Construction
of Pseudo-Random Functions from MACs,” Advances in Cryptology - CRYPTO 98 (LNCS 1462),
267-282, 1998.

[17] RFC 1510, “The Kerberos network authentication service (V5)”, Internet Request for Comments 1510,
J. Kohl and B.C. Neuman, September 1993.

[18] P. Rogaway, “The Security of DESX,” RSA Laboratories Cryptobytes, Vol. 2, No. 2, Summer 1996.

[19] P. Rogaway, “OCB Mode: Parallelizable Authenticated Encryption”, Preliminary Draft, October 16,
2000, available at
http://csre.nist.gov/encryption/aes/modes/rogaway-ocb1.pdf.

[20] P. Rogaway, “PMAC: A Parallelizable Message Authentication Mode,” Preliminary Draft, October
16, 2000, available at
http://csre.nist.gov/encryption/aes/modes/rogaway-pmacl.pdf.

[21] S. G. Stubblebine and V. D. Gligor, “On message integrity in cryptographic protocols”, Proceedings
of the 1992 TEEE Computer Society Symposium on Research in Security and Privacy, 85-104, 1992.

Appendix A - Proof [Security of the XCBC$-XOR in a Message-Integrity Attack]

Notation: Throughout this proof, the superscripts of variables z?, 2P, y”, and 7§ denote the plaintext,
hidden ciphertext, ciphertext, and initial random value of a queried message p,1 < p < ¢, whereas the
(primed) variables z', 2/, 3/, and r{l denote the plaintext, hidden ciphertext, ciphertext, and the initial
random value of the i-th forged (i.e., unqueried) message, 1 < i < ¢,. The length of the plaintext of

17

http:jjcsrc.nist.govjencryptionjaesjmodesjrogaway-pmac1.pdf
http:jjcsrc.nist.govjencryptionjaesjmodesjrogaway-ocb1.pdf
http:jjeprint.iacr.orgj2000j039

message p is denoted by n, = |2P| and that of forgery y" by n, = |2/!| blocks. (These lengths do not
include the last plaintext block that holds the value of the XOR function.)

To find an upper bound on the probability of an adversary’s success we (1) define four types of events
on which we condition the adversary’s success, (2) express the upper bound in terms of the conditional
probabilities obtained, and (3) compute upper bounds on these probabilities. Our choice and number of
conditioning events is motivated exclusively by the need to obtain a (good) upper bound for the probability
of the adversary’s success. Undoubtedly, other events could be used for deriving alternate upper bounds.

To provide some intuition for the choice of conditioning events defined, we give examples of events that
cause an adversary’s success. (The reader can skip these examples without loss of continuity.)

Examples of Adversary’s Success. A way for the adversary to find a forgery ¢y’ that passes the
integrity check g(z') =), ,, is to look for collisions in the input of f~!, namely collisions of the (1)
hidden ciphertext blocks generated during the decryption of a forgery, 2,1 < s < n + 1, and (2) ini-
tialization block y; (i.e., block 0 of the forged ciphertext). These blocks could collide either with blocks
vh, z‘Z , 1 <p<qe,1 <k <n;+1 obtained at encryption or among themselves. The following four examples
illustrate why such collisions cause an adversary’s success. Other such examples, and other ways to find
forgeries, exist.

Ezample 1 — Collisions between blocks zi, and 2},

Suppose that all hidden ciphertext blocks 2! obtained during the decryption of forgery 3’ collide with
some hidden ciphertext blocks zz obtained at encryption. If this event occurs during forgery decryption,
we declare pessimistically that the adversary is successful. Why is the adversary successful? Among the
forgeries that make this event true, some will decrypt correctly with probability one. For example, if any
two of the hidden ciphertext blocks between position 1 and n, of a queried message p are swapped, the
decryption of the resulting hidden ciphertext will pass the integrity check g(z') = 7, with probability
one (viz., [15], Example 9.89, pp. 367-368, for a similar example). Thus, any forgery that generates such
hidden ciphertext at decryption will pass this integrity check with probability one.

Why is our criterion for adversary’s success based on such a collision event pessimistic? Among the forg-
eries that make this event true, some will decrypt correctly with negligible probability. These forgeries
include truncations of the ciphertext of already queried messages.® For truncations, the integrity check
cannot pass with probability greater than 1/2! (and for this reason we can focus on other types of forgeries
for the rest of this proof).

Ezample 2 — Collisions among the 2. blocks

Suppose that two hidden ciphertext blocks 2. and z; obtained during forgery decryption do not collide with
any hidden ciphertext blocks obtained during encryption, but collide with each other. If this event occurs
during forgery decryption, we declare pessimistically that the adversary is successful. Why is the adversary
successful? Among the forgeries that make event true, some will decrypt correctly with probability one. For

®Let the forged ciphertext 4’ be a truncation of ciphertext y” obtained at encryption; i.e., y5 = 4?,Vs,0 < s <n' +1,|y| =
n' +1 and n' < np, i.e,, ' +1 < n,. The condition n' + 1 < n, (due to truncation) implies that all the plaintext blocks

x,- -, xb, , are constants. In this case, z; = 2%,Vs,0 < s <n'+1 and thus z} = 2%,Vs,0 < s <n' + 1. The integrity check,
2@y ©- - @), Sl =0, is the exclusive-or of a random and uniformly distributed variable zo = f'(r5) = f'(r5) = 23,
where f’ i R and constant plaintexts z?, - ,xb, . Hence, Prizf @27 @& @), ©al, =0 = 2—1,

18

example, if any two identical blocks never seen among the hidden ciphertext blocks obtained at encryption
are inserted into two adjacent positions between 1 and n, of the hidden ciphertext of message p (i.e.,
2, = 24,1,1 < s< np ©1), the decryption of the resulting hidden ciphertext will pass the integrity check
g(z') = =z, with probability one (viz., [15], Example 9.89, pp. 367-368, for a similar example). Thus,
any forgery that generates such hidden ciphertext blocks at decryption will pass this integrity check with
probability one.

Why is our criterion for adversary’s success based such a collision event pessimistic? Among the forgeries
that make this event true, some will decrypt correctly with negligible probability. For example, consider
forgeries that cause an odd number of identical hidden ciphertext blocks to be generated during decryption.
Suppose these blocks have the following properties: (1) they do not collide with any hidden blocks obtained
at encryption, (2) they do not collide with any initialization blocks y,1 < i < g., obtained at encryption,
(3) they do not collide with the initialization block y(, of the forgery, and (4) they appear between positions
1 and ny + 1 of the hidden ciphertext of queried message p obtained at encryption. Forgeries that produce
such blocks during decryption cannot pass the integrity check with probability greater than 1/2'. This is
the case because the decryption of these identical hidden blocks produces random, uniformly distributed
plaintext blocks that are independent of any other plaintext blocks in g(z') = #7,,; and can only cancel
each other out in pairs under the exclusive-or operation.

The next two examples refer to collision events of the initialization block yj. These can lead to forgeries
that satisfy the conditions of the events defined in Examples 1 and 2 above, and hence such collisions
contribute to an adversary’s success.

Example 3 Collisions between blocks yj, and zﬁﬂ

Suppose that, during the decryption of forgery ', block yj collides with some hidden ciphertext block
obtained during encryption. Let y{ = zZ 4101 £p < ge, 1 <k < nyp. This means that the lower order bits
of ry = f~1(yy) = zh,, ® 2, can be predicted (at least) to the same extent as those of 2z}, since 2, is
chosen. In (pessimistic) case the entire r{ is predicted, the adversary’s forgeries can satisfy the collision
events of Examples 1 and 2 above.

Ezample 4 Collisions between blocks yb and yh

Suppose that an adversary finds a collision between the initialization blocks of two ciphertext messages
i and p obtained at encryption, namely v} and y?, and chooses the initialization block of the forgery v’
to be yh = yi. If the adversary can find such a collision event at encryption, the adversary can also find
forgeries that satisfy the collision events of Example 1 at decryption. For example, the adversary can
create a ciphertext message that has not been seen before (i.e., a forgery) by mixing the blocks of two
ciphertext messages obtained at encryption whose initial ciphertext blocks collide; e.g., ciphertext block
?//i of messages i replaces ciphertext y‘Z % y}.c of message p, where y}, = yi = yh,i £ p,ni <np, 1 <i,p < g,
1<k <n,;.

Conditioning Events. To compute an upper bound on the probability of successful forgery, we choose
four conditioning events based on collisions in the input of f~!. Intuition for the choice of events is provided
by Examples 1 4 above.

For each verification query (or forgery) ", 1 <i < g,, we define two types of collision events, C; and D,
that refer to the hidden ciphertext blocks 2.’ obtained during forgery decryption.

19

Event C; includes all the instances when the hidden blocks 2 of forgery y* collide either with initialization
blocks y} or with some hidden ciphertext blocks z‘Z generated during encryption, where 1 < p < ¢.,1 <
k < n,+ 1. To define event C; formally, let S be the the union of all the y§ blocks and all the hidden
ciphertext blocks Z‘Z produced at encryption:

S={y1<p<qtU{z,1<p<q,1<k<n+1}

Also let Z; be the collection of hidden ciphertext blocks 2" generated during the decryption of the arbitrary
forgery y"*,1 < i < gy, that do not collide with blocks of S:

Zi={"1<s<ni+1,2" ¢85}

Hence, event C; (Collision) is defined by:

i.e., Z; is empty; or, equivalently, C; : Z; C S.

The second type of collision event defined for the arbitrary forgery 3,1 < i < g,, refers to collisions
among blocks yff, 2% 1 < s < nl + 1 where 2/ € Z;, and is denoted by D; (not distinct) below. This event
is defined in terms of its complementary event D; (distinct), which states that there is at least a hidden
block 2% € Z; that does not collide with any other hidden block 2}’ € Z; or with yf)i.7 It is clear that this
definition makes sense only when Z; # (). Formally, if Z; # (),

D;:320 € Zi 1 <s<nl+1:20 #20 V2 € Ziyt # 5,1 <t <nf+1and 2 # yft.

The third type of collision event for the arbitrary forgery y",1 < i < q,, which is denoted by I; below,
includes all the instances when the initialization block yi collides with some hidden ciphertext blocks
generated during encryption (i.e., 2f,1 <p < ¢, 1 <k <n; + 1). Formally, event I; is defined by:

Li:yy € Se{yh, 1 <p<aqe},

or, equivalently, .
Iityg €{z,1 <p<qe,1 <k <mp+1},

The fourth type of collision event, denoted by E below, defines collisions among the initialization blocks
(i.e., block 0 of the ciphertext) generated at encryption. (Hence, this collision event is independent of the
forgery y".) Formally, this event is defined as

E:yh =y,

where i # p,1 < i,p < ge.

Note 0: Events denoting collisions in the inputs to f during encryption, such as those used in the proofs
of Lemma 1 and Theorem 1, can also allow an adversary to produce a successful forgery. For example,
collisions in the input to f during the encryption of a message p,1 < p < ¢, cause hidden ciphertext
blocks generated during encryption to collide, thereby leading to the discovery of rh,1 < p < ¢.. This
would break both integrity and secrecy. To account for these events, we could condition on them (in a
similar manner as that used for event E below) and add the bound provided by Lemma 1 (adjusted for the

use of f E P to the final bound. Technically, this would enable us to assume that an adversary could

"Recall that hidden ciphertext blocks 2%, z;* € Z; do not collide with any z}, or with any y§ obtained during encryption,
where 1 <p<ge,1 <k<np,+1.

20

not discover rf,1 < p < g, and that 7§ are random, uniformly distributed and independent of each other.
For the sake of brevity, we make this assumption below without actually conditioning on collision events in
the input to f at encryption (for the reasons discussed in the estimation of the complexity of a successful
integrity attack following the statement of Theorem 2).

Note 1: Other events than the four defined above could cause an adversary’s forgery " to pass the integrity
check g(z") = m’,ﬁl 11- However, Claim 1 below makes it clear that the success of such a forgery could only
occur with probability no greater than 1/2".

Note 2: Another collision event in the input of f~!, yii = yh,1 < i < qy,1 < p < g, can be caused
simply by the adversary’s choice of the initial forgery block. Unlike the four events defined above (and
illustrated by Examples 1 4), the occurrence of this collision event cannot cause an adversary’s success
in the absence of other collision events. Nevertheless, the occurrence of this event is accounted for in the
proof; viz., Proof of Claim 3 below.

Upper bound on the Probability of Successful Forgery. Let F be a SPRP family, P! be the set
of all permutations on {0,1}, and f L& P! denote the random selection of f and f~! from P'. Let szpl
represent all the ciphertext blocks produced at the encryption of the ¢, queries (viz., the definition of S
used for collision events above) when the XCBC$-XOR scheme is implemented with f vid Pl ie.,

Sipp = U(0), 1 <p<qefU {f(2f @ 2_1), 1 Sp<ge, 1 <k <mp+ 1}

For any f & pland Sf]ipz’ we define the finite family of random functions G : {0, 1}* x {0,1}' — {0, 1}/
whose members are f, f, with f defined as:

_ {fl(t)a tESR

f<Pt
l R pll
v(t), t€{0,1} (:)szpl,v <R

b

where Rb is the set of all functions from {0,1}! to {0,1}!. We denote by f & G the random selection of
f and f from Gg.

The family of functions G's behaves exactly like P! when the plaintext blocks input to f and ciphertext
blocks input to f~' are those generated during the encryption of any adversary’s ¢. chosen-plaintext

queries, and behaves exactly like R"! during the decryption of any ciphertext block not in Sf Rpr

Note that the family G g is well-defined for any message-integrity attack because, by definition (viz., Section
2), in any such attack, all g, encryption queries precede all g, forgery verification queries. Thus Sf R pi and

f are completely determined before any of the ¢, forgery verification queries are possible, whose processing
would require block decryption with f. (Also note that we allow g, = 0 and, in this case, Sf Rpt =) and

f=v)
For the balance of this proof, we use the result of Fact 1 below (whose proof can be found at the end of
this appendix) that provides the reduction from f E Fto f Eq s.

Fact 1
(a)

Prng[Succ] <e+ Plrf;’ipl [Succ].

21

(b)

fo (o 1)
Peripz [Succ] < PeriGS [Succ] + ol

Fact 1 reduces the problem to finding an upper bound for Prf]i . [Succ]. Unless we state otherwise, as-
S

sume that f & ay (and drop this subscript from PeriG [Succ].)
S

To compute an upper bound for the probability of successful forgery, Pr[Succ|, we condition on event E
first, since this event does not depend on the forgery y"*. Using standard conditioning, we obtain

Pr[Succ] < Pr[E] + Pr[Succ | E].

