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Abstract 

 
Ad hoc routing protocols have been designed to 

efficiently reroute traffic when confronted with network 
congestion, faulty nodes, and dynamically changing 
topologies. The common design goal of reactive, 
proactive, and hybrid ad hoc routing protocols is to 
faithfully route packets from a source node to a 
destination node while maintaining a satisfactory level 
of service in a resource-constrained environment. 
Detecting malicious nodes in an open ad hoc network 
in which participating nodes have no previous security 
associations presents a number of challenges not faced 
by traditional wired networks. Traffic monitoring in 
wired networks is usually performed at switches, 
routers and gateways, but an ad hoc network does not 
have these types of network elements where the 
Intrusion Detection System (IDS) can collect and 
analyze audit data for the entire network. A number of 
neighbor-monitoring, trust-building, and cluster-based 
voting schemes have been proposed in the research to 
enable the detection and reporting of malicious activity 
in ad hoc networks. The resources consumed by ad hoc 
network member nodes to monitor, detect, report, and 
diagnose malicious activity, however, may be greater 
than simply rerouting packets through a different 
available path. This paper presents a method for 
determining conditions under which critical nodes 
should be monitored, describes the details of a critical 
node test implementation, presents experimental 
results, and offers a new approach for conserving the 
limited resources of an ad hoc network IDS. 

Keywords: mobile ad hoc network, MANET, 
intrusion detection, IDS, security, edge-cut, vertex-cut.  
 
1. Introduction 
 

Mobile ad hoc networks (MANETs) present a 
number of unique problems for Intrusion Detection 
Systems (IDS). Network traffic can be monitored on a 
wired network segment, but ad hoc nodes can only 
monitor network traffic within their observable radio 

transmission range. A wired network under a single 
administrative domain allows for discovery, repair, 
response, and forensics of suspicious nodes. A 
MANET is most likely not under a single 
administrative domain, making it difficult to perform 
any kind of centralized management or control. In an 
ad hoc network, malicious nodes may enter and leave 
the immediate radio transmission range at random 
intervals, may collude with other malicious nodes to 
disrupt network activity and avoid detection, or behave 
maliciously only intermittently, further complicating 
their detection. A node that sends out false routing 
information could be a compromised node, or merely a 
node that has a temporarily stale routing table due to 
volatile physical conditions. Packets may be dropped 
due to network congestion or because a malicious node 
is not faithfully executing a routing algorithm [1].   

Researchers have proposed a number of 
collaborative IDS systems to address these challenges. 
In general, collaborative IDSs will perform best in a 
densely populated MANET with limited mobility, and 
will perform worse in a sparsely populated MANET 
with significant mobility. The effectiveness of a 
collaborative IDS also depends on the amount and 
trustworthiness of data that can be collected by each 
node. The longer the nodes are members of the 
MANET, the greater the availability of meaningful 
data for further analysis. In a MANET with a high 
degree of mobility, if the number of routing error 
messages caused by legitimate reasons far exceeds the 
number of routing error messages caused due to the 
presence of malicious nodes, the effectiveness or 
benefit of an IDS may be severely limited. The damage 
that could be caused by a malicious node in highly 
mobile environment would, however, also be minimal. 
Mobility introduces additional difficulty in setting up a 
system of cooperating nodes in an IDS.  

Ad hoc networks comprised of stationary sensors 
and mobile collector nodes may be less ephemeral and 
less mobile, while ad hoc networks comprised of 
personal handheld devices may be characterized by 
sporadic participation of individual members. A node’s 
movements cannot be restricted in order to let the IDS 



cooperate or collect data and a node cannot be 
expected to monitor the same physical area for an 
extended period of time. A single node may be unable 
to obtain a large enough sample size of data to 
accurately diagnose other nodes.  

