
I N T E L L I G E N T A G E N T S

Agents for the Masses?
Jeffrey M. Bradshaw, Mark Greaves, and Heather Holmback, The Boeing Company
Tom Karygiannis and Wayne Jansen, National Institute of Standards and Technology
Barry G. Silverman, IntelliTek and the University of Pennsylvania
Niranjan Suri, Institute for Human and Machine Cognition, University of West Florida
Alex Wong, Sun Microsystems

MARCH/APRIL 1999 1094-7167/99/$10.00 © 1999 IEEE 53

AGENT TECHNOLOGY IS IN A
state of paradox. The field has never enjoyed
more energy and concomitant research pro-
gress, and yet the rate of uptake of new re-
search results in fielded systems has been
glacially slow. The few agents in the real world
of everyday applications generate more heat
than enlightenment; most are easily confused,
few collaborate except in trivial prearranged
fashion, and all enjoy little freedom of move-
ment. Significantly, the current trapped state of
our agents has less to do with lack of mobil-
ity mechanisms than with their unprepared-
ness to work fully in the open world of cyber-
space and to interoperate outside a tightly
circumscribed sphere of agent platforms and
domains. The kinds of agents that we want—
citizens of the wired world, equipped with
stamped passports and Berlitz traveler’s
guides explaining foreign phrases and places
that allow them to hail, meet, and greet agents
of any sort in the open landscape of the Inter-
net and, if not able to team up on a project, at
least able to ask intelligibly for directions—
these kinds of agents, alas, exist today only in
our imaginations (and, of course, in the vision
sections of our research proposals).

Actually building the sophisticated agent-
based systems of the future will require
research advances on at least three fronts:

• We must continue work on agent theory
so that many currently unanswered ques-

tions about the scope and limitations of
alternative approaches to agent design
can be addressed.

• We must make agent frameworks and
infrastructure powerful, interoperable, and
secure enough to support robust large-scale
coordinated problem-solving activity.1

• Perhaps more importantly, we must
develop new sorts of tools to help non-
specialists unlock the power of agent
technology.

The good news is that things are progress-
ing well on the first two fronts. Various initia-
tives are beginning to provide an early preview
of the faster, more reliable, and more secure
versions of the next-generation Internet that
our large-scale visions require. Middleware
and Internet technologies and standards are
now maturing to the point that agent frame-
work developers can rely on off-the-shelf prod-
ucts as a ready substrate to their own work,
rather than creating ad hoc alternatives from
scratch. Advances in the difficult theoretical

issues of dynamic agent communication, coor-
dination, and control are beginning to let us
better understand how to deploy large num-
bers of agents with confidence. Finally, recent
work in theory and infrastructure has yielded
exciting new kinds of blueprints for future sys-
tems that lie beyond the evolutionary devel-
opment of current technologies. From grids2

to Jini (see http://java.sun.com/products/jini),
these approaches aim to provide a universal
source of dynamically pluggable, pervasive,
and dependable computing power, while guar-
anteeing levels of security and quality of ser-
vice that will make new classes of agent appli-
cations possible.

However, a large and ugly chasm still sep-
arates the world of formal theory and infra-
structure from the world of practical nuts-and-
bolts agent-system development—this is
where the third research front comes in. If
agent technology is ever to become as widely
used as ordinary object technology is today,
we must create new sorts of tools to help non-
guru developers bridge the gaps between the-

IS IT POSSIBLE TO MAKE DEVELOPMENT OF SOPHISTICATED

AGENTS SIMPLE ENOUGH TO BE PRACTICAL? THIS ARTICLE

DISCUSSES THE AUTHORS’ THEORETICAL AND TOOL-CREATION

EFFORTS TO ANSWER THAT QUESTION IN THE AFFIRMATIVE.

ory, plumbing, and practice. Currently, full
appreciation of leading-edge developments in
agent theory and frameworks requires sophis-
ticated knowledge of speech-act theory, for-
mal semantics, linguistic pragmatics, logic,
security design, Internet and middleware tech-
nologies, distributed computing, planning, and
other disciplines that are not likely to be pres-
ent in a typical developer’s skill set. Without
good tools, rapid advances in theory and infra-
structure might paradoxically attenuate rather
than accelerate the adoption of agent technol-
ogy as members of the developer community
spin their wheels or ultimately give up in dis-
gust. Hence we must ask, is it possible to make
development of sophisticated agents simple
enough to be practical?

Fortunately, the agents community has not
completely neglected the question of tools.3

The DARPA CoABS program4 and comple-
mentary initiatives in Europe and Asia are
vigorously supporting research to accelerate
the development of scalable interoperable
agent theory and tools, and are promoting the
eventual adoption of standards through bod-
ies such as FIPA and the OMG. As part of
these efforts, we are working to extend the-
ory and create tools in two areas: agent com-
munication and agent management. Com-

mon to both areas is the theme of using
explicit representations of agent policiesto
help make interactions among agents and
with their environment more simple and reli-
able (see the “Policies” sidebar). This article
discusses our current research directions and
preliminary results in each of these areas.