Since event E is equivalent to the event that at least a collision happens when ¢, balls are thrown at
random in 2! buckets [2],

Qe(Qe <:>1)

PT[E] < 9l+1

To find an upper bound for Pr[Succ | E], we use the definition of adversary’s success (viz., the attack
definition), which states that at least one forgery (and verification query) " succeeds; i.e., there exists an
index 7,1 <7 < g, such that g(z") =z, ,. Hence, by union bound,

Qv
PrlSucc | B] < 3" Prig(z") = 2, ., | E).

=1

To find an upper bound for the probability of decrypting a single, arbitrary (non-truncation) forgery 1"

correctly given F, namely for Prlg(z") = z’, e E), we condition on event (C; or D;). Using the total

probability formula we obtain:
Pr[g(m'i) = mg;_H | E] = Pr[g(x'i) = l'zc',f,i+1 | E and (C; or D;)|Pr[C; or D; | E] +
Prlg(z") = :E',le | E and (C; and D;)|Pr[C; and D; | E|.

Hence,?
Prg(z") = :E',f,i_i_l | E] < Pr[C; or D; | E] + Prlg(z") = :E',f,i_i_l | E and C; and Dj].

However, both event C; and event D; depend on the event I; (viz., Example 3 above). Hence, to compute
Pr[C; or D; | E] we condition on event I; and, using the total probability formula, we obtain:

Pr(C;or D; | E] = Pr[C;or D; | E and L)Pr[I; | E] + Pr[C; or D; | E and L;|Pr[I; | E]
< Pr[I; | E]+ Pr[C; or D; | E and I;].
Furthermore,
PriC;or D; | Eand I;] = Pr[C;or D; | C; and E and I;)Pr[C; | E and I;]

+Pr[C; or D; | C; and E and L;]Pr[C; | E and I}]
Pr[C; or D; | C; and E and I;] + Pr[C; | E and I;]
= Pr[C; | E and ;] + Pr[D; | C; and E and I;],

IN

8This also follows from our pessimistic assumption that if event (C; or D;) is true, then the adversary has broken integrity.

22

since event [C; or D; | C; and E and I;] is equivalent to event [D; | C; and E and T;].
Combining the results of the last three inequalities, we obtain:
Pr[g(x'i) = x',f,i_i_l | EB] < Pr[g(ac'i) = xlri’ﬁl | E and C; and D;] +
Pr(l; | E]+ Pr[Ci|E and L;] + Pr[D; | C; and E and I;].
The probabilities that appear at the right side of this inequality are bounded as shown in the following
four claims whose proofs are included below. (Note again that forgeries based on truncations of ciphertext

messages obtained at encryption are not included in any of the claims below. All these claims refer to a
single, arbitrary (non-truncation) forgery ¢y, 1 <i < ¢,.)

Claim 1)

Prlg(z") = x;;'ﬁl | E and C; and D;] < o
Claim 2)

Pril; | B) < 55 log, % +3
Claim 3 . 7. Mit e 1 pe e
Pr|[C;|E and I;] < ZT + T log, T +3
Claim 4 /)
Pr[D; | C; and E and ;] < ;—il(logQ n, +3) + n’;_ !

Note that if the maximum length m of the encrypted messages is known, the logy ¢ term of Claims 2 and
3 can be replaced with logy, m.

Further in this proof as well as in the proofs of Claims 2 4, we use the following three facts, whose proofs
can be found at the end of this appendix.

Fact 2
For any 1 < i < 2/ &1, let m be defined by i = d x 2™, where d is odd. If ry is random and uniformly
distributed, then for any constant a,

PT[’L‘XTOZG]Sw.

Fact 3
For any N > 1, let m be defined by a = d x 2™, where 1 < a < N <1 and d is odd. Then

N-1
N &1

d 2am< 5 (logy(N <1) 4 3).

a=1

Fact 4
If for any p,1 < p < ge,np > 0, and if dezl(np + 1) < &, then,

ge) p
Z(np +1)logy(ny, +1) < 78 log, Te;

p=1

23

and, further, if m = max(n, + 1), then

ge
Z(np + 1) logy(ny + 1) < % logy m.
p=1

Note that a similar relation is obtained if the summation is done for the verification queries, i.e.,
v " "
>_ (i + 1) logy(nj + 1) < == logy =7
i=1
and, further, if m’ = max(n} + 1), then
v

> (nj+1)logy(nj + 1) < % logy m/.
i=1

By Claims 1-4, the probability of success given E for a single, arbitrary (non-truncation) forgery is

, , — 1 (ni4+lg 1 p Pe 3 n, ni 41
Prig(2") = :EZ;H | E] < o + 27 + o Te log, Te + Te + o (logy m; +3) + Zzl
(ni +1)(ge +1) n; L pe Pe | Bfe
= i 5 + ST (logy n + 3) + o 7 log, — ;i +]

Hence, the probability of adversary’s success when he has up to ¢, verification queries totaling at most 1,
bits and using up to %, time is bounded by

Pr[Succ] < Pr[E]+ iPr[g(m' =z ’+1 | E]

Ge(ge ©1) & (n; +1)(ge + 1) I L e Pe | Sfbe
< ol + z; L 5 21+1 (logy mi + 3) + a7 log, 7 + 7
1=
Ge(ge ©1) | polge+1) | i Qv He e | Bfke
S g o T e os T Iy e
because Y /", (nj +1) < &% and

Qv l Qv nl 4 1
Z 2l+1 (logy n; + 3) Z oI (logy(n; +1) +3) < 12l+1 (log2 o +3)

1= =1

by Fact 4.

Furthermore, by using Fact 1, the probability of adversary’s success when f & F is bounded by:

o (o 1) qe(ge ©1) piy(ge + 1) L M
[290+1 9141 12! [20+1

© @ p Pe | 3p
Prng[Succ]Se—i— (lo gQTU+3)+2—3 TelogQTe—i— le

Also, if the maximum length m of the encrypted messages is known, the last term of the above bounds can
3lte
[

be replaced with % £ logy m + , and if the maximum length m’ of the decryption queries is known,

the next to the last term of the above bounds can be replaced with 7t (logy m' + 3).

24

The parameters of the attack are bounded as follows: ¢, < ¢/, since the scheme is also supposed to be
chosen-plaintext secure, t, + t, < t, and p"’ = pe + py < gl. The forgery verification parameters gy, fiy, ty
can be chosen within the constraints of these bounds and the desired Prf 3 F[Succ]. 0

Proofs of Claims 1-4

Notation: Recall that Claims 1 4 above refer to a single, arbitrary (non-truncation) forgery y",1 < i < g,.
Hence, to simplify notation in the proof of these claims, we drop the forgery index 7 from the events
D;, C;, I;, and simply use D, C, I for these events. We also drop the forgery index 4 from the collection Z;
and use Z instead. Furthermore, we drop the prime and forgery index i from the ciphertext ", hidden
ciphertext, ', plaintext z', r{!, and the length n}. Hence, when we refer to the (single) forgery, we use
the variables y, for forgery ciphertext, z for forgery plaintext, z for the hidden blocks of forgery vy, yo for
the initialization block of forgery y (and r(for the decryption of the initialization block yg), and n for the
length of . Superscripts continue to identify encryption queries. In the proof of Claims 1 4, we use the
notation Pry[.] = Pr|.|A], where A is an arbitrary event.

Proof of Claim 1

If C is true, then Z is not empty. For any z, € Z,
Tg = 7(33) D 251

Since z; does not collide with any hidden blocks obtained at encryption, and event (C' and D) is true (i.e.,
there is at least one hidden block z; € Z by event C that does not collide with another hidden ciphertext
block z; € Z,s # t or with yg by event D), then f(z5) = v(zs) is uniformly distributed and independent of

anything else (since v E RMY); ie., independent of any other f(z;), 2, € Z, k # s, and independent of any
2k,0 < k < n+ 1. Hence, the corresponding plaintext block z, is uniformly distributed and independent
of anything else. Thus,

9(2) D Tn1 =20011 0 OTn® Ty

is random and uniformly distributed, and hence:

— — — — 1
Prig(z) ® zp+1 =0 | E and C and D] = Pr[g(z) = zp41 | £ and C and D] < o

Proof of Claim 2

Event I :yo € S<{yh,1 <p <q}={2,1 <p<gq,1<k<n,+1} is equivalent to the union of all
possible events yo = 25,1 < p < ¢.,1 <k < n, + 1. Hence, by union bound,

ge Mp+l

PrI | E] < Z Z Prlyy =20 | E].
p=1 k=1

We determine an upper bound for Prlyy = 2} | E] based on

yozzz & yozyi’@eré’ & erozyi)@yo.

25

In this expression, 7} is random and uniformly distributed, and from the definition of event E, if F is true,
then r} is random and uniformly distributed. Hence, since yz Syp is a known constant, by Fact 2,

1

Pr[yo = zi | E] P'f’[k X TO —yk <:>y0 | E] 2[m’

where the exponent m is defined by & = d x 2™ and d is odd. Hence, for each p,1 < p < ¢, from this and
Fact 3 with N &1 =mn, +1 and a =k,

np+1 np—i-l

1n,+1
Z Prlyo =2 | E] < o Z 2 < o p (logy(np + 1) + 3).
k=1

Since Zg‘;l(np + 1) < & by the definition of n + p and of the attack, we obtain

ge Tp+l

np +1 1 pe
PrlI | E] < pzl kzl Priyo =7, | E] < 5 Z (logy(np +1) +3) < 5757 log27+3 :
by Fact 4. Further, if m = max(n, + 1), then Pr[I | E] < 2—11% (logs m + 3), also by Fact 4. 0
Proof of Claim 3
Below we use the notation that Pra[.] = Pr[. |A], where A is an arbitrary event.

C is equivalent to the event that every hidden ciphertext block obtained during decryption is found among
the hidden ciphertext blocks obtained during encryption or among the y§ blocks obtained at encryption.
This implies that for any s,1 < s <n+1: Pr; 54 5C] < Pry .14 5l2s € S] by union bound. Since,
S={yh,1<p<g}U {z,1 <p<ge,1<k<ny+ 1}, it follows that, by union bound,

Prigna wles €SI < Prigng mles € {961 <p < gef]
+ Prioana g% € {20, 1 <p <qe,1 <k <ny+1}].
For the first term, for any s,1 < s < n + 1, the event z; € {y,1 < p < ¢.} is the union of all collision
events zs = yh,1 < p < g.. Hence,

Ge
Pri na 5%s € {1 <p<qe}] < ZPTT and Bl%s = Ub)-
p=1

But z; = ys <s X rg by the scheme definition, and hence s x ry = ys <yb. To compute Pri onq gls X ro =
ys <yh], we use the following claim, whose proof can be found at the end of this appendix:

Claim 3.1
Let yby? yflp +1 be a queried message, and y = yoy1 yn+1 be a forged ciphertext. If event I is true,
then rq is random and uniformly distributed. Furthermore, if yo # 3§, then rg is also independent of 5.

Since event I is true, it follows that 7o is random and uniformly distributed (by Claim 3.1 above). Also,
event I and F implies that ry is random and uniformly distributed by the definition of event E. Hence, by
Fact 2,

1
Pr7 and 18 X 10 = ys Syp) < ol=m’

26

where m is defined by s = d x 2™ and d is odd. Furthermore, m < logy s < logy(n + 1), since s < n + 1.
Hence, 2™ < n + 1, and

n+1
Pri and Bls X 10 = s syh] < —
Hence, for any s,1 <s<n+ 1:
ge
n+1 (n+1)q
Priand gl €W 1 <p<al] <3 — =

p=1

To compute an upper bound for the second term, namely on Pr; . 4 zlzs € {zg,l <p<ge,l <k<
np + 1}], we are free to choose a hidden ciphertext block at index j of forgery y, namely z;, and then we
only need to show that Pry .4 5z € {#},1 <p < ¢e,1 < k < ny+ 1}], is bounded. (This is the case
because the bound must be true for any s,1 < s <n+1.)

Thus, the balance of the proof of Claim 3 consists of two parts. In the first part, we partition the space
of forgeries that are not truncations into three complementary types and choose a z; (and hence, index
j) for each type. In the second part, we find an upper bound for the probability Pr; . 4 zlzj € {zg ,1 <
P < ge, 1 < k < ny+ 1}] for each of the chosen z;’s. Hence, the maximum of these three upper bounds
represents the upper bound for Pr; . 4 5l2 € {zg,l <p <qe,1 <k <ny+ 1} for all forgeries that are
not truncations.

Part 1. Finding index j depends on the type of forgery. A forgery can be such that a ciphertext obtained
at encryption is the prefix of the forgery; we call this the prefix case. The complementary case for the
prefix case, which we call non-prefiz, includes two separate subcases, namely when yq is different from any
yb of any ciphertext obtained at encryption, or when there is an index 4 such that yo = y3. Hence, in the
latter case, there must be at least a block in the forged ciphertext y that is different from the corresponding
block of the ciphertext of a queried message i, namely y’. Further, the length of the forged ciphertext y,
denoted by n, may be different from the length of the message plaintext defined by n;.

This partition of forgery types shows that a forged ciphertext y = yoy1 ~ Yn+1, which is not a truncation,
can be in one of the following three complementary types:

(a) Fi,1 <i<qge:n>n;,Vk,0<k<n;+1:y,= 3/23 i.e., the forged ciphertext is an extension of the
ciphertext y’ (the prefix case). The non-prefix case consists of the following two forgery types:

(b1) yo # yb, Vi, 1 < i < ge; i.e., the forged ciphertext and all queried-message ciphertexts differ in the first
block.

(b2) Ji,1 < i < qe:yo = yh, Ik, 1 < k < min(n; + 1,n + 1) : yp # yi; i.e., the forged ciphertext is
obtained by modifying a queried message ciphertext starting with some block between the second and last
block of that queried-message ciphertext. In this case, let 7 be the smallest index such that y; # yj- (i.e.,
VE,0 <k <jel:y =yp).

Let us choose index j (and hence z;) as follows. For forgeries of type (a), j = n; +2 (or j > n; + 1);
for forgeries of type (bl), j = 1; and for forgeries of type (b2), j is the smallest index such that
Yj # y;,l < j < min{n; + 1,n + 1}. In all cases 7 > 1, and hence, the chosen ciphertext block z; is
well defined.