MANETs with loose or no prior security 
associations are more difficult to diagnose than a 
MANETs comprised of nodes from the same 
organization with strong security associations and 
access to higher-level security services. Establishing 
trust in an open network in which higher-level security 
services are unavailable can be hampered by the short-
lived presence of both collaborating and malicious 
nodes. In addition to having no previously established 
trust associations, nodes in an open ad hoc network 
have little incentive for reciprocity to faithfully execute 
a routing protocol or provide a minimum level of 
service. Closed ad hoc networks that support critical 
applications may not be able to tolerate the presence of 
malicious nodes; fortunately closed networks can more 
easily establish prior trust associations for a 
collaborative IDS. A closed ad hoc network is at a 
greater risk by allowing the extended presence of 
malicious nodes, but more likely to have preinstalled 
security mechanisms to detect these malicious nodes. 
Malicious nodes in sparsely populated networks can be 
more harmful than malicious nodes in a densely 
populated network since these nodes can effectively 
not only disrupt communication but also disconnect the 
network. 

The level of effort required of resource constrained 
devices to monitor, detect, and diagnose malicious 
activity in a dynamic ad hoc network may be too costly 
when compared to the cost of simply rerouting packets 
through an alternative path. For example, in a densely 
populated network where several alternative paths are 
typically available, selecting an alternative route may 
be a more judicious use of limited resources. 
Alternatively, in some situations as we describe in this 
paper, the ad hoc network should expend additional 
resources to monitor critical nodes. In this paper we 
provide the motivation and implementation details for 
detecting critical nodes in an ad hoc network.   

The paper is organized as follows: Section 1 
provides an introduction to ad hoc IDS and the 
problem this paper addresses, Section 2 provides a 
brief overview of previous research, Section 3 
describes our approach to detecting critical nodes, 
Section 4 provides implementation details and 
illustrative examples, Section 5 summarizes our 
experimental results, Section 6 outlines future research 
topics, Section 7 concludes the paper, and Section 8 
includes relevant references. 
 

2. Related Work 
 

A number of IDS techniques have been proposed in 
the research literature. Moreover, a number of trust-
building and cluster-based voting schemes have been 
proposed to enable the sharing and vetting of 
messages, and data, generated and gathered by IDS 
systems. Zhang and Lee describe a distributed and 
collaborative anomaly detection-based IDS for ad hoc 
networks [2, 3]. Tseng et al. describe an approach that 
involves the use of finite state machines for specifying 
correct AODV routing behavior and distributed 
network monitors for detecting run-time violation of 
the specifications [4]. Pirzada and McDonald present a 
method for building confidence measures of route 
trustworthiness without a central trust authority. The 
authors also present a concise summary of previous 
work in the area of establishing trust in ad hoc 
networks [5].  Theodorakopoulos and Baras present a 
method for establishing trust metrics and evaluating 
trust [6]. Michiardi and Molva assign a value to the 
“reputation” of a node and use this information to 
identify misbehaving nodes and cooperate only with 
nodes with trusted reputations [7]. Albers and Camp 
couple a trust-based mechanism with a mobile agent 
based intrusion detection system, but do not discuss the 
security implications or overhead needed to secure the 
network and individual nodes from the mobile agents 
themselves [8]. Sun, Wu and Pooch introduce a 
geographic zone-based intrusion detection framework 
that uses location-aware zone gateway nodes to collect 
and aggregate alerts from intrazone nodes. Gateway 
nodes in neighboring zones can then further collaborate 
to perform intrusion detection tasks in a wider area and 
to attempt to reduce false positive alarms [9]. 