Theory and tools for agent
communication

One of the few constants across competing
accounts of agenthood is the emphasis on an
agent’s capability to coordinate with other
agents through an explicit interagent commu-
nication language. This capability is vital to
the promise of large-scale interoperability: the
idea that sets of independently developed
agents will be able to usefully work together.
Conversely, we can trace many of the diffi-
culties in assembling reliable, flexible, inter-
operable agent systems to an agent’s commu-
nication subsystem. The problems span the
gamut from differing interpretations of the
core messaging protocols to inconsistent onto-
logical frameworks and disagreements about
the meanings of larger message sequences.
One way to address these problems, and

thereby to promote agent interoperability, is
to create standards-based tools that make it
easy for agent developers to “do the right
thing” and create agents that operate using a
common set of communication assumptions.
The tools would facilitate interoperability and
ensure robustness by generating appropriate
conversation policies. As we’ll show, we have
a concept for one type of tool that would help
developers using the same agent communica-
tion languageto guarantee that their message
sequences are consistent and conform to the
semantics of the ACL.

From agent messages to agent conversa-
tions. Our working hypothesis over the past
few years has been that agent communica-
tion is better modeled when conversations
rather than isolated messages are taken as the
primary unit of analysis.5As Terry Winograd
and Fernando Flores observe,

The issue here is one of finding the appropriate
domain of recurrence. Linguistic behavior can
be described in several distinct domains. The
relevant regularities are not in individual speech
acts (embodied in sentences) or in some kind of
explicit agreement about meanings. They appear
in the domain of conversation, in which succes-
sive speech acts are related to one another.6

54 IEEE INTELLIGENT SYSTEMS

Policies and exception handling: a fence and
an ambulance

Twas a dangerous cliff, as they freely confessed,
Though to walk near its crest was so pleasant;
But over its terrible edge there had slipped
A duke and full many a peasant.
So the people said something would have to be done,
But their project did not at all tally;
Some said, “Put a fence around the edge of the cliff,”
Some, “An ambulance down in the valley.
(Joseph Malins)

With the potential for increased power and freedom that agent systems
afford also come increased dangers and vulnerabilities. One of the most
important recent developments in agent technology has been the growing
momentum to find general management mechanisms for large-scale het-
erogeneous agent-based systems operating in open environments. It’s a
dangerous cliff. Do we need a fence or an ambulance? Or both?

With respect to the ambulance, Mark Klein and Chris Dellarocas at MIT
are developing a shared exception-handling service for agents.1 They char-
acterize this service as a kind of coordination doctor: “it knows about the
different ways multiagent systems can get ‘sick,’actively looks system-
wide for symptoms of such ‘illnesses,’and prescribes specific interventions
instantiated for this particular context from a body of general treatment
procedures.” The hope is that this approach will both simplify agent devel-
opment and make exception-handling behavior more effective and tunable.

We believe that the policy-based fences for agent communication
and management advocated in this article can complement and enhance
an exception handling approach. We are collaborating with MIT on an
experimental testbed that will integrate our KAoS agents and conversa-
tion policies with their exception-handling mechanisms. The policies
governing some set of agents aim to describe expected behavior in suf-
ficient detail that deviations can be easily detected. At the same time,
related policy support services help make compliance as easy as possi-

ble. Standing between the policy support and exception handling ser-
vices, shared enforcement mechanisms operate as a sort of “cop at the
top of the cliff” to warn of potential problems before they occur. When,
despite all precautions, an accident happens, the services of the excep-
tion handler are called as a last resort in to help repair the damage. In
this manner, the policy-based fences and the exception-handling ambu-
lances work together to ensure a safer environment for agent systems.

Beyond these initial considerations, a policy-based approach affords
other advantages, such as: reuse, efficiency, context-sensitivity, and
verification.

Reuse. In the domain of agent conversation, the requirement for reusable
policies has manifested itself with different names and somewhat differ-
ent concepts (such as FIPA’s interaction protocols,2 Jackal’s conversation
specifications,3 and COOL’s conversation plans4), but the current accel-
eration of convergence is heartening.5,6Policies encode successful pat-
terns among agents and their platforms, packaging them in a form when
they can be easily reused as occasion requires. We do something similar
in human discourse when we adopt rules of parliamentary procedure as a
way to structure a formal debate. Though the relationship among the
debating parties may be adversarial, there is a mutual recognition that
adopting common ground rules is in everyone’s best interest. While the
rules restrict our freedom and perhaps do not perfectly apply to every sit-
uation, we have the benefit of knowing that they have been tested and
modified over many years to facilitate greater efficiency and fairness. By
adopting such sets of rules when they apply, we reap the lessons learned
from previous analysis and experience while saving ourselves the time it
would have taken to reinvent them from scratch.