Part 2. For the index j chosen in Part 1, we find an upper bound for Pry .. 4 %lz € {z,1 < p <
ges1 < k < mp+1}. Event z; € {2},1 < p < ¢, 1 < k < ny+ 1} is the union of all possible events

27

zj = zZ, 1 <p<ge,1<k<n,+1 Hence, union bound leads to:

ge Tp+l

Pry and ml% € {zﬁ, 1<p<ge,l<k<n,+1} < Z Z Pri .na w7 = zﬁ]
p=1 k=1

Now we find an upper bound for Pr; . 4 5z = z4] for each of the three forgery types. In determining
this upper bound, we use the following claim, whose proof can be found at the end of this appendix:

Claim 3.2

Let z;,1 < p < g, be the hidden ciphertext blocks generated at the encryption of a queried message
yhyl ygp 41> and z; be the chosen hidden ciphertext block generated during the decryption of forgery
Y = Yo, Y1, Yn+1- Then Vka]- Skénp_’_]-a

1
Pr; and E[zj = Zﬁ] < ol-m”’

where

(a) if yo # yb, then m = min(mi,m2), with m; and mgy being defined by j = d; x 2™, k = dy x 2™2, where
di,ds are odd; and

(b) if yo =y}, where m is defined by k<j =d x 2™ if k > 4, or by j <k =d x 2™ if j< k, and d is odd.

Claim 3.2 provides upper bounds for Pr; , 4 zl2j = zg], where p, k are arbitrary values that satisfy the
hypotheses of parts (a) or (b) and z; is the chosen hidden ciphertext block defined in Part 1. These hy-
potheses are verified for the chosen j of each forgery type as shown below.

Upper bound for forgeries of type (a).

Let the ciphertext of queried message 7 be the prefix of forgery y. To find the upper bound in this case,
we partition the sum Eg’;l ZZPZJ{I Pri na gl% = 28] into two sums, for p # i and p = i, respectively. For
p # i, we use Claim 3.2(a), and for p = i we use Claim 3.2(b), to find an upper bound for Pr; ., 4 52 = 2;]-

Then we find individual upper bounds for each of these two sums, and add these upper bounds.

ge Mp+l qe np+1 n;+1 -
22 Priaazmlsm == = X X Prranawlsm = A1+ Y Priana wls =4l
p=1 k=1 p=1,p#i k=1 k=1

For the first sum, note that p # 4, and recall that for forgeries of type (a) yo = yj. Since E is true,
Yo = yh # yp- Hence, by Claim 3.2(a), Pry ,,q 5lzj = 4] < y%m, where m < mo with mso being defined
by k = ds x 2™2 and dy is odd. Thus,

ge np+1 1 ge np+1
Z Z Pri and w2 = 2] < 9l Z Z 2.
p=1,p#i k=1 p=1,pZi k=1

But, by Fact 3 with N <1 =n, +1 and a = £,

np+1
1
Y 2 < ™ (logy(ny + 1) +3).
k=1
Hence,
qe nP+1 Ge
1 ny,+1
> > Primamlm =<5 D 5 (loga(ny+1) +3).
p=1,p#i k=1 p=1,p#i

28

For the second sum, we note that p = i, which means that yo = yj = yh, and that j =n; +2 > k,Vk,1 <
k < n; + 1. Hence, by Claim 3.2(b) Pry ,,q4 5lzj = 24) < 2,%,,” where j <k = d x 2™ and d is odd. Since

j =mn; +2, in follows that j <k =n; +1, 1, and thus,
ni+1 n;+1 n;+1
Z Pri and 517 = Zk Z Pri and 7% = zk] ol Z 2m.
Jj—k=1 j—k=1

k=1

But, by Fact 3 with N &1 =n; + 1 and a = 5 &k,

n;+1
Z 2" < n (logy(n; + 1) + 3),

j—k=1 2
and hence, "
n;
kz:l Pry ond 512 = 7] < %WTH(logQ(ni +1) +3).
Adding the two upper boun;S, we obtain
e Np+l e
i: i: Pry a w7 =4 < %mTﬂ(logQ(m +1)+3)+ % i: np2—i— ! (logy(npy +1) + 3)
p=1 k=1 p=1,p#i

n,+ 1
9l Z p (logy(np + 1) + 3).

Since Y% (ny, + 1) < £, by Fact 4, it follows that
Pri and 517 € {211 <p < ge, 1 <k <mp +1}] <

ge mpt1].ll,
ZzprlandE Zk]<_l_e 1g2_+3
2 21 l
p=1 k=1
Further, if m = max(n, + 1), then
1u
Pri and 517 € {21 <p < ge, 1 <k <mp +1}] < 2l2—l(log2m+3)

also by Fact 4.

Upper bound for forgeries of type (b1).
For this type of forgery, yo # yf,Vp,1 < p < ge. Hence, by Claim 3.2(a), Pry ,,q 512 = 2] < 2,%,”, where
m < mg with mg being defined by k£ = dy x 2™2 and dj is odd. By following the same derivation as that

for forgeries of type (a), we obtain:

qe np+1
Pri a5z € {81 <p<qe 1 <k <ny+ 111 <Y Py plz = 20 <
p=1 k=1
She | L H
ZZZTMS_Z 10g2”p+1)+3) l_e logy == +3
L 2t~ 2! 2] I

29

Also, if m = max(n, + 1), then

Pri and 5121 € {71 <p < e, 1 <k <mp+ 1} < == (loggm + 3) .

2l 2l

Upper bound for forgeries of type (b2).

Let the first j <1 ciphertext blocks of queried message ¢ provide the first j <1 ciphertext blocks of forgery
y. To find the upper bound in this case, we partition the sum Z ° 1 an+ Pry .4 5l7j = 24| into four
terms, find individual upper bounds for each term, and then add these upper bounds. The first term is a
sum taken for p # ¢ and in this case we use Claim 3.2(a) to find an upper bound for Pry .4 5lz; = #4]-
The last three terms are for the case p = ¢, and two of these terms are sums taken for k and k > j,
respectively. For these sums, we apply Claim 3.2(b) to find an upper bound for Prl and B2 = #4)- For
the remaining term corresponding to ¢ = p and k = j, we show that the event z; = 2{ is impossible.

Qe np+1 e np+1 j—1
Z Z PTT and E[Zj = Z;Ic)] = Z Z PTI and E[ZJ = Zk] + ZPTI and E[z] - Zk] +
p=1 k=1 p=1,p#i k=1 k=1
Pri ana F[zj = ;] + Z Pri ana E[Zj = z]-
k=j+1

For the first of the four terms above, we have the same bound as that of the first of the two sums in the
case of forgeries of type (a) above, namely,

Ge np+1 ge

n, + 1
> > Prioana wla —zk]< > ”2 (logy(ny + 1) + 3).
p=Lp#i k=1 p=1,p#i

For the second term, namely ch;ll Pri na 5% = z,@], we note that i = p, which means that yo = vy} = vh,
and k< j. Hence, by Claim 3.2(b), Pr; ,,q 5lzj = 7] < ﬁa where j ©k = d x 2™ and d is odd. Since
k=1, ,j<l, it follows that j @k =j<1, 1, and by Fact 3 with N &1 =j <1 and a = j <k,

j-1) i1 R, 1j&1
Z Pri onaglzi =2 = Z Pri nqaglzi = zk 2— Z 2— 5 (logs(7 <1) + 3).
k=1 j—k=1 k=1

For the third term, Pry .4 E[z] =2] = 0. This is the case because z; = z] & Y Xy = y] & xrh

and, since yp = y} < ro = 1), it follows that z; = z] & Y= y], which is 1mp0551ble by the definition of

j- (Recall that for forgeries of type (b2), j is the smallest index such that y; # y;,1 < j < min{n;+1,n+1}.)

For the fourth term, namely Zzljﬁrl Pri ona 575 = z}c], we note that ¢ = p, which means that yo = y§ = v},
and j< k. Hence, by Claim 3.2(b), Pr; .4 5l% = 2] < 2, —. where k <5 = d x 2™ and d is odd. Since
k=j+1, ,n;+1,it follows that k<j =1, ,n;<j+ 1, and by Fact 3 with N <1 =n;+1<5 and
a=ksj,

n;+1) ni—j+1 n;—j+1
Z Pri and 5% =21 = Z Pri and 57 = Zk Z 2"
k=j+1 k—j=1 k—j=1
1n;&5+1 .
< —i(logZ(ni &j+1)+3).

2 2

30

Now, we add the bounds of the last three of the individual upper bounds, and then we add the first upper
bound to obtain the total upper bound for forgeries of type (b2).

j—1 ni+1
ZPTIaHdE[]+PrlandE[Z']+ Z Prfandf[zjzzlzc]g
k=1 k=j+1

1] &1 1n;&5+1

——(logsy(j 1) +3) + (logy(n; <5 + 1) + 3).

2 2 2

Since for this type of forgeries 1 < 5 < n; + 1, the terms under log, are 7 <1 < n;,n; <5 + 1 < n;. Thus,
the sum of the last three terms is bounded as follows:

Jj—1 n;—j+1
Y Prianawlzi =2+ Prignaslzi =20+ Y Priang sz =2 <
k=1 k=j+1
1 1n;ej+1 1 n
o s (10g2 n; +3) + o %(logQ ni +3) = ?é(lOgQ n; +3) <
1 n, —|—1
?ZT(logQ(ni +1) + 3).

Hence, by adding the first of the individual upper bounds to this above sum, we obtain:

qe niD+1

1n;+1
Z Z Pri ond 5% = Al < ?ZT(logQ(ni +1)+3)+
p=1 k=1

1 & ny+1
5 Z p2 (logy(ny + 1) +3)
p=1,p#i

1 & n,,+1

- 212

Since 30 (n, + 1) < &, by Fact 4, it follows that

(logy(ny + 1) +3).

Priana 512 € {711 <p < e, 1 <k <mp +1}] <
ge mp+l

1 pe
YY) Priaazlz =]<212l log, l+3
p=1 k=1

Further, if m = max(n, + 1), then Pry .4 5l € {20,1 <p < ge, 1 <k <np + 1}] < £ 55 (logy m + 3).

Finally, for any forgery that is not a truncation, Pry . 4 5l2j € {#,1 < p < e, 1 <k < mp+1}] s
bounded by the maximum of the bounds for the types (a), (bl) and (b2), namely
1 u
Pri ond 57 €420, 1 <p < e, 1 <k <mp+1}] < ?E logQ%—i—?) ;
or, if m = max(ny + 1), then Pry . 4 57 € {#8,1 <p < ge, 1 <k <np+1}] < il“— (logs m + 3). Hence,
returning to the probability of event C' conditioned by (I and E),

(n+1ge , 1pe

Pri ,nq 5lC1 = Pr[C | I and E] < 5 5 9]

log, T +3

Also, if the maximum length m of the encrypted messages is known, the last term of the above bound can
be replaced with 242 (logy m + 3). 0

Proof of Claim 4

Event C is true implies that there is at least one element z, € Z. Event D states that any hidden ciphertext
block z; € Z collides with another hidden block z; € Z,t # s, or zg collides with yy. Let s be the smallest
index of the element z, € Z; hence, event D implies that z, collides with some other element z; € Z,t > s
or zs = Yo, or, alternatively, z;, € Z <{z;} or z; = yo. Hence,

PrD | C and E and I| < Prlz; € Z <{z} or z; =1 | C and E and I]
Union bound leads to:

Pr[D | C and E and I Pr(zs € Z {2} | C and E and I|+ Pr[zs =y | C and E and]

Z Prlzs =2 | C and E and I] + Pr[zs = yo | C and E and I.

t>s,2t€EZ

<
<

To compute the upper bound of the first probability of the sum, Przs = 2, 25,2 € Z,t # s | C and E and I,
recall that Z must have at least one element (since C is true). If Z has only one element, then this prob-
ability is zero. If Z has at least two elements, zs, z;, we use the following claim, whose proof can be found
at the end of this Appendix:

Claim 4.1
(a) For any z5,z € Z,1<s t<n+1

1
Prg and 7 and 712 = 2 < 55

where the exponent m is defined by ¢ <s =d x 2 and d is odd.
(b) For any z, € Z,1 < s <n+ 1, and for any yo:

1
Prg and 7 and 717 = %0l < 5

where the exponent m is defined by s = d x 2™ and d is odd.

Then, by Claim 4.1(a)
_ _ - om
Z Pr{zs =2z | C and E and I] < Z -
t>s8,2¢€7 t>s,2¢€Z

where t s =d x 2™ and d is odd. Let a =1 <5, 25,2 € Z,s t. Then, by using this notation, the fact

that the differences ¢ <s represent a subset of set {1, ,n}, and Fact 3, we obtain
2m 2m
oo = X o
t>s,2t€Z a=t—s,t>58,25,2¢€Z
n,ogm n
< Zyﬁﬁ(logQW‘F?’)-
a=1

32

For the term Pr[z; = yo | C and E and I], we use Claim 4.1(b) and obtain:

— — - 1
Prizs =yo | C'and E and I] <

—= zlim b

where m is defined by s = d x 2™ and d is odd. By definition, m < log, s < logy(n + 1), and hence
2™ < mn 4+ 1. Thus,

— — - 1
Prizs =yo | C' and F and I] < %
By adding the two upper bounds, it follows that
—_ = — - 1
Pr(D| T and E and 7] < ——(logy n + 3) + 2

— 9l+1 ol

Proof of Fact 1

(a) Let A be an adversary attacking the XCBC$<XOR mode using g, + ¢, queries, pi. + i, total memory
for these queries, and time ¢, + t,. The probability of success is related directly to the security of the
underlying encryption mode XCBC$ and F. To find an upper bound for this probability, we introduce
a distinguisher D for F', which is given two oracles f and f~!, where f is a permutation used by the
XCBC$ & XOR mode. D runs A, simulates an oracle for XCBC$ < XOR via queries for its own
oracles f and f~!, responds to A’s g, encryption queries, and verifies A’s choices of ciphertext forgeries
Y =yiyl ylyltq,1 <i<gq,. D returns the result of each y'’s verification to A; i.e., D returns either
Success or Fuailure to A. D outputs 1 if A’s forgery decrypts successfully, and 0, otherwise.

Distinguisher D’s advantage, Advp(F, P') < ¢, is defined as:

D/ =1)ePr » [D/=1].

sprp Iy —
Advy "(F,P") = Pr g (Rpi

feF[
where f & F denotes the selection of function f from the SPRP family F' by the random key K, and
f & P! denotes the random selection of f from the set of all permutations P'.