 
3. Detecting Critical Nodes 
 

The approach described in this paper is built around 
the notion of a critical node in an ad hoc network. Our 
definition of a critical node is a node whose failure or 
malicious behavior disconnects or significantly 
degrades the performance of the network. Once 
identified, a critical node can be the focus of more 
resource intensive monitoring or other diagnostic 
measures. If a node is not considered critical, this 
metric can be used to help decide if the application or 
the risk environment warrant the expenditure of the 
additional resources required to monitor, diagnose, and 
alert other nodes about the problem. In order to detect a 
critical node we look towards a graph theoretic 
approach to detect a vertex-cut and an edge-cut. A 
vertex-cut is a set of vertices whose removal produces 
a subgraph with more components than the original 



graph. A cut-vertex, or articulation point, is a vertex-
cut consisting of a single vertex. An edge-cut is a set of 
edges whose removal produces a subgraph with more 
components than the original graph. A cut-edge, or 
bridge, is an edge-cut consisting of a single edge. 
Although the cut-vertex or cut-edge of a graph G can 
be determined by applying a straight forward algorithm 
[14], finding a cut-vertex in the graphical 
representation of an ad hoc network is not as straight-
forward, since the nodes cannot be assumed to be 
stationary. A network discovery algorithm can give an 
approximation of the network topology, but the value 
of such an approximation in performing any kind of 
network diagnosis or intrusion detection depends on 
the degree of mobility of the nodes.     

Determining the global network topology in a 
mobile ad hoc network given the time delays of the 
diagnostic packets and the mobility of the nodes makes 
this task futile, but determining an approximation of 
this topology, or subset of this topology, within a 
certain time frame may be useful. An approximation of 
the network topology can still provide useful 
information about network density, network mobility, 
critical paths, and critical nodes. Even with the 
uncertainty associated with correctly reconstructing the 
network topology for a given time period, this 
additional information can help reduce the resources 
consumed to monitor all nodes in the absence of this 
information.  

The critical node test detects nodes whose failure or 
malicious behavior disconnects or significantly 
degrades the performance of the network (i.e. 
introduces unacceptably long alternative paths). In an 
effort to further reduce the number of tests performed, 
a lightweight trigger mechanism monitors network 
traffic and initiates a critical node test when it suspects 
such a condition might exist. The trigger mechanism is 
designed to allow false positives that the critical node 
test will later screen out. The only false-negatives that 
can occur are when there is no traffic to analyze on a 
cut-edge, but this condition is most likely short-lived 
and of no consequence. The trigger mechanism 
monitors the number of connections served by the test 
node as well as the number of packets traversing the 
test node. Note that the trigger itself can also serve as a 
lightweight alternative to the critical node test. The 
node performing the test is referred to as the testing 
node, and the node being tested is referred to as the 
node under test.  

The critical node test implementation makes 
extensive use of the ip, route, and ping utilities. The ip 
utility is a TCP/IP interface configuration and routing 
utility that configures the network interfaces. The route 
utility manipulates the kernel's IP routing tables. Its 
primary purpose is to set up static routes to specific 

hosts or networks via an interface after it has been 
configured with the ifconfig program. When used 
together, ip route provides the necessary tools for 
manipulating any of the routing tables – such as 
displaying routes, routing cache, adding routes, 
deleting routes, altering existing routes, getting route 
information, and clearing routing tables. 

Three steps are required to detect whether a testing 
node shares a critical link with its neighbor. The first 
step is to temporarily modify the testing node’s routing 
table to allow only one communication link to be 
operational at a time, while blocking communication 
through all others. The enabled communication link 
will be between the testing node and a node other than 
the node under test. Each communication link will be 
tested sequentially in this manner to determine if an 
alternative path to the link under test exists. If an 
alternative path exists, then the link is not critical 
because its removal will not disconnect the network. In 
order to temporarily change the routing tables, we 
route all the outgoing network traffic through the link 
shared with a neighbor node other than the node under 
test, and execute the following commands: 

 
#ip route change <network_area>/24 via <neighbor_node> 

  
The second step is for the host to attempt to 

discover an alternative path by using ping to the node 
under test without using the suspected cut-edge 
between the testing node and the node under test. To 
discover an alternative path to the node under test, the 
testing node executes the following command: 

 
#ping –c 5 –s 10 <node_under_test> -A -R 

 
Where –c is the number of pings that the host 

executes, -s is the number of data bytes to be sent, -A 
is the audit flag, and the –R flag returns the route, if 
exists, to the <node_under_test> node. Once the results 
of the ping are returned, the network routing table is 
restored during the third and final step to its initial 
configuration as follows: 