Efficiency. In addition to lightening the agent designers’ workload, ex-
plicit policies can often increase the runtime efficiency of the agents
themselves. For example, conversation policies reduce the agents’ in-

Informally, we can think of agent conversa-
tions as sequences of messages involving two
or more agents that are intended to bring
about a particular set of (perhaps jointly held)
goals. So, for example, a conversation be-
tween a purchasing agent and a supplier
agent might be intended to further the shared
goal of continuing an existing business rela-
tionship, and also further individual profit-
maximization goals. This focus on conver-
sational goals, rather than on particular
syntactic message-exchange patterns, marks
an important difference from the way devel-
opers think about typical computing com-
munication protocols. Individual agent con-
versations might admit side conversations
and a great deal of flexibility in message con-
tent and sequencing while remaining con-
sistent with the conversational goals and the
rules of semantics and pragmatics such as
those we discuss in the next subsection.
Developers thus must explicitly consider
issues related to planning rules and goal-
directed behavior when designing agent
communication.

Conversation policies.Although human con-
versation normally proceeds quite effectively
without spelling out specific rules and hierar-

chies in advance, as agent developers we have
found it useful to define prescriptive conver-
sation policies. In practice, this means that
before entering into a conversation, the agents
involved first mutually agree on a given con-
versation policy—or set of policies—that will
structure their interaction. Typically, these poli-
cies will have been previously defined by an
agent developer and placed in a commonly
accessible library (although they could of
course have been coded into the behavioral
logic of the agents themselves). Once the gov-
erning conversation policies have been agreed
to, the agents involved abide by the constraints
defined in the policy for the duration of that
conversation.

We define conversation policies to be sets
of declaratively specifiable constraints on
agent conversation that can abstract from
some of the details of the particular ACL and
agent implementation.7 Specific instances of
agent conversations relate to their governing
policies as a token relates to its type. The con-
straints that make up a policy can range from
the very general (for example, that any con-
tract conversation must include a negotiation
phase) to the very specific (in KQML, an
ASK-IFmessage type must be followed by a
TELLmessage type or an error primitive). An

interesting class of policies is concerned with
semantic message constraints, because they
involve restrictions on the meanings that indi-
vidual messages can be used to convey at each
stage of the conversation. For example, in an
auction, one policy might restrict a price mes-
sage to mean that the agent is committed to
paying the price if the bid is accepted. We can
also identify distinct policies that regulate
pragmatic issues in communication, such as
interruption and turn-taking behavior.

In the past, we have used small augmented

MARCH/APRIL 1999 55

A->B: Offer
1

B->A: Accept

B: (Silence) B->A: Decline

3

2 4

Figure 1. The KAoS Offer conversation policy. Note that
“silence” is not a communicative act in the way we have
been using the term.

ferential burden in comparison to unrestricted agent dialogue by limit-
ing the space of alternative conversational productions that they need to
consider. Because a significant measure of conversational planning for
routine interactions can be encoded in conversation policies offline and
in advance, the agents can devote more of their computational power at
runtime to other things. Thus, the goal for conversation policy repre-
sentation and implementation is to find a sweet spot somewhere be-
tween the extremes of the fixed protocols of typical distributed software
on the one hand and something approaching completely unstructured
freeform human dialogue on the other. Similarly, with respect to agent
management policies, we want to express the policy formulator’s intent
at an optimum level somewhere between today’s complex and limited
Java security and resource management mechanisms and an overly sim-
ple global “switch” with high, medium, and low settings.

Context-sensitivity.Throughout this article, we have emphasized the
importance of pragmatic considerations as they apply to agent behav-
ior. The ability to selectively sense and contextually react to its environ-
ment is a hallmark of agent behavior. Explicit policy representation
improves the ability of agents and agent platforms to be responsive to
changing conditions, and if necessary reason about the implications of
the policies which govern their behavior. As mentioned elsewhere in
the article, the Java platform itself has moved in this direction by mov-
ing security preferences from their implicit representation in code to an
explicit external representation in policy. In principle, this allows cer-
tain agent rights and privileges to be granted and revoked at runtime
through reinitialization of the policy object.

Verification. By representing policies in an explicitly declarative form
instead of burying them in the implementation code, we can better sup-
port important types of policy analysis. First—and this is absolutely crit-
ical for security policies—we can externally validate that the policies

are sufficient for the agent’s tasks, and we can bring both automated the-
orem-provers and human expertise to this task. Second, there are meth-
ods to ensure that agent behavior which follows the policy will also sat-
isfy many of the important properties of reactive systems: liveness,
recurrence, safety invariants, and so forth