By the definition of the distinguisher algorithm:

Pr r [Df=1]= PeriF[D & XCBC$<XOR(y) # Null] = PeriF[Succ]

f<F

and
Pr » [Df=1]= Pr s, [D & XCBC$ < XOR(y) # Null] = Pror, [Succ].

f&pl

The above probabilities are over the random choice of rq, f il F,f vid P!, and D’s guesses. Hence,

Pr f@F[

= Adv3P"P(F, P') + PTfZipz [Succ] < e+ PTfZipz [Succ].

Succ] = Prng[Succ] @Prfgpl [Succ] + P’rfgpl [Succ]

(b) This proof is based on constructing a polynomial-time algorithm D that distinguishes between f~! E pl
and f E Gg using an adversary A for the XCBC$ < XOR mode.

In a similar manner to the one used in part (a) (repeated here for completeness), let A be an adversary
attacking the XCBC$ < XOR mode using ¢, + g, queries, . + i, total memory for these queries, and

33

time t, + t,. To find an upper bound for PeriPl [Succ], we introduce a distinguisher D for P! which is

given two oracles @, O~'. These oracles simulate the block encryption and decryption operations needed
by D to simulate the XCBC$ < XOR mode for adversary A. Oracle O simply uses f & Plo respond
to D’s block encryption requests. In contrast, oracle O~ ! flips a coin b € {0,1} and responds to D’s block
decryption requests by using either ! E plor f E Ggs. D runs A, responds to A’s g, encryption queries,
and then verifies A’s choices of ciphertext forgeries y" = yfiyl yif,y%, 1,1 <i < g,. [As a consequence,
D issues all its requests for block encryption to O, if any, before all the requests for block decryption to
O~1] D returns the result of each y'"’s decryption to A; i.e., D returns either Success or Failure to A. D
outputs 1 if A’s forgery decrypts successfully, and 0, otherwise.

Distinguisher D’s advantage, Advp(P',Gg), is defined as:

! — f— f =
where f & P! denotes the selection of function f, and its inverse f~!, from the set of all permutations
P! by the random key K, and f E G's denotes the random selection of f from P' to encrypt and the
. . R
associated function f & Gg to decrypt.

By the definition of the distinguisher algorithm:
f—11= —
Prfzpl [D) =1] = Prfgpl [D & XCBC$ <XOR(y) # Null] = Prfgpl [Succ]

and

Prog, [DP=1=Pr g

R [D < XCBC$ <XOR(y) # Null] = PrfziG [Succ].

S S

The above probabilities are over the random choice of rg, f E Pl f E Gs, and D’s guesses. Hence,

Prfzpl [Succ] = Peripl [Succ] <:>Prf<7iG5 [Succ] + PrngS [Succ]

= Advp(P',Gg) + PTf@GS [Succ].

Now we find an upper bound for D’s advantage in distinguishing between P! and Gg. By the definition
of the two oracles @ and O~', only oracle O~' can be used by D to distinguish between P! and Gg.
Furthermore, whenever a block decryption request to oracle @~ is a ciphertext block that was generated
during the encryption of A’s g, queries, the output of oracle O~ ! is the same for both f & Pl and f Ea S
(by the definition of f), and a distinction between P! and Gg cannot be made. Hence, D can make a
distinction between P! and G only when the ciphertext blocks of the decryption requests to oracle O~!
(i.e., the inputs to f~! or f) have never been generated during the encryption of A’s g. queries; i.e., the
ciphertext blocks are not in szi P

To make the distinction between f—! & Pl and f Ea s, D needs to send only ciphertext blocks that are
not in Sfﬁpt to oracle O~!, since D already has the plaintext blocks corresponding to all the ciphertext
blocks in S’f Rpr- In this case, f = v, where v vid R!. and the advantage of distinguisher D cannot be higher

than the advantage of any polynomial-time algorithm D’ that distinguishes a random permutation from
a random function using the same block decryption requests from {0, 1}/ @Sf Epi to oracle O~! as those

made by distinguisher D; i.e., Advp(P',Gs) < Advp (P!, RW). However, by the bound of the birthday

34

attack, Advp (P!, RW) < qg{;l) where ¢ is the number of the block decryption requests to oracle O~1; i.e.,
q < B Hence,

oo (1o 1)
Advp (P!, Gs) < Advp: (P!, RY) < =550
Hence,
fo (pw 1)
Prfgpl [Succ] < PTf@GS [Succ] + T2l

Proof of Fact 2

If i = d x 2™, then i X ro = d x 2™ X ry has (at least) the first (i.e., least significant) m bits zero. Also,
since i 2!, it follows that d 2!=™. Let rp,, = ro[l [<>m] be the least significant [<m bits of ry.
(These bits will be shifted in the most significant [<m bit positions of a block by multiplication with 2™.)

First, we note that
iXTOZ(dTOm)||0 0
m

where dro, = rom + + rom mod 27™ and || is the concatenation operator. To see this:
—_———

d times
ixryg = (dx2™)xrg=dx(rgx2™)=(ro x2™)+ 4+ (rop x2™)
d t;nes
= (romll0__O)+ +(romll0__0)=(rom+ +rom)l|0__0O
~ e ~ m d times m
d times
= (drom)||0 O
m

where dro, = rom + + rom mod 207,
—_———
d times

Second, we divide all values of an arbitrary constant ¢ into two complementary classes based on whether
the first (i.e., least significant) m bits of a are all zero, compute Pr[i x o = a] for each class separately,
and then take the maximum of the two probabilities as the overall bound.

Let a[l m] = 0 denote the values of a for which the first m bits are zero, and a[l ~ m] # 0 those for
which at least one of the the first m bits is not zero. Since i X rg = (drom)||0 0, it follows that, if

all m]#0, Pr[ixro=a]=0. However, ifa[l m] =0, then [ixry=a] g [drom = b], where
b=a[m+1] represents bits m + 1, [of a, i.e., the [<m most significant bits of a. Hence, in this
case,

Prlixro=a]= Pr[dro, =0],
where d, ro;m, b € {0, l}l*m. However, d and 2/~™ are relatively prime because d is odd. Hence, d has a left
inverse,? e, and drg,, = b < edro, = eb < o, = €b (mod 21*’”), which happens with probability 1/2l*m
because ro,, = [l [<m] is random and uniformly distributed in {0,1}=™. Thus, if a[l m] =0,

1

PT[Z'XTOZG]:W.

9A way to see that d has a left inverse, e, is to label 2/™™ = f, and to note that, if d and f are relatively prime, then, by
Euclid’s ged algorithm, there exists e and h such that ed + hf = 1; i.e., ed =1 — hf or ed = 1(modf).

35

Hence, for any value of constant a, Pr[i X ro = a] < 21}7,1. O

Proof of Fact 3

Since any « can be expressed as a = d x 2™, where d is odd, there are multiple values of a¢ that have the
same exponent m. (For example, for all odd values of a, m = 0, and for all even values of a that are not
a multiple of 4, m = 1.) Hence, when computing the sum Ziv:jl 2™ we can group together the terms 2™

that have the same exponent m (i.e., we group the terms 2™ that are equal).

For a given exponent m, we find the number of distinct values of ¢ that have the same exponent m when

represented as d x 2™. To find this number, we note that 1 < a < N <1 and, hence, 1 < d < L%J

Hence, the number of distinct values of a that yield the same exponent m is [1 [Z=1] 4+ 1 |, since this

number is bounded by the number of distinct values of d odd.

;From the definition of exponent m, 2™ < N <1 (i.e., 0 < m <log,(N <1)). Hence,

N-1 [logy (N—1)] [log,(N—1)]
1 N <1 N1l o 2m
m m
= Z < S T
§_2 E_ L2 | om |+1]2" < E_ 5 +2
a=1 m=0 m=0
N &1 2llogy(N-1)|+1 1

= T(LlogQ(N <) +1)+ 5

because, for any M > 0, >"M_om — 9M+1 o1, Hence,

N-1

N &1 N &1
Y om < ;) (logy(N 1) + 1) + (N 1) = j (logy (N 1) + 3).
a=1

O
Proof of Fact 4
Since, by hypothesis, dezl(np + 1) < £, the term under the log, is n, + 1 < £, Hence, we obtain:
qe L qe
e
Z(”p + 1) logy(n, + 1) < log, T Z(”p + 1),
p=1 p=1
and thus,
ge
S (my + 1) logs (1 + 1) < - log, -,
p=1
Further, if m = max(n, + 1), then logy(n, + 1) < logy m. Hence,
qe "
Z(np + 1) logy(ny +1) < Te logy m.
p=1
O

Proof of Claim 3.1

36

There are three possible complementary cases to consider:

(1) yo = v}, for some queried message i,1 <4 < go. Then ro = f = f~!(y}) = rf is random and uniformly
distributed, by definition. Furthermore, if ro = 7§ # 7} (i.e., yo = y} # yb), then i # p and g is also
independent of 75, by definition.

(2) yo = z;, for some queried message 7,1 < i < @, 1 < j < n; + 1; i.e., yo collides with some hidden
ciphertext block, zj-, generated during the encryption of message ¢. But this is exactly the event prohibited
by I.

(3) yo # vy} and yo # 2%, for all queried messages 4,1 < i < ge, k > 1. Then ro = f(yo) = v(yo) # 78, Vi, 1 <
1 < ¢e is random, uniformly distributed and independent of anything else because v & R and f has never
been invoked with argument yo. Hence, 7y is random, uniformly distributed and independent of r}. O

Proof of Claim 3.2

The event z; = zg is equivalent_to Y;j&J Xy = yi’@erg & IXrg = er@@yz—i—yj & kxrh = jxro(:)yj—i—yz.
(a) If yo # yb, and since event [is true, it follows that r is random, uniformly distributed, and independent
of r}, by Claim 3.1 above. Also, event I and F implies that ro is random, uniformly distributed, and
independent of r§ by the definition of event E. Thus, j X rg is independent of k& x rff <y} + y; and k x r{)
is independent of j x ro &y; + y‘Z, since j,k > 0, and yj, ?J‘Z ,J, k are known constants. Furthermore, event
[z =21 =[j xro =k xrh oy +y;]=[k xrl =j xryey; +yt]. Hence,

Pri and Bl% = 2] = Priang gli X ro =k x g Sy +y;]
= Priang glk x 6 =7 xro ey + 1.

However, Pry .4 zli X ro =k xrg ©yp +yj] < ﬁ, where j = d; x 2™ and d; is odd, by Fact 2. Also,

Pry 4 wlk ¥ rh=jxroey; +yh] < y_;mz, where k = dy x 22 and ds is odd. Hence,

1 1 1

2l—m1 ’ 2l—m2 = 2l—m’

P’I"T and E[Zj = ZZ] S min
where m = min(mq, ms2).
(b) If yo = yb, then ry = rh. Hence,
zj =20 & yiejxrg=yh okxrl & (k&j) xrg =yt Sy;.

Thus,
Pr; and 5125 = 25] = Pri ang wl(k ©4) < ro =y Sy,

However, since event I is true, it follows that r(is random and uniformly distributed, by Claim 3.1 above.
Also, event I and E implies that ry is random and uniformly distributed, by the definition of event E.
Since j,k > 0,7 # k, and yj,y’k’,j, k are known constants, and k # j, Fact 2 implies that

Prs and glk ©7) xro = ?Jg Sy < om
where m is defined by k <5 =d x 2™ k> jor j &k =dx2™,7 >k, and d is odd. O

Proof of Claim 4.1

37

(a) One can write the event z; = 2z, <& (t <) X rg = yy ©ys. Hence,

Pra and ¥ and T[ZS = z] = Pre and and 7[(t ©8) X o = Yt Sys)-

Since event I is true, ry is random and uniformly distributed, by Claim 3.1. Furthermore, by the definition
of events E and C, event C and I and E implies that ry is random and uniformly distributed. Using the
definition of m and the facts that (1) rq is random and uniformly distributed, (2) v, ys are constants, and
(3) 1 <t s <2 <1, we obtain (by Fact 2) that

1
Prg and 7 and 7((E) X 10 =y Sys] < 5

where m is defined by t <s = d x 2™ and d is odd. Hence,

Prg and 7 and 712 = 2 < 5

(b) The proof of this part is similar to that of part (a) and is included here for completeness.

Note that, since zs = ys &s X rg, event 2z = yg & s X r9 = yYs Yo, where y; and yp are constants.
However, since event [is true, rg is random and uniformly distributed, by Claim 3.1. Furthermore, event
C and I and E implies that ry is random and uniformly distributed. Hence, by Fact 2,

1
Pre and T and T[ZS = yo] = Pré and T and 7[8 X 19 = Ys <yo] < ol—m

where m is defined by s = d x 2 and d is odd. O

38

Appendix B — Proof [Security of the Stateful-Sender XEBC-MAC (XECBC-MAC) in an
Adaptive Chosen-Message Attack]

Throughout this proof, we use the same notation as in the Proof for Security of the XCBC$-XOR in a
Message-Integrity Attack, Appendix A, and the same facts (i.e., Facts 1 4). Unless mentioned otherwise,

we focus on the probability for adversary’s success when f i3 RN and, for simplicity, we will drop the
f & Rt subscript from the probability equations.

To find an upper bound on the probability of an adversary’s success we use the same proof technique as
for the XCBC$-XOR scheme. That is, we (1) define several types of events on which we condition the
adversary’s success, (2) express the upper bound in terms of the conditional probabilities obtained, and
(3) compute upper bounds on these probabilities. As before, our choice and number of conditioning events
is motivated exclusively by the need to obtain a (good) upper bound for the probability of the adversary’s
success. Undoubtedly, other events could be used for deriving alternate upper bounds.

We provide some intuition for the choice of conditioning events defined, by giving the following examples of
events that cause an adversary’s success. (The reader can skip these examples without loss of continuity.)

Examples of Adversary’s Success. A way for the adversary to find a forgery z’ that passes the
integrity check w' = w, is to look for collisions in the input of f, at forgery verification. The following
three examples illustrate why such collisions cause an adversary’s success. Other such examples, and other
ways to find forgeries, exist.

Ezample 1 Collisions between inputs of f at forgery verification with those at message signing

Suppose that all inputs to f at forgery verification collide with inputs to f at signing. We pessimistically
declare the adversary to be successful. For example, suppose that two of the block inputs to f at the
verification of forgery (z',ctr’,w') represent two swapped inputs to f at the signing of message x using
counter ctr and obtaining the authentication tag w. Also suppose that all other inputs to f at forgery
verification are the same as those of message x at signing. Hence, 2’ # z. In this case, the authentication
check for forgery (2, ctr’ = ctr,w' = w) will pass the integrity check.