 
#ip route del <network_area >/24 via <neighbor_node> dev wlan0  
#ip route add <network_area>/24 dev wlan0 

 
Once a critical link is detected, the host node may 

choose expend additional resources to initiate an IDS 
module that is more resource intensive, such as a 
traffic monitoring watchdog module or collaborative 
IDS [10, 11, 12]. If there is no critical link then the 
host can use the lighter weight modules to continue to 
monitor network traffic. More experimental data is 
needed to find the right balance between more and less 
resource intensive IDS techniques. The difficulty in 



characterizing typical behavior in an ad hoc network is 
further complicated by the lack of publicly available 
MANET traffic traces. 

Altering the routing tables to perform the critical 
node test should not disrupt normal traffic, perturb any 
exiting IDS, or alert neighboring nodes that they are 
being tested. The current implementation uses ip rules 
that cause some level of traffic disruption during the 
critical node test. Currently, all the packets traversing 
the testing node through the shared communication 
link with the node under test and the communication 
link being used as an alternate path experiences some 
packet loss as shown in Figure 5. AODV RREQ and 
RREP packets will be affected since they are 
encapsulated in UDP packets, but there are no RERR 
messages created by the host node during the critical 
test and the AODV HELLO messages are completely 
unaffected. This is very important, because after the 
end of the critical test all the previously established 
routes are restored, and the routing table is restored to 
its original state. The duration of the critical node test 
depends on the network density and topology. Critical 
node conditions, however, are likely to occur when a 
node has a relatively small degree and therefore fewer 
tests are required. We are currently investigating ways 
to eliminate this traffic disruption completely for 
topologies in which there is no critical node.  

The purpose of the trigger mechanism is to 
minimize the invocation of the critical node test.  The 
trigger mechanism is a light weight monitor that calls 
the critical node test only when it suspects the 
neighboring nodes might be critical. The trigger 
mechanism runs on a testing node and records the 
Ethernet and IP headers of each incoming and outgoing 
packet that is routed through the testing node. The 
testing node does not store any packets it sends or 
receives; instead it tabulates statistics on the Ethernet 
and IP packet headers. The testing node tabulates 
information such as the ID of each neighboring node, 
its IP address, MAC address, and the time that the 
packet was forwarded. In addition, the testing node 
counts the number peer-to-peer pair connections that 
traverse the testing node. The term connection refers to 
a pair of nodes that have a peer-to-peer TCP, UDP, or 
ICMP connection. This connection is not the same as a 
TCP session. These peer-to-peer connections are 
associated with the neighbor's MAC Ethernet source 
address, if the packet is incoming, or with the 
neighbor's MAC Ethernet destination address, if the 
packet is outgoing. The trigger mechanism can 
distinguish between the two cases because if the testing 
node’s MAC address is in the Ethernet destination 
field, that means the destination is the testing node, 
therefore it is an incoming packet. If the testing node’s 
MAC address is located in the Ethernet destination 

field this means that the host is either generating this 
packet or the host is forwarding this packet. The trigger 
mechanism creates two tables: incoming packets and 
outgoing packets. From these tables the trigger 
mechanism tries to determine if several nodes rely on a 
communication link incident to the testing node or if 
the incident communication link is responsible for a 
significant amount of traffic. If either of these of these 
conditions occurs, the trigger mechanism can invoke 
the critical node test. The trigger mechanism is 
configurable and requires no changes to the routing 
table. The approach presented in this paper allows the 
node to make an informed decision on how it will 
expend its resources. Neither the trigger mechanism 
nor the critical node tests need to be executed by all the 
nodes in the network. Moreover, they do not require 
the collaboration of other nodes in the network beyond 
the faithful execution of the TCP/IP protocols. The 
following section will provide detailed examples of 
how the trigger mechanism and the critical node test 
work. 
 