It should be noted that this criterion for adversary’s success is pessimistic because, among the forgeries
that make this event true some will decrypt correctly with negligible probability. For instance, if a forgery
#' is a truncation of a signed message, the collision of the last forgery block =, ; = 2y + (n' + 1) x g
with any of the inputs to f or f’ at message signing is a negligible-probability event and hence truncation
would have a negligible chance of success (viz., Claim 1 below provides some intuition for this statement).

Ezample 2 Collisions among inputs of f at forgery verification

Suppose that two inputs of f obtained during forgery verification, x7,,; and z],,,, do not collide with
any of the inputs to f obtained during message signing, but collide with each other; z,_, = z;,,,. Also
suppose that the adversary’s forgery (', ctr’, w') is obtained as follows: z’ = z||z], ||z}, 2, ctr’ = ctr, and
w' = w. Clearly, ' # x and the forgery (z/,ctr’,w') passes verification under the pessimistic assumption
that f(z0+ (n+3) x ro) = f(z0 + (n + 1) x rp).

Ezample 8 Collisions among the inputs of f that cause discovery of rg

Suppose that the forgery counter ctr’ collides with an input to f, 2+ kxrh 1 <p<g,1<k<ny,

39

obtained during message signing, or with :I;;Z +ixri1<i<gq,l <j<nl during the verification of
forgery (z',ctr’,w’). Suppose that the adversary finds that z +k x v = ctr', for some message p, known
plaintext block z} and known counter ctr”, 1 < i < ¢,. Hence, the adversary can determine - and thus
the adversary’s forgeries can satisfy collisions of Examples 1 and 2 above. A similar collision event between
ctr' and an input to f during forgery verification has a similar effect.

Conditioning Events. To compute an upper bound on the probability of successful forgery, we choose
three conditioning events based on collisions in the inputs of f. Intuition for the choice of events is provided
by Examples 1 3 above. To define the conditioning events, we use the following notation for the last
block that is enciphered

P P
Tpp+1 = 20

I _ n
Tpiyr = %0-

Next, we introduce the sets:

¢ A{etrt, L ctr®}
S {xz—l—erg,lSpgqs,lgkgnp—i—l},
Vi« {2l +sxrf, s +sxrf ¢ (I° S),1<s<nf+1},

where I* is the set of all the counters used at signing, S is the set of all the inputs to function f (aside
from the counters) at signing, and V; is the set of all the inputs to function f (aside from the counters) at
verification of query i. Based on sets I?, S, V;, we introduce the following collision events that arise at the
verification of forgery (z'%, ctr't, w'®):

ct o V=0

Event C includes all instances when inputs of f at forgery verification (aside from counters) collide with
either counters or inputs to function f at message signing. Next we define event D* as follows:

D' : 3s,1<s<nj+1l:2l+sxry e
and 2 + s Xl 2 +t xri, Vol +txrf € Vit #s,1 <t <n}+1

and z7 + s x r{ # ctr”

Event D’ states that there is at least one input block of forgery i that does not collide with any other block
and counter of forgery ¢. It is clear that the definition for D* makes sense only when event C” is false.

The rationale for introducing events C* (or, actually, @) and D' is similar to the one used in the proof of
Theorem 2. That is, we want to find a desirable event which states that there exists a forgery block that
does not collide with any other input to f at either message signing or verification of forgery i (as suggested
by Examples 1 and 2). Clearly, if this event is true, then the probability of verification passing is 1/2'. To
find this event, however, we must ensure that all other collisions that that may lead to the discovery of
ro are also ruled out for this block (as suggested by Example 3). For this reason, we must introduce two
events beside C? and D?, namely events RY and R* defined below. (Note that these events need not cover
the last block or a signed message or of forgery i since such a collision cannot be used to solve for either r{
or 7 since random variables z{, and zp remain unknown to the adversary.) After we find the desired event
for forgery i, we show that the complement of this event has a negligible probability (viz., the section on
Non-truncation Forgeries below).
RY

()

ctr' # @ +j x rf Vi, 1 < j < nj

40

Event R} states that all inputs to f during the verification of forgery i (aside from counters and last block)
do not collide with forgery counters.

R® : P’ and PY and QQ°,
where

P :octr® #ah + kxrg,Va,p, k1 < a,p < g5, 1 <k <my
P’ octr' #al +kxrf,Va,p, k1 <a<q,1<p<g,1<k<mn,
Q" ¢ whA+gxrg Ay +kxrgVp, g,k 1 <p<qs,1 <Gk <mnyjFk

and j is the index of a block in forgery i; i.e., x? Event R?® states that all inputs to f at message signing
(aside from counters and last block) do not collide with any other such inputs and with any of the counters
used at message signing and forgery verification. Note that event R® is independent of any forgery 1.

Upper bound on the Probability of Successful Forgery. By standard conditioning,

Pr[Succ] < Pr[Succ | R’] + Pr[R*] < Pr[Succ | R’] + Pr[P%] + Pr[P’] + Pr[Q?],
since RS = P or P? or Q5. The second, third and fourth terms in the sum are bounded as in the following

Claim:

Claim 1
(a)

Pr[Ps] < o 1082 7‘9 +3

(b)

PriPY] < Tulis log, Ts +3

(c)

5 L3
PriQ7] 5 (og 7‘9 + 3).

To compute an upper bound for the probability of successful forgery, when event R® is true, we note
that the adversary is successful if one of his ¢, forgeries is successful. Let the ¢-th adversary’s forgery be:
(ctr', 2" w'), where " = 2! $I7§'i . Hence, by union bound, the probability of adversary’s success for all
qy verification queries (when f E Rb) is:

v
Pr[Succ | R’} < ZPr[w” =yr® & yszﬁl | R%].
i=1

Hence, we first compute the probability of adversary’s success when a single forgery verification is allowed;

i.e., we compute Pr{w' =y} ® @yg,i_H | R*]. For this computation, we partition the space of all possible

forgeries into (1) truncation and (2) non-truncation forgeries.

Truncation Forgeries. For truncation forgeries, we introduce the events:

Zrs ¢ 2+ (i) xriel®
Zs : 2+ (ni+1)xry€S.

41

Using these events, we show that the probability of adversary’s success in creating a successful forgery 1 is
negligible. If forgery ¢ Is a truncation, then there exists p,1 < p < g5 : ctr’ = ctr? and wk = wk,Vk 1<
k <n! np, hence 2l = z5. If the input to f at block nj + 1, namely 28 + (n} + 1) x rfi, does not
collide with any counter (i.e., event Z;s is true) and any input to function f (aside from the counters)
at signing (i.e., event Zg is true), then y, . | = f(2¢ + (n; + 1) x r{f) is random, uniformly distributed
and independent of any other block 4 in the formula for w'*. Hence, in this case, the probability of the
event that ¢y’ ® @y, , = w" during the verification of forgery i is 1/ 2. Summarizing, by standard

conditioning and union bound,

Priw' =i @ @yg,ﬁl | R*] < Prlu" =yl @y&H | (Z1s or Zg) and R®] + Pr[Z;s or Zs | R’]
21[+ Pr{Zs or Zs] < l + Pr(Zrs | R°]+ Pr{Zs | R’].

Upper bounds for the probabilities of events Z7s | R® and Zg | R® are given by the following Claim:

<

Claim 2
(a)
[Z1s | R°] <
(b) i
Pr(Zs | R < B2 4 o
12!
Hence, for any truncation forgery,
no__ ! {4
Priv” =y ® @y, | Rs]§2_+2_+ﬁ+?—ﬁ+T'

Non-truncation Forgeries. Now, we find an upper bound for Prju"” = yf & @ y;f,_H | R*] for non-

truncation forgeries. To compute this upper bound, we define an event such that (1) the probability of
successful forgery is 1/2! when this event occurs, and (2) the probability of the complement of this event
has a negligible upper bound.

Using the events defined above and by standard conditioning, we obtain:

Priv =yie @yl |R] < Priv'=yle @y, | C? and D and RY and R®] +
Pr[C? or Di or RY | R’

< Privi=yie o yZ;H | C% and D' and RY and R*] +
Pr[C" or Di or RY | R? and R®] + Pr[R! | R’]

= Priu" =y o yZ;H | C* and D' and R} and R’]
+Pr[C% or D? | R? and R°] + Pr[RY | R’

< Pr[w” =y'® & yZ,H | C* and D" and R} and R®] +

Pr[C" or D | C? and RY and R*] + Pr[C" | RY and R’] + Pr[RY | R’]
= Privi=yi® @ yn/H | C% and D' and RY and R*] +
[Df

Pr[D¢ | C% and RY and R®] + Pr[C* | RY and R®] + Pr[RY | R],

42

since the following events are equivalent:
(C'or Dior RV | RY and R®) = (C"or D | R! and R®)
(C* or D' | C? and R? and R°) = (D?| C? and R? and R®).

Event (C? and D' and RY and R®) is the desired event mentioned earlier in this proof. If this event
happens, then there must exist an index 7,1 < j < n! 4+ 1 such that :1:” +ixry does not collide with
any other input to f, at either message signing or verification of forgery 4, and hence yj = f(acj + 7 X 7"0)
is random, uniformly distributed and independent of any other terms in the expression ¢/ & @ y;f; 1
Hence, y7 ® @y, 41 is random and uniformly distributed and hence,
. . . — . 1
Priv" =y'® @ yZ;H | C% and D* and R} and R®] < o

The other probabilities that appear in the expression for the total probability Pr[w’i = y’f &) @y;f,_ 41 | R*]
are bounded as in Claim 3, whose proof can be found below:

Claim 3
(a)

PrlRY | R*] < Ql+1 (log2 n; + 3).

(b)
PriC' | R and R*] < &" asn; s log, 25 +3

2l [20+1 l
© y
Pr[D? | C? and RY and R*] < 21+1 (logy n; + 3).
Based on this claim, for an arbitrary forgery ¢ that is not a truncation, we obtain:
17 17 17 s 1 nl
Priw" =y ® 69?/n;+1|R] < ?+2l+1(log2n +3) +
I
qsn; Hs
2ll + DS logQT +3 + 2lH(logQH +3)
n; qsn; W 7
ot (loga i+ 3) + % + orT loga 43

For any forgery, the upper bound is the maximum from the upper bounds for truncation and non-truncation
forgeries, hence,

/ nl

. , n! q f
Priu" =yl® @ y;fgﬂ | R°] < 2—;(log2 n;+3) + 82[L+ lglil log, T +3
Hence, for all ¢, verification queries, we obtain by union bound,
Pr[Succ | R°] < ZPT =ie oyn, | R
L n; / QSn;j s
< 2; ﬁ(loani+3)+T+12l+l log27+3
i
qsfv Qults s
< 121 (log2 T +3)+ 191 + s log, 7 +3
_ dshv | Quls s
= 121 (log2 T +3)+ 191 + e log, 7 +3

43

Hence, by Claim 1,

My My qslhy qults Hs
PriSucc] < y(logy == +3) + T + oy logo - +3 +
(qs + qu)ps Us ,UJE s
l2l+1 logQ T + 3 + m(10g2 T —+ 3)

Finally, when f E F, the probability for adversary’s success is bounded as follows:

K st Go b %
Prop [Sue] < e+ Bhllog, Bt 4 3) + 5L 4 BB 1og, B3
(a5 + av)pts s 13 s
N logy T 3+ 122zs+2 (log, 77 3)
Ko Ko dsfv s Ihs Lhs
= e+ logy 7= +3) + T+ g+ 200+ 55 oy (logy 75 4 3).

Proofs of Claims 1 — 3
For the proof of Claims 1 3 we use the following Fact, which is very similar to Fact 3 in Appendix A:

Fact 1
For any N > 1, let m be defined by b<a =d x 2™, where 1 <a b< N <1 and d is odd. Then
N &1)(N <2
> o< ({4()(logQ(N &2) +3).
1<a<b<N—1

Fact 2
If for any p,1 <p < g5,np > 0, and if 30 | (n, + 1) < 5, then,

gs ,u2
Z(np + 1)2 logz(np +1) < 1_28 log, TS;
p=1

and, further, if m = max(n, + 1), then

qs 2

W
Z(np +1)%logy(ny +1) < l—; logy m.
p=1

Proof of Claim 1

(a) Event Ps deals with collisions between inputs to f at signing, namely sh+kxrl,1<p<g;,1<k<n,
and constant counters at signing, namely ctr®,1 < a < g;. Since P* = da,p,k,1 < a,p < q5,1 <k <nyp:
ctr® =z} + k x rf, it follows by union bound that

qs qs Tp

Pr[Ps] < Z Z Z Prctr® = 2} + k x r{).
a=1p=1k=1
In this event, ctr® and mz are constants. Since rf is random and uniformly distributed, and the event of
interest can be written as k X rf = ctr® <z}, then, by Fact 2 (Appendix A),

m

Prctr® = o} + k x r{] < 5

44

where k = d x 2™ and d is odd. Hence, by Fact 3 (Appendix A) we have

Tip
Z Prictr® =} + kxrf] < 21+1 (logy npy + 3).
k=1
Furthermore, by Fact 4 (Appendix A) we have
qs Tp qs
p L s P
Z Z Prlctr® = ot + k x rf] < Z 2l+1 (logony +3) < ot] s log, Ts <qs+3
since Eg;l(np +1) < &, or, Zg;l np < B¢ ©qs. Thus,
ds g4s Mp qs 1 LLs Lhs
ZZZPrctr —(L‘k kxrh] < ZF T@qs log, T@qs—i-?)
a=1p=1k=1 a=1
L gsp 1%
= 9t sl *oq; log, Ts <qs + 3
Hence,
-5 L gsp 2 /7
Pr[Ps] < ST % <q; logy Ts &qs +3

A simple (albeit higher) upper bound is then
ST L gsps Hs
PT[PS]SFT 10g27+3

(b) Event PV is very similar with event P, i.e., it deals with collisions between inputs to f at signing,
namely xi +hkxrb1<p<g,1<k< np, and constant counters at verification, namely ctr'®,1 < a < g,.
In a manner similar to the one used in the proof of (a), since ctr'® are also constants,

Pr[Pv]
Qv qs Np
< ZZZPrctr'“—xk+er0 <22l+1 — &qs logy %@qs +3
a=1p=1k=1
I qp 1%
= o Uls(:)qsqv log, Ts@qs +3

A simple (albeit higher) upper bound is then

1 Q'U,UJs
—2l+1 l

log, Es +3

Pr(P?) < z

c) Event Q%, deals with collisions between inputs to f at signing within the same message, namely
gning g

af +j xrh #ah +k xrf where 1 <p < g5,1 < j,k <ny,j # k. Since Q° =3, 5, k,1 <p < qs,1 < j,k <

Np,j # ki +j xry #xp +k x rg. Without loss of generality, let k > j. Then, by union bound,

qs
Pr[@]gz Z Pr[x?—{—jxrg:wZ—i—erg].
p=11 j<k np
Event x? +j xry =z} + k x r{ is equivalent to (k <j) X rf = x? &y Since r{ is random and uniformly
distributed, by Fact 2 (Appendix A), this event happens with probability 22—7 where k<7 =d x 2™ and d
is odd. Then, by Fact 1 (Appendix B), we have
Z 2m < 1 np(n, 1)

Z Pr[x?—{—jxrg:xg—{—erg]g o <o 1

1 j<k nyp 1 j<k nyp

(logy(ny <1) + 3).

45

Furthermore,

as
Z Z Pr[x?—{—jxrg:wi—i—erg]
p=11 j<k nyp

1 ny(n ds n 5
Zlm(logz(w@lw?ﬁ 21@

PriQy]

IN

(IOgQ(’I’Lp + 1) + 3)’

= l ol
~ 2 4 — 2 4
and using Fact 2 (Appendix B), we have
. 1 & (np+1)? 1
P o 30 U gy + 1) 43) < 2 U (10, B 15

p=1

Proof of Claim 2

(a) Event Zjs refers to collisions between the last input to f at verification of forgery i, namely z{ + (nf +
1) x r{, and any counter at signing, namely ctr®,1 < a < gs. By union bound,

Pr(Zs | R°] < ZP’T‘ (nh 4+ 1) x rfl = ctr® | R®).

2 = 28 = f'(rh) is random, uniformly distributed and independent of r§ and of the counter since it is
obtained by enciphering with a different key. Hence, since ctr® is a constant,

. . 1

Pr(zy + (n)+1) x rj = ctr® | R°] = 5
and 7
PriZps | R < 3.

O

(b) Event Zg refers to collisions between the last input to f at verification of forgery i, namely z{ + (n/ +
1) x r{/, and any input to f at signing (other than counters), i.e., zf +bx rf,1 <a < g1 <b<n,+1.
By union bound,

qs mg+1
PriZs | R®] < Z Z Prizf + (n,+1) xry =z +bxr§ | R°].
a=1 b=1

If b < ng, then 2 is a constant in the equation 2+ (nh+1) x rff = 2% +b x r§. Then, since Zo =2 is

obtained using a different key, z{ is random, uniformly distributed and independent of rfl = rb,rg and of

the constant zy. Hence,
1

2[
If b=n, + 1, then z¢ = z¢. In this case, if p # a, then 2{/ = 2§ and 2¢ are random, uniformly distributed
and independent; they are also independent of rf’ = rh and rg. Hence,

Pr[sz—i—(n;—i-l)xrg—mb—i-bxro | R°] =

. . 1
Pr[zg—l—(n;—l—l)xrff:x,‘f—i—bxrg|R5]:?.

46

In the complementary case, namely when b = n, + 1,p = a, then z{ = 28 = 2¢ = 2f and r{l = 7§ = r.

Since, in this case, b = n, +1 = n, + 1, it follows that

2+l +1) xrf =af +bxry & (n,enl) xrh =0,
where, n, > n} (since the forgery is a truncation of message p). Event R® is true, hence r} is unknown,
random and uniformly distributed. Hence, by Fact 2 (Appendix A), the probability of this event is 27
where n, <n; = d x 2™ and d is odd. Hence, 2 < n, <n; < n,. Hence,

) X 2m n
Prizg + (nj+ 1) xrg =xf +bxr§ | R°] = Pr[(n, &n)) xrh =0] R°] < o < 2—?.
Hence,
qs ng+1
PriZs | R’] < ZZPrz('f—i—(n + 1) xrf =zl +bxrd| R
a=1 b=1
s MNa . .
= ZZPT‘[Z(I)Z—F(’H,;-I—:[) Xry=zf+bxry | R°]+
a=1b=1

> Prizl + (nt 4+ 1) x rff = 28 + (ng +1) x rd | R*] +

a=1,a7#p
Prizf + (nh 4+ 1) x rg =25+ (ny+1) xri | R°]
s Ng qs qs Tba+1
1 np s Ty
< ZZQ!+ Z 2l ZZ l—ﬁ—i_?'
a=1b=1 a=1 a;ép a=1 b=1

Proof of Claim 3

(a) Event R} deals with collisions between inputs to f at verification of forgery ¢ and the counter corre-
sponding to forgery i. Hence, in a manner similar to the one used in the Proof of Claim 1(a)

2m l

2—§ I il (loan +3).

n
r[RY | R*] < Z rlctr” x}i +jxrl| R <

.
I MS\

O

(b) The proof of this Claim is very similar to the proof of Claim 3 in the Proof of Theorem 2. First,
we choose an index j such that for any type of possible non-truncation forgery ¢, the input to f at the
verification of forgery 4, namely :1: '+ j x 1y, does collide with any input to f during message signing with
low probability. Next, we compute an upper bound for these collisions.

All non-truncation forgeries can be partitioned in a similar manner as that used in the proof of Claim 3
of Theorem 2. That is, we define extensions of the plaintext of a signed message, which we call the prefiz
case, and the complementary case, which we call non-prefiz case. The non-prefix case includes two separate
subcases, namely when ctr' is different from any ctr? of any message p obtained at signing (i.e., message
(2P, ctrP,wP)), or when there is a signed message p such that ctr’® = ctr?. Hence, in the latter subcase,
there must be at least a block position j in the forged message z’* that is different from the corresponding
block of the sagned message p. This partition of all possible forgery types shows that a forged message

=l a2l n which is not a truncation, can be in one of the following three complementary types:

47

(a) 3p,1 < p < g5 :nf > np,ctr’i = ctr? and Vk,1 < k < n, : xg = xi; i.e., the forged message is an
extension of message zP (the prefix case). The non-prefix case consists of the following two forgery types:
(bl) ctr’ # ctrP ¥p,1 < p < q,; and

(b2) Ip,1 < p < qg: ctr” = ctrP, Ik, 1 < k < min(n}, n,) : x}j # xﬁ; i.e., the forged message is obtained by
modifying a queried message starting with some block between the second and last block.

Now we choose index 7 mentioned above for each type of possible non-truncation forgeries, as follows: for
forgeries of type (a), j = n, + 1; for forgeries of type (bl), j = 1; and for forgeries of type (b2), j is the
smallest index such that x’z % x ,1 < j < min{ny,n}}. In all cases 1 < j < n}, and hence, the chosen
block :1:” is well defined.

Event C* implies that :E frixri el or x}i +j x rff € S. Hence, by union bound
Pr[C" | R? and R*] < Pr[m}i +jxreI®*| R and R®] + P’I"[:EIZ +jxri €S| RYand RY.
Let us define the following events:
Eis : af+jxrjel’
Es : x;-i—l—jxrgES.

Hence,

Pr[C" | R? and R®] < Pr[E;s | RY and R®] + Pr[Es | R? and R?].
We determine upper bounds for events Efs | R_f, Eg | R_f using the following Claim, whose proof is found
at the end of this appendix:

Claim 3.1
(a)

Pr(Ers | R} and R°] < ik

(b)

v S N’S
PriEg | R} and R°] < 77 1027+3

Based on Claim 3.1,

. A
Pr[C? | R and R*] < Pr[Ep« | RY and R*] + Pr|[Es | R? and R*] < q; + l;il log, NT +3

O

(c) We find an upper bound for Pr[Di | C? and RY and R?] in a manner very similar to the one used in
Claim 4 of the Proof of Theorem 2.

Event C? implies that there is at least one element T+ sxrf € V;. Event D' is true if and only if for any
index 5,1 < s < nl + 1, the block 2% + s x r{ € V; collides with another block o+t xrl eVl <t<
nt+ 1,8 #t, or w1th ctr” But the latter collisions, namely z' + s x rfl = ctr'’, where :1:’Z +sxry €V,
is already precluded by event R;. For the former colhslons let s be the smallest index of the element
2" 4+ s x rff € V;. Hence, event D¢ implies that £ + s x ri € V; <{z/ + s x rf'}, and

Pr[D? | C? and R? and R®] < Prz’ + s x r{l € V; &{z" + s x rfi} | C? and R? and R®].

48

Furthermore, by union bound we have

Pr[Di | C? and R? and R®] < Z Prizf +sxrf =z +txrf | C" and RY and R?].
t>s,@i+txrieV;

In this expression, r{’ is unknown, random and uniformly distributed since events RY and R® are true.
Furthermore, 2,z are constants, or z/ is a constant and z/ = 2{, since t > s; if 2}/ = 2zl, then z} is
independent of rg because z{)i was obtained by enciphering with a different key. Hence, by Fact 2 (Appendix
A), the probability is at most 22—77, where t s = d x 2™ and d is odd. Hence,

m

Prizl +sxrf =zl +t x rl | C? and RY and R°] < o

Furthermore, proceeding in the same manner as for Claim 4 in the proof of Theorem 2 (viz., Appendix A)
we have

!

Z Prz’ +s xri =z +t x rf | C' and R} and R’] < 2&1 (logy n; + 3),
t>s,@ji+txrieV;
and hence,
!/
— ey n.
Pr[D? | C% and R} and R’] < 2lll (logy n; + 3).

Proof of Claim 3.1

(a) Event Fjs refers to collisions between the chosen block (I,‘;-i + 7 x rfl and counters at signing, namely
ctr?,1 < p < gs. Hence, by union bound, and Fact 2 (Appendix A)

qs . . ds om qs2m
Pr[E;s | R} and R’] < ZPT[:E"; +jxry=ctr? | R} and R°] < Z o= ol
p=1 p=1
where 7 = d x 2™ and d is odd, since, by events R and R’ rl is unknown, random and uniformly

distributed, x;-i is a constant, and ctr? is a constant. Furthermore, since 2™ < j < n/!, it follows that

Pr[Ers | R} and R°] < —= <
O

(b) Event Ejs refers to collisions between the chosen block m}i + 4 x rfl and inputs to f at signing other
than counters, namely blocks xi +kxrh1<p<gqg;,1<k< np + 1. Hence, by union bound,

qs TMp
Pr[Es | R} and R°] <> > Prlzf +j xri =} + kx rf | R} and R’]
p=1k=1

In a manner similar to the one used for Claim 3 (Part 2) in the proof of Theorem 2, we can show that

Pr[Eg | R” and R*] < -2

< Torr1 logy == +3

[

49

Proof of Fact 1
We will use Fact 3 from Appendix A, but first we rewrite the sum as :

N—-2 N-1 N—-2N-1-a
> =3 Xy >
1 a<b N-1 a=1 b=a+1 a=1l c=1

where ¢ def b <a. By Fact 3 from Appendix A, we have

N—1—-a

Nelses
> ooam< fa(logz(N &1 ea) +3).
Hence,
N-2 N—2
Nelses
Z 2" < Z 7a(log2(N &l ea)+3) = Z E(long—i- 3),
— 2 — 2

1 a<b N-1 a=1 e=1

where the index e def N <1 <a. Furthermore, since e < N <2, we have

e (N ©1)(N <2)
Z 2™ < Z (logy e + 3) Z —(logo(N ©2) +3) < (logo (N <2) + 3).

1 a<b N—1 =2 4

Proof of Fact 2
Since ny +1 < & and 302 (n, +1)* < “—2, it follows that

qs qs

< g, B
Z(np +1)%logy(ny + 1) < Z(”p 1)? log2 l 12 log T
p=1 p=1

50

Appendix C — Proof [Security of stateful XEBC-MAC (XECBS-MAC) in an Adaptive
Chosen-Message Attack]

Throughout this proof, we use the same notation as in the Proof for Security of the XCBC$-XOR in a
Message-Integrity Attack, Appendix A, and the same facts (i.e., Facts 1 4). Unless mentioned otherwise,

we focus on the probability for adversary’s success when f i3 RN and, for simplicity, we will drop the
f & Rt subscript from the probability equations.

Notation. Let 25,1 <p < gs,1 <k < ny be the hidden inputs of function f at the signing of message p;

i.e., for signed message 2 = z¥ zf, , we have

2y =2 +pXx R+ k x R*.

Let z}i,l <1 < qy,1 < j < n} be the hidden inputs to function f at the verification of forgery i; i.e., for
the forgery 2/" = z/ iL‘Z; using the message identifier (ID) s (s" < g), we have

z;Z :x?—i—s’i X R+j x R*.
To find an upper bound on the probability of an adversary’s success we use the same proof technique as
for the XCBC$-XOR scheme. That is, we (1) define several types of events on which we condition the

adversary’s success, (2) express the upper bound in terms of the conditional probabilities obtained, and
(3) compute upper bounds on these probabilities.

We provide some intuition for the choice of conditioning events defined, by giving the following examples of
events that cause an adversary’s success. (The reader can skip these examples without loss of continuity.)

Examples of Adversary’s Success. A way for the adversary to find a forgery z’ that passes the
integrity check w' = w, is to look for collisions in the input of f, at forgery verification. The following
three examples illustrate why such collisions cause an adversary’s success. Other such examples, and other
ways to find forgeries, exist.

Ezample 1 Collisions between inputs of f at forgery verification with those at message signing

Suppose that all inputs of f at forgery verification collide with inputs of f at signing. We pessimistically
declare the adversary to be successful. For example, suppose that two of the block inputs of f at the
verification of forgery (z' # z,s',w') represent two swapped inputs of f at the signing of message = using
message ID s’ and obtaining the authentication tag w. Also suppose that all other inputs of f at forgery
verification are the same as those of message x at signing. In this case, the authentication check for forgery
(2',s',w" = w) will pass the integrity check.

It should be noted that this criterion for adversary’s success is pessimistic because, among the forgeries that
make this event true some will decrypt correctly with negligible probability. For instance, if a forgery =z’
is a truncation of a signed message and the message ID s” is equal to the identifier of the signed message,
then, despite collisions between the inputs of f at forgery verification with inputs of f at signing, the
truncation forgery has only negligible chance of success (viz., Claim 1 below provides some intuition for
this statement).

Ezample 2 Collisions among inputs of f at forgery verification
Suppose that two (hidden) inputs of f obtained during forgery verification, namely 2] =z} + s’ x R+ R*

and 2, = 24, + s’ X R+ 2 x R*, for forgery 2/ = |z, using message ID s, do not collide with any of the

ol

inputs of f obtained during signing of any message = but collide with each other; also assume that z’ # x.
Then the forgery (z,s’,w' = 0) passes verification.