4. Implementation Details and Examples 
 

The implementation described in this paper was 
tested using the mLab testbed that allows users to 
create arbitrary network topologies. By changing the 
logical topology of the network, mLab users can 
conduct tests in an ad hoc network without having to 
physically move the nodes. mLab controls the test 
scenarios through a wired interface, while the ad hoc 
nodes communicate through a wireless interface [15].  

  

 
“Figure 1. A sample topology generated by mLab 

used to demonstrate the trigger mechanism and the 
critical node test.” 

 
The topology shown in Figure 1 is used to show 

how the trigger mechanism collects information and 
determines if a node and its incident communication 
links warrant the invocation of the critical node test. 

In order to illustrate the detection of critical nodes, 
we first generate some test traffic in the network. TCP 
socket servers are initiated at nodes 33 and 22 to 
generate TCP traffic. Two TCP socket clients are 



initiated at nodes 36 and 28. These clients send simple 
socket messages every 2 to 3 seconds to the servers. 
Node 37 initiates a ping of node 33 and similarly node 
35 initiates a ping of node 24 in order to create ICMP 
packet traffic within the network. Finally two Secure 
Shell (SSH) sessions are initiated between node 27 and 
node 37, and node 36 and node 27. The trigger 
mechanism begins by separating the incoming and 
outgoing activity into two categories: broadcast and 
non-broadcast packets.   

  

 
 
“Figure 2. An AODV broadcast packet that was 

sent by node 29 and captured by node ‘testing node 
21’.” 

 
Figure 2 shows an AODV broadcast packet that has 

been sent by node 29 and captured by node testing 
node 21. This broadcast packet illustrates how testing 
node 21 can associate node 29’s source IP address of 
192.168.106.29 with its MAC address 0:c:41:dd:6b:95.  
This is enabled by the AODV Hello messages with an 
Ethernet destination address ff:ff:ff:ff:ff:ff that are 
broadcast every 0.5 or 1 second. Similarly, each node 
can build a table mapping its neighbors’ MAC 
addresses with their corresponding IP addresses. 

Figure 3 shows a sample incoming non-broadcast 
packet sent by node 23 and captured by testing node 
21. Testing node 21 has a MAC address of 
0:c:41:dd:69:4e and IP address 192.168.106.21. 
Packets without an Ethernet destination address of 
ff:ff:ff:ff:ff:ff are considered to be non-broadcast. 
Having already created a table linking each of node 

21’s neighbors’ MAC address to their IP address, 
testing node 21 knows that MAC address 
0:60:b3:6a:5:1a belongs to node 23 (IP address 
192.168.106.33). This packet shows that the 
communication link between node 21 and node 23 
serves the connection between node 36 (IP address 
192.168.106.36) and node 33 (IP address 
192.168.106.33). 

Packets that belong to the same peer-to-peer 
connection have the same IP source and IP destination 
address pair in the IP header fields of every non-
broadcast packet. The trigger mechanism stores this 
information in two separate tables. One table 
summarizes all the incoming packets (in this case the 
testing node’s MAC is located in the Ethernet 
destination field). The other table stores the outgoing 
or forwarded packets (in this case the testing node’s 
MAC address is located in the Ethernet source field). If 
the host’s MAC address is not in the Ethernet 
destination field, then the packet is forwarded and the 
source-destination pair count is incremented.  
 

 
“Figure 3. A sample packet sent by node 23 and 

received by node 21.” 
 
For example, the first row of table 1 shows packets 

recorded by node 21 related to the peer-to-peer 
connection between IP source address 192.168.106.36 
and IP destination address 192.168.106.33. This 
connection relies on the communication link between 
node 21 and node 23 serves. Note that 152 packets 
have been logged with node 21 as the Ethernet 
Destination address and node 23 as Ethernet Source 
address. Using the same topology as shown in Figure 
1, the following example shows how testing node 21 
initiates the trigger mechanism. 