Ezxample 3 Collisions among the inputs of f that cause discovery of R or R*

Suppose that, at message signing, two (hidden) inputs of function f collide; ie., zf = 2,1 < p,s <
gs,1 <k <mnp,1 <t < ng,, where (p,k) # (s,t). This can lead to the discovery of some, and possibly
all, of the bits of R or R*. For example, suppose that 2 + p x R+ R* = 25 + p x R+ 2 x R*, or
R* = ! ©zb. Knowing R*, an adversary can choose i and the forgery z/ = x|z}, with message ID s’ such
that z] +s x R+ R* = 2, + s’ x R+ 2 x R*, i.e., x, &z = R* = 29 <. Then the adversary can let the
tag w' = 0. Similar examples which illustrate collisions that pessimistically lead to the discovery of R can
be found; e.g., collision 2} +p x R+ R* =z} +r x R+ R*, where p # r. (R* is completely determined if
p < is odd.)

Conditioning Events. To compute an upper bound on the probability of successful forgery, we choose
three conditioning events based on collisions in the inputs of f. Intuition for the choice of events is provided
by Examples 1 3 above. We introduce the sets:

S {7 1<p<gs,1 <k <my},

Vi« {2},2] ¢ 5,1<j<nj},
where S is the set of all the inputs of function f at signing, and V; is the set of all the inputs of function
f at verification of query i. Based on sets S and V;, we introduce the following collision events that arise
at the verification of forgery (z",s", w'"):

ct oV =0.

Event C* includes all instances when inputs of f at forgery verification collide with inputs of function f at
message signing. Next we define event D' as follows:

D' : Fj1<j<nj: 2 €V,
andz}i;ﬁz'i,Vz,'flEVi,j#m,lgmgn;.

m
Event D’ states that there is at least one “new” input block of forgery i that does not collide with any
other “new” block of forgery i, where here “new” input blocks refers to input blocks that are not in the
set of input blocks at signing, namely S. It is clear that the definition for D* makes sense only when event
C" is false.

The rationale for introducing events C* (or, actually, C?) and D is similar to the one used in the proof of
Theorem 2 (Appendix A). That is, we want to find a desirable event which states that there exists a forgery
block that does not collide with any other input to f at either message signing or verification of forgery
i (as suggested by Examples 1 and 2). Clearly, if this event is true, then the probability of verification
passing is 1/2!. To find this event, however, we must ensure that all other collisions that that may lead to
the discovery of R or R*, are also ruled out for this block (as suggested by Example 3). For this reason,
we introduce event R® defined below.

R ¢ 20 #£2,1<p,s<qs,1<k<nyl<t<ng(pk)#(st)

Event R® states that the set S is collision-free. Note that event R® is independent of any forgery i.

92

Upper bound on the Probability of Successful Forgery. By standard conditioning, we have

Pr[Succ] < Pr[Succ | R*] + Pr[R?).

The second term in the sum is bounded as in the following Claim:

Claim 1

2
I s
(logs gs + 3) + l22ls+1 (logy 7 +3).

To compute an upper bound for the probability of successful forgery, when event R* is true, we note that
the adversary is successful if one of his ¢, forgeries (2, 5", w") is successful, where 2" = z¥ z,. Hence,

by union bound, the probability of adversary’s success for all ¢, verification queries (when f E RM is:

qv
Pr[Succ | R*] <> Priu" =yf® oyl | R’

i=1
Hence, we first compute the probability of adversary’s success when a single forgery verification is allowed;
i.e., we compute Priw” =y ® @y | R’]. For this computation, we partition the space of all possible

forgeries into (1) truncation and (2) non-truncation forgeries.

Truncation Forgeries. We call truncation a forgery z'* = z¥ :1:2,_ together with a value of s” such that
there exists a signed message =¥ = ¥ (L‘%p such that s = p and ac;j = mi,Vk, 1<k<n] -

In this case, for any 1 < j < n! we have:

and thus

and the computed tag becomes
e Oy =uno® Sy, =voy,, o oy,
where the exclusive-or sum yﬁ; n® o ygp contains at least one term since n/} P

Priu" =yi® o y;f; | R¥] = Pru" =u’® yﬁ,i+1 e @y, | R]=
P7'[g/£';,iJrl ® Dyp, = w" ® wP | RY).

In this expression, when there are no collisions in the inputs of f at signing, the values yz 1 ,yﬁp are

random, uniformly distributed and mutually independent. Since n, > n} there is at least one of these
values. These values appear only in the signing of message p and the tag wP contains other outputs of
function f, namely y?, ,yz ' which, due to event R® being true, are also random, uniformly distributed,
mutually independent and independent of all the other outputs of function f at signing. (Intuitively, we
show that the exclusive-or sum yg,_ a® @ yﬁp is random, uniformly distributed and unknown.) Hence,

the exclusive-or sum yz 1 @ @yh, is random and uniformly distributed, and hence

; ; ; ; 1
Priv"=yie @y, | R]= Pr[yf#r1 & @y —uweuw |R)= 5

93

Non-Truncation Forgeries. ~Now, we find an upper bound for Prju" = ¢{ ® @ y;i | R®] for non-

truncation forgeries. To compute this upper bound, we define an event such that (1) the probability of
successful forgery is 1/2! when this event occurs, and (2) the probability of the complement of this event
has a negligible upper bound.

Using the events defined above and by standard conditioning, we obtain:
Priv" =yi® @ y;f; | R°] < Pr[w'i =yl® @ y;f; | Ci and D' and R*] +
r[C* or Dt | R®]
7"[w'Z =i @ ygl | C* and D' and R®] +
Pr[C® or D? | C? and R®] 4+ Pr[C" | R’
[
(D

IN
T

I
)

rlw =yl d @ y;f, | C% and D' and R®] +

Pr[D? | C' and R*] + Pr[C | R’),

since the following events are equivalent:

(Ctor D' | C7 and R*) = (D | C% and R®).

Event (5 and D and R?®) is the desired event mentioned earlier in this proof. If this event happens, then

there must exist an index j,1 < j < n} such that z’i does not collide with any other input to f, at either
message signing or verification of forgery ¢, and hence y =f (z;l

independent of any other terms in the expression y} @ @y ‘- Hence, y' @ <) ?J;f'. is random and

) is random, uniformly distributed and

uniformly distributed and hence,

.) R . 1

Priv" =yi® & y;f; | C* and D' and R’] = o

The other probabilities that appear in the expression for the total probability Pr[w’i = y'f O D yif,l | R*]
are bounded as in Claim 2, whose proof can be found below:

Claim 2
(a)

e p
Pr[C" | R*] < 2l+1 (logy gs + 3) + mlil (log, Ts +3).
(b)
Pr[Di | C7 and R*] < Qz+1 (1og2n +3).

Based on this claim, for an arbitrary forgery ¢ that is not a truncation, we obtain:

!
[n,
+ 2l+1 (10g2 qs + 3) l21_8|_1 (10g2 7 + 3) 2l+1 (10g2 n + 3)

Pr[w'i = y'li & @ yn | R®] < 7

1

2!

For any forgery, the upper bound is the maximum from the upper bounds for truncation and non-truncation
forgeries, hence,

l

. . . 1 q
Privi=yie® @ y;f; | R < 5 + 2l%(logQ qs +3) + l2l+1 (logs 7 +3)+ Ql+1 (logy n; + 3).

o4

Hence, for all ¢, verification queries, we obtain by union bound and using Fact 4 from the proof of Theorem

2:
Pr[Succ | R*] < ZPT =y e GByZ; | R°]
Qv 1 qs nl
< 2; o + W(IOgQ qs +3) + l2l+1 (log2 T +3)+ o (logy n; + 3)
2
Qvqs Qults s
= 21 + ol+1 (logy gs + 3) + 911 (logy T +3) + 121+1 (log2 1 +3).
Hence, by Claim 1,
q Qg qult I
Pr[Succ] < 2—1; + 2;)+i (logs gs + 3) + l;l+51 (log, Ts +3) + 12l+1 (log2] +3) +
sk s H
i1 (1082 s +3) + 77y (logy 7 +3).

Finally, when f vid F', the probability for adversary’s success is bounded as follows:

Prsz[Succ] < e+

quvqs Gulbs s
2l + 9l+1 (10g2 qs + 3) + [9l+1 (10g2 T + 3) + ZQH'I (10g2 T + 3)
qsht N

is

Bs Hs Hs
o s T

+3).

Proofs of Claims 1 and 2

Proof of Claim 1

q
Qv + T 2[48,1 (10g2 ds + 3) +

To find an upper bound for Pr[Rs], we define the following set (which enables us to define event R*):

Spr={2p, 1 <u<pel, 1 <v<n,} {1<v<Ek},

and events:

R} i+ Sp,k is collision-free,
and

s DS :

pnp+l — Rp+1,17 ifp gs.

1.1 is the true event, and R* = R}

3 S
gs.nq, - By convention, R

Based on these definitions,

Using standard conditioning, we have the recurrence relation:

PriR, 4] < PrR) .y | Ryl + PriR;).

95

RS

Qs,Ngs+1°

Hence,
PrlRs| = [st,nqSH]

qs Np

< Z Z PT[RIS),kH | Rf),k] + PT[RTJ]
p=1k=1
qs Np

= Z Z PT[R;,kH | Ry k]
p=1k=1

because Pr[Rj ;] = 0, since event Rj, is always true. In here, we also have that Pr[R; , ;| Ry , |=

PriR° | R*] = 0.

When event Rp ; is true, event R, .. 1 is true only when the collisions zk 41 = %, happened, where either

u< poru=p and v < k. By convention, zn = zzfﬂ if p gs. Hence, by union bound:

—1 ng k
PriR, .1 | Ry Z Yo Prizp =z | Byl +) Prizp, =20 | Ryl
u=1v=1 v=1

To compute a bound for the second sum, we note that
Zp =4 & (k+16v) x R =) sz,
and by using Facts 2 and 3 (Appendix A), we obtain

k
k
. Prisfy = | Ryl < gy (log b+ 3).
v=1
To compute a bound for the first sum, we split it into three terms based on the different values of v < n,,
relative to k£ + 1, and obtain

Ny k
S Prieb = | Ryl = S Priehyy =2t | Ryl + Prislyy = ot | Ryl +

Ny
S Pril, =z | RS,
v=k+2

(By convention, the probabilities for undefined collisions are set to zero. For instance, if kK + 1 > n,,, then
Pr(zp,, = 2}y | Ry] = 0 and the last sum is zero, since it does not have any terms.)

For the first term of the first sum, v < k, and
Zp =2y © (k+16v) xR =ua, &) | + (uep) X R.

Here, let m be defined as k + 1 <v = d x 2™ and d odd; hence, by Facts 2 and 3 (Appendix A), one can

show that
k k
ZPr[zi’H =2z, | R]‘f,,] < 2—(ogy k + 3).
v=1

Similarly, for the last term of the first sum, v > k + 2,

o sk el
S Pl =2t | Ril < nuT(logZ(nu ok ol) +3).
v=k+2

o6

(Note that if n, <k <1 < 0, the sum is set to zero, which is consistent with the convention for such sums).
Also, for the middle term of the first sum, v = k+1
2 = 2 & (pou) x R=1aj, ©a),
and, hence, using Fact 2, we have
2m
where 0 Su =d x 2™ and d is odd. Hence, <p

PT[ZkH _Zk+1 | R]

= k 2" n, ok el
E) Prizp, =z, | Ryl < W(logQ k+3)+ o %T(logz(nu ek el) +3),
V=

where 0 <u =d x 2™ and d is odd. Furthermore, using Fact 4 (Apgendix A), we have:

zn n m 2m
Z Plr[zg—i-l = Zg | R;ls),k:] = ;H—l (10g2(nu <:;>1) + 3) 21 < 2l+1 (10g2 Ny, + 3) 2l
v=1
Hence, the first sum becomes
p—1 ny p—1 - om
Z Z PT'[Z£+1 = Z;L | R;),k] S Z 2l+1 (].Og2 Ty + 3) 2l
u=1v=1 u=1
Using Fact 3 (Appendix A), and 0 Su =d x 2™ and d odd, we obtain <p
p—1
2" _pe
231 2l S 2l+1 (logQ(p <:>1) + 3)
u

by using Fact 4 (Appendix A). Hence, the first sum is bounded as follows:

Pl pel o
u
u=1v=1 u=1

Hence the bound of Pr(R;, ., | R; ;| becomes

p—1 ny k
[Rs i1 | Bopl < Z Z Prizg .y =z | Byl + Z Prizg, =2y | Byl
u=1v=1 v=1

-1
pel = iy k
< ST (logy(p 1) +3) + Z YEY (logy ny, + 3) + Sy (logy k + 3).

Returning to the computation of the bound for Pr[R?], we obtain

qs Mp
PT[RS] = qs,nqs]<ZZPT pk+1|R7]
p=1k=1
qs Mp 1 p—1 I{;
< 2:12 ST (logy(p 1) + 3) +221+1 (logy Ny + 3) + 2l+1(log2k+3)
p=1k=1
qs Mp qgs Np p—1
- ZZ 2l+1 (logs(p 1) + 3) +ZZZ l+1 (logg 7 + 3) +
p=1k=1 p=1lk=1u=1
gs MNp
ZZQHI (logy k +3)
p=1k=1

o7

In the first sum, since p 1 < g4, it follows that

qs Mp qs Mp

<1 sit
21 kzl S (082 (p 1) +3) 21 kzl o7 (082 65 +3) < oy (loga 5+ 3).
p p

The second sum yields:

qgs np p—1 qgs np p—1

1
ZZZ l+1 (logyny +3) < o log2—+3 ZZZ”“

p=1lk=1u=1 p=1lk=1u=1
since n,, g . One can also see that for: p =1, llnu = 0 since it has no terms, for p = 2 Z 1 Ty = N1,
etc. Hence,
gs np p—1 1 ,U.2
Z Z Z =noni +n3(n1 +n2) + +ng i+ +ng-1) < -(m+ +nqs)2 = s
2 21
p=1k=1u= 12
Hence, the second sum is bounded as follows:
qgs np p—1 2
Z Z Z l+1 (loggmy +3) < ZQHZ (logy — i ® +3).
p=1k=1u=1

In the third sum, we have k£ < n, and, using Fact 4 (Appendix A), we obtain:

gs Tp qs qs

ny(n, 1) Nplh

Z Z 2l+1 (logo k+3) < Z %(logQ np+3) < 12‘3_5 (logy 1y + 3)

p= 1 k=1 p:l p:l
2

7 7
S l22ls—|—2 (IOgZ Ts + 3)
Hence,
S qslts 2
PriRs] < IEs! (logy gs + 3) + 1221+2 (logy T +3)+ 1221+2 (logy T +3)

2
qspt o Hs

Remark With more care one can show that the sum Y % 122 " Q/il (logy k& + 3) is actually order

1/1092 , and, hence, for very large &*, the dominant term in the upper bound is 122, motrz (logy B2 +3). O

Proof of Claim 2

(a) The proof of this Claim is very similar to the proof of Claim 3 in the Proof of Theorem 2 (viz., Appendix
A). First, we choose an index j such that for any type of possible non-truncation forgery i, the input to
f at the verification of forgery 7, namely :E;i + 5" x R+ j x R*, does collide with any input to f during
message signing with low probability. Next, we compute an upper bound for these collisions.