 
“Table 1. Incoming packets captured by node 21 (IP 

address 192.168.106.21). [Z=192.168.106]” 
 

Ethernet 
Source 
(Neighbor’s 
IP ) 

IP - 
Remote 
source 

IP – 
Remote 
Destination 

Number 
of 
packets 
recorded 

Z.36 Z.33 152
Z.23 Z.21 31
Z.22 Z.28 157
Z.35 Z.24 104
Z.37 Z.33 102
Z.37 Z.27 18
Z.36 Z.27 21

Z.23 

Total number of 
packets through node 23 585 

Z.33 Z.36 121
Z.26 Z.21 33
Z.33 Z.37 102
Z.26 Z.37 1Z.26 

Total number of 
packets through node 26 257 

Z.29 Z.21 4
Z.28 Z.22 264
Z.24 Z.35 104
Z.27 Z.37 21Z.29 

Total number of 
packets through node 29 393 

 
Table 2 shows the outgoing packets captured by 

node 21 after 70 seconds have elapsed under the traffic 
conditions described above. The number of sessions 
that the testing node serves can underscore the 
importance of its links with each of its neighbors. 
Table 2 shows that the link that testing node 21 
(192.168.106.21) shares with neighboring node 23 
(192.168.106.23) serves 8 different incoming 
connections. If this shared link fails, the remote IP 
sources that appear in the second column of the table 
must discover new routes to the corresponding nodes 
in the third column. 

The testing node can evaluate the network traffic by 
the total number of incoming and outgoing 
connections. Table 2 shows the outgoing packets 
captured by node 21 (IP address 192.168.106.21). Note 
that 8 connections are served between node 21 and 
node 23, 3 between node 21 and node 26, and 4 
between node 21 and node 29 during the test sample 
period. Since the link between node 21 and 23 serves 8 
of 15 outgoing connections it can be considered for 
additional testing. The trigger mechanism also notes 
that the communication link between node 21 and 
neighbor node 23 (192.168.106.23) is responsible for 
forwarding 585 out of 1235 packets. Depending on the 
sample duration and the configurable settings, the 
trigger mechanism can request a critical node test to 
determine if the communication link between node 21 
and 23 is a cut-edge.  

 

“Table 2. Outgoing packets captured by node 21 (IP 
address 192.168.106.21). [Z=192.168.106]” 

 
Ethernet 
Destination 
(Neighbor’
s IP ) 

IP - 
Remote 
source 

IP – Remote 
Destination 

Number 
of packets 
recorded 

Z.21 Z.23 36 
Z.33 Z.36 121 
Z.28 Z.22 264 
Z.24 Z.35 104 
Z.21 Z.37 1 
Z.26 Z.37 1 
Z.33 Z.37 101 
Z.27 Z.37 1 

Z.23 

Total number of 
packets through node 23 629 

Z.36 Z.33 152 
Z.21 Z.26 28 
Z.37 Z.33 102 Z.26 
Total number of 

packets through node 26 282 
Z.21 Z.29 2 
Z.22 Z.28 157 
Z.35 Z.24 104 
Z.37 Z.27 18 

Z.29 

Total number of 
packets through node 29  281 

 
Table 3 shows a summary of the total incoming and 

outgoing connection network traffic for testing node 
21. The shared communication link between node 21 
and node 23 serves most of the current forwarding 
activity. Therefore, either the communication link 
between node 21 and node 23 is supporting the 
exchange of large files or is a concentration point for 
the networks traffic. This link serves 9 different nodes 
of the ad hoc network (192.168.106.36, 
192.168.106.33, 192.168.106.23, 192.168.106.22, 
192.168.106.28, 192.168.106.35, 192.168.106.24, 
192.168.106.37 and 192.168.106.27) and 15 total 
different connections as shown in Table 3. This 
information is enough for the trigger mechanism to 
consider the link between testing node 21 and node 23 
(192.168.106.23) as a potential critical link and to 
initiate the critical node test.  

 
“Table 3. Total incoming and outgoing connections 

between nodes 21 and 23, 26, and 29. 
[Z=192.168.106]” 

 
IP Address 
of Node 
21’s 
Neighbors 

Incoming 
and 
outgoing 
packets per 
neighbor 

Total 
Incoming 
and 
Outgoing  
Connections 

Number 
of remote 
nodes 
served 

Z.23 1214 15 9 
Z.26 539 7 5 
Z.29 674 8 7 



 
The critical node test checks whether the testing 

node shares a critical link with node 23 by blocking all 
the neighbor edges except one and try to ping the 
specific node. In this example the only communication 
link that the routing table allows is through node 29.  
 

 
 

“Figure 4. The results of  ‘critical node test’ 
executed by testing node 21 (HOST) through node 29 
to node 23.” 
 

Testing node 21 temporarily changes the outgoing 
routing table. The routing table temporarily blocks all 
outgoing routing except a single link with one of its 
neighbors. In this example all traffic is forwarded 
through the shared communication link between 21 and 
29. Testing node 21 then attempts a ping to the node 23 
through node 29, without relying on shared 
communication link between node 21 and node 23. If 
the ping successfully finds a new route to the node 
under test without using the shared communication 
link between node 21 and node 23, then testing node 
21 concludes that node 21 and node 23 do not share a 
critical link. The routing tables are then restored.  If 
nodes 21 and 23 shared a critical link, or cut-edge, 
more resource intensive monitoring could be requested 
or alternative measures suitable to the risk environment 
could be taken. 

 
5. Experimental Results 
 

A series of experiments were conducted using the 
mLab testbed to examine the effectiveness of the 
critical node test, as the mLab test bed allows one to 

replay the same topology changes and traffic scenarios, 
in order to analyze the effects of each parameter 
individually. The goal of these experiments was to 
measure the computational and the communication 
load of the nodes under various traffic and mobility 
conditions. In addition, a comparison was made 
between operating a watchdog IDS continuously 
versus running the trigger/critical test mechanism to 
determine if and when the watchdog IDS should be 
activated. Unfortunately, since there is little to no 
experience with commercial MANET applications, any 
speculation on what constitutes high or low mobility is 
based mostly on intuition. 

 
The emulated ad hoc network was comprised of 10 

ARM and 2 ix86 architecture nodes. A heuristic 
algorithm was used to generate a fully connected graph 
every few minutes (depending on the mobility 
scenario). The results were collected after running 
almost one thousand consecutive topologies, with 
topology changes taking place every 5 to 10 minutes, 
depending on the mobility scenario. Another parameter 
in our experiments was the network traffic, which 
consisted of TCP, UDP/AODV and ICMP packets. 
The experiments were conducted under low (4 sockets) 
and higher (10 sockets) traffic conditions. Using the 
Linux tools under /proc, we measured CPU usage 
(total and per process), memory footprints, hard disk 
utilization and wireless network traffic.  

We also measured packet loss for each peer-to-peer 
connection, based on ICMP packets. A summary of the 
results and our conclusions is presented here and is 
displayed in figure 5. Detailed test conditions, 
adjacency matrices used to represent the logical 
topology, open source code, and test results can be 
found on our project web site.   

 
CPU: The watchdog IDS utilized, in most cases, an 

average of 60-70% of the CPU, while the 
trigger/critical mechanism utilized an average of about 
0.3% and under no conditions did it exceed 1%.  

Memory: The initial memory footprint of the 
watchdog was about 450KB, while the trigger/critical 
mechanism occupied about 125KB. Of course, since no 
other applications were running, the processes 
gradually dominated all of the available memory, in all 
cases.  

Hard disk: The rate at which data was written to 
and read from the hard disk was, on average, about 
double in the machines that the watchdog was running, 
than in the machines that ran the trigger / critical node 
test mechanism. 