All non-truncation forgeries can be partitioned in a similar manner as that used in the proof of Claim 3 of
Theorem 2 (Appendix A). That is, we define extensions of the plaintext of a signed message, which we call
the prefix case, and the complementary case, which we call non-prefix case. The non-prefix case includes
two separate subcases, namely when s” is different from any message ID p of any message p obtained at
signing (i.e., message (2P, p,w”)), or when there is a signed message p such that s* = p. Hence, in the

o8

latter subcase, there must be at least a block position j in the forged message z” that is different from
the corresponding block of the signed message p. This partition of all possible forgery types shows that a
forged message z'' = z¥ w’rf,i which is not a truncation, can be one of the following three complementary
types:

(a) Ip,1 <p < gqs:nl>np s =pand Vk,1 <k < n,:af =2t ie., the forged message is an extension
of message 2P (the prefix case). The non-prefix case consists of the following two forgery types:

(bl) " # p,Vp,1 < p < gy; and

(b2) 3p,1 < p < g5 : 8" = p, Tk, 1 < k < min(n},ny) : 2} # z%; ie., the forged message is obtained by
modifying a queried message starting with some block between the second and last block.

Now we choose index 7 mentioned above for each type of possible non-truncation forgeries, as follows: for
forgeries of type (a), j = n, + 1; for forgeries of type (bl), 7 = 1; and for forgeries of type (b2), j is the
smallest index such that x;-i # x? ,1 < j < min{n,,n;}. In all cases 1 < j < n}, and hence, the chosen
block m;-i is well defined.

Event C? implies that m}i + 5" x R+j x R* € S. Hence, by union bound

qs Tp
PriC" | R)< > > Priaf+s"xR+jxR =2 +px R+kx R* | R’].
p=1k=1
We write the inner sum as a sum of three terms, as follows:
Tip
ZPr[wg-Z—i—s” XR+jxR =1} +px R+ kxR"| R’
k=1
j-1 . .
= > Priaf+s"xR+jxR =a +px R+kxR"| R’]
k=1
+ Przf+s"xR+jx R =2l +px R+ jxR*| R’
'p
+ > Prlzf+s"xR+jxR =1l +px R+ kxR | R’
k=j+1
By the convention adopted abpve, _the probability terms are zero for undefined collision events. (For
example, if j > n,, then Priz} +s" x R+ j x R* = ¥ +px R+ j x R* | R¥] = 0.) For the collision
x;-i + 8" X R+jx R* =2} +px R+ j x R*, we have (s" (:)p) X R =z}, @wé’ In this expression, if s = p,
then by the choice of index j we are in case (b2) where :1:7 # z, and the probability of this collision event
is zero. If s" # p, then using Fact 2 (Appendix A), we have

. . om
Priz} +s" xR+ jx R* =z} +px R+j x R" | RS]S?,
where s ©p =d x 2™ if s > p, or pes =dx 2™ if p . For, the other sums, in a manner similar to
the one used in Claim 1, we have:
i1 . .
ZPr[xg-z—l—s” XR+jxR =2 +px R+kxR"| R’

k=1
Tp

+ Z Pr[m}i—l—s'iXR—I—jXR*zwi—i—pxR—i-ka*|Rs]
k=j+1

n
< 2l—f1(10g2 np + 3).

99

Hence, by using Fact 4 (Appendix A), we have

qs Tp qs
o o i 2m
SN Priai+s"xR+jx R =2 +px R+kxR* | R*] <) o +2M(log2np+3)
p=1k=1 p=1
qs
2m s

IN

In the first sum, Zp " 2, , we use the fact that 1 < p,s" < q,,p # s" (as shown in Case (b2) above, the

probability is zero when p = s), hence

qs S’i—l Qs
2m 2m 2m
> 5 = Tt X o
— 2 — 2 - 2
p—l p—l p:5’1+1
s el Vi qs &5 o1 v
< 2l+1 (logy(s" 1) +3) + T(logQ(qs st el) 4+ 3)
q
< §z+1 (logy(gs 1) +3) < 21+1 (log g5 + 3)
Hence,

(b) We find an upper bound for Pr[D? | C? and R®] in a manner very similar to the one used in Claim 3(c)
of the Proof of Theorem 3 (viz., Appendix B). Since the message ID does not matter in this case (since all
the elements of V; have the same message ID s", then the bound is identical

Pr[Di | C? and R®] < logy n) + 3).

21+1 (

60

Appendix D — Proof [Security of stateful XEBCS-XOR in a Message-Integrity Attack]

Throughout this proof, we use the same notation as in the Proof for Security of the XCBC$-XOR in a
Message-Integrity Attack, Appendix A, and the same facts (i.e., Facts 1 ~4). Unless mentioned otherwise,
we focus on the probability for adversary’s success when f E G, and, for simplicity, we will drop the
f Ea s subscript from the probability equations.

Notation. Let zi’, 1 <p <ge,1 <k < nybe the hidden ciphertext blocks at the encryption of message p;

i.e., for encrypted message z? = z w%p, we have

2 = flel+pxR+kxR),1<k<n,
ngﬂ = f(x?zpﬂ +p x R).

Let z;i, 1 <i< gyl <j<n.+1 bethe hidden ciphertext blocks at the decryption of forgery i; i.e., for the
forgery y"* = yff ygg ygg 1 using the message identifier (ID) s" (5" < q.), we have

To find an upper bound on the probability of an adversary’s success we use the same proof technique as
for the XCBC$-XOR scheme. That is, we (1) define several types of events on which we condition the
adversary’s success, (2) express the upper bound in terms of the conditional probabilities obtained, and
(3) compute upper bounds on these probabilities.

Conditioning Events. To compute an upper bound on the probability of successful forgery, we choose
three conditioning events based on collisions in the inputs of f and f~!. We introduce the sets:

S {Z£71SPSQe71Sk§np+l}a

Vi« {2},2] ¢ 5,1<j<nj+1},

where S is the set of all the hidden ciphertext blocks (outputs of function f at encryption), and V; is the
set of all the inputs of function f~! at decryption of query i that are not in S. Based on sets S and V;, we
introduce the following collision events that arise at the verification of forgery (y", s"):

ct oV =0.

Event C* includes all instances when inputs of f~! at forgery decryption collide with outputs of function
f at message encryption. Next we define event D" as follows:

D' : Fj1<j<ni+1:2 €V,
andz;-i;éz'i,VzglEwaj#malﬁmﬁng"‘l-

m

Event D’ states that there is at least one “new” hidden ciphertext block for forgery i that does not collide

with any other “new” hidden ciphertext block for forgery i, where “new” hidden ciphertext blocks refers
to hidden ciphertext blocks that are not in the set of hidden ciphertext blocks at encryption, namely S. It
is clear that the definition for D* makes sense only when event C” is false.

The rationale for introducing events C* (or, actually, E) and D' is similar to the one used in the proof
of Theorem 2 (Appendix A). That is, we want to find a desirable event which states that there exists a
hidden ciphertext block that does not collide with any other output of f at message encryption or with
any other input to f~' at the decryption of forgery i. Clearly, if this event is true, then the probability of

61

verification passing is 1/2! if f E q s, where we use the reduction from f EFto f E q s as defined in
Appendix A (Fact 1). To find this event, however, we must ensure that all other collisions that that may
lead to the discovery of R or R* are also ruled out for this block (viz., Example 3 in Appendix C). For this
reason, we introduce event R® defined below.

R ¢ 20 #2,,1<p,s<qe,1<k<n,+1,1<t<ng+1,(pk)#(st).

Event R states that the set S is collision-free. Note that event R® is independent of any forgery 1.

Upper bound on the Probability of Successful Forgery. Fact 1 of Appendix A reduces the problem
to finding an upper bound for Prf Ro [Succ], and
S

olpto 1) + Pr » [Succ].

PTf@F[SuCC] S €t g r&as

Unless we state otherwise, assume that f & G (and drop this subscript from Prf]i . [Succ].)
S

By standard conditioning, we have

Pr[Succ] < Pr[Succ | R°] + Pr[Re].
The second term in the sum is bounded as in the following Claim:

Claim 1

fre(pe 1)
[291+1

e
[291+1

S5 Gelte

" He
PT[R] < [20+1

(logs 7 +3)+

(logy ge +3) +

The proof of Claim 1 is similar to the proof of Claim 1 of Appendix C, and the extra term £ iz(gffll) appears

because of the distinction between f & P! (since f & Ggs) and f Sy

To compute an upper bound for the probability of successful forgery, when event R® is true, we note that
the adversary is successful if one of his g, forgeries is (y", s") is successful, where y" =y} y, . Hence,

by union bound, the probability of adversary’s success for all ¢, verification queries (when f Eqg g) is:

qu
Pr[Succ | R°] < ZP’/’[(L‘Z;_H =z & xﬁ; | R?].
i=1
Hence, we first compute the probability of adversary’s success when a single forgery verification is allowed;
i.e., we compute Pr[Succ | R?. For this computation, we partition the space of all possible forgeries into
(1) truncation and (2) non-truncation forgeries.

Truncation Forgeries. We call truncation a forgery y"* = y/ y;i 4 together with a message identifier st
(5" < q) such that there exists a ciphertext message y? = v yflp_H where s’ = p and y} = y},Vk,1 <
E<n;+1 ,+1 <n

In this case, for any 1 < j <n! + 1 we have:

2 =25V, 1 <j <nj+1,

and thus

of = f 1) e x Rejx R = f () ©px Rej x R =a?,

62

for any 1 < j <n!, and
yy 41 = f_l(zg;+1) &s"x R = f_l(zz;_H) ©p X R
= wi,ﬁl%—pxR%—(n;—l—l)XR*@pXR:xZ;H%—(n;—i—l)XR*.

Hence, the integrity condition
17 _n 1
Tprp1 = T1 © o Ty

becomes
xﬁ2+1+(n;+1)xR*:x§’@ @ZL‘Z;,
where 2%, ,xfl 14y Are constants (since nj+1 < n,). Hence, by Fact 2, we have for the truncation forgery
i . . . om
Prlzy g =ai® oz | R < o,

where n; +1 =d x 2™ and d is odd. Thus, since 2™ < n! + 1, we have

ni+1

Prigp =2\ ® ay | R < 51

Non-Truncation Forgeries. Now, we find an upper bound for Pr[:zc;f,_Jrl =zf® @2 | R for non-

truncation forgeries. To compute this upper bound, we define an event such that (1) the probability of
successful forgery is 1/2! when this event occurs, and (2) the probability of the complement of this event
has a negligible upper bound.

Using the events defined above and by standard conditioning, we obtain:
Pr[x;fgﬂ =zl @ IEZ; | R]] < Pr[mglﬁl =i o ac;ffi | C% and D' and R?] +
Pr[C" or D | R
PT[ZE'ZIH =z'e & x”, | C% and D* and R°] 4+
Pr[C® or D? | C? and R°] + Pr[C" | R?|
= Pr[x',f,i_i_l =zle o x” | C% and D' and R®] +
Pr(D7 | C% and R°] + Pr[Cl | Re),

IN

since the following events are equivalent:

(C? or Di | C% and R®) = (D | C? and R®).

Event @ and D and R°) is the desired event mentioned earlier in this proof. If this event happens, then

1

Pr[:rﬁgﬂ =i @ 3:”/ | C% and D' and R®] = o
The other probabilities that appear in the expression for the total probability Pr[wﬁ; = :Jc'fEB EB:EZ; | R
are bounded as in Claim 2, whose proof is similar to that of Claim 2 in Appendix C.

Claim 2
(a)

63

(b)
n; + 1

Pr[D? | C% and R?] < oI T (logy(n; + 1) + 3).

Based on this claim, for an arbitrary forgery ¢ that is not a truncation, we obtain:

!

n; +1
12”1 (logy 7 +3)+ 2”1 (logy(nt + 1) + 3).

)) 1
Pr[$,r§’i+1 =z'® @ $'Z/ | R] < o + 5T 2[+1 (logy ge +3) +

For any forgery, the upper bound is the maximum from the upper bounds for truncation and non-truncation
forgeries, hence,

~ ~ ~ 1 q U w n;+1
Pr[x',i,ﬁl =z @ @x',f,i | Rf] < ?+2l—j1(log2%+3)+ lQlil(lO 5 le +3) + o (logy(n); + 1) + 3).

Hence, for all g, verification queries, we obtain by union bound,

PrlSucc | RY] < Y Priali, =si® @zl | R

<y ! 1 e (1og, He i+l
< 2; 5+ (08,0 +3) + l25+1(og27+3)+ it (loga(nj + 1) + 3)
quvd qull
= 21 + 2?& (logs ge + 3) + l2vl+i (logy Te +3)+ l2l+1 (log2 7 +3).
Hence, by Claim 1,
Q@ | Gl Qult 1
PriSucd < 5+ 2l (logy e +3) + 0t (logy £F 4 8) + L (logy B +3) +

Gelle /1' ll'e(ﬂe <:>l)
17T (logy ge +3) + mﬁ(logz 7t 3) + T

Finally, when f i F', the probability for adversary’s success is bounded as follows:

oo (poy 1)
P'rsz[Succ] < e+ I
qvq Qult
21 + o7 (1082 +3) + l2vl+el (logy T +3) + l2l+1 (log, & T +3) +
2
Gefte He He (Ne <:i’l)
1ol (logg ge +3) + 12ol41 (log2 T +3) + Tl
_ poo (1o 1)
= et +—+ l2l+1(l g27+3)
He He He He fre(pe 1)
ot ot at T prmlon T)+ Sy

64