Wireless network: The experiments indicate that 
packet loss is caused mainly because of sudden 
topology changes and increased traffic, ranging from 



1-2% loss for low mobility and traffic to 10-15% for 
high mobility and traffic. When the critical test 
mechanism test ran, it caused additional packet loss, as 
expected, but the overall packet loss only increased by 
an extra 2-4%, depending on the case. 

 
 X mobility, Y+Z traffic 

 Watchdog mCritical simple 
traffic 

Process 
CPU 79% 0.27% N/A 

Initial 
memory 
footprint 

456 KB 121 KB N/A 

Packet 
loss 7.80% 3.80% 1.40% 

    
 X' mobility, Y+Z traffic 

 Watchdog mCritical simple 
traffic 

Process 
CPU 75% 0.24% N/A 

Initial 
memory 
footprint 

443 KB 127 KB N/A 

Packet 
loss 4.60% 7.40% 4% 

    
 X mobility, Y'+Z traffic 

 Watchdog mCritical simple 
traffic 

Process 
CPU 34% 0,29% N/A 

Initial 
memory 
footprint 

446 KB 122 KB N/A 

Packet 
loss 1.40% 5.00% 1% 

 
Figure 5. A brief table of the experimental results. 

X stands for 7 topology changes in one hour, X’ for 14 
topology changes in one hour, Y for traffic created 
from 2 TCP and 2 UDP sockets, Y’ for traffic created 
from 5 TCP and 5 UDP sockets and Z for 5 peer-to-
peer ICMP (ping) connections every 3 seconds. 
 

Of course, one should always bear in mind, that 
these experiments were conducted in emulation, not in 
simulation, which implies that, these figures also 
depend on several factors that also cause packet loss, 
such as the wireless card temperature during the 
experiment, environmental interference, potential 
routing algorithm implementation problems, driver 
stability issues, etc. 

In conclusion, our experiments confirm that the 
trigger/critical node test mechanism is a lightweight 
solution that can be used in order to determine the 
proper conditions to activate a more demanding IDS 
[2, 3, 4]. When compared to running a watchdog IDS 
on all nodes under all conditions, the proposed 

mechanism offers a significant improvement in the 
efficient use of limited resources, and packet loss 
introduced by the critical node test is negligible 
compared to the packet loss resulting from the network 
mobility. 
 
6. Conclusions 
 

Members of an open ad hoc network are confronted 
with a dependence on other nodes, for which there are 
no previous security associations, to faithfully route 
packets to and from their source and destination, and to 
collaborate in the detection and notification of the 
presence of malicious or faulty nodes. Numerous ad 
hoc IDS methods for detecting malicious nodes have 
been simulated, fewer have been implemented, and 
given the scarcity of empirical data and the limited 
deployment of ad hoc networks in hostile 
environments, there is not much real-world experience 
in detecting malicious activity in ad hoc networks. If 
the total cost of running an ad hoc IDS exceeds the cost 
of rerouting traffic when confronted with network 
congestion, faulty nodes, or dynamically changing 
topologies, there will be little incentive for nodes to 
collaborate in open ad hoc networks. This paper 
presents a method for reducing the instances in which 
nodes must employ resource-consuming collaborative 
IDS techniques in open ad hoc networks in which the 
associations are ephemeral and there is no easily 
enforceable commitment for reciprocity.  

 
The examples provided in this paper illustrate how 

an ad hoc communication link and node can be tested 
to determine if the expenditure of additional resources 
to monitor the behavior of a neighboring node to detect 
malicious activity is warranted. This test is completed 
in a relatively short time window (usually a few 
seconds), without collaborating with any other nodes in 
the network. As a result, the local resources are used 
far more efficiently, but, when one considers the total 
network resources consumed, the approach provides 
more dramatic savings. The same techniques described 
in this paper may be used to detect critical links and to 
provide guidance for how the location of the nodes in 
an ad hoc network might be better physically arranged 
in order to provide more fault tolerance and better 
quality of service. 
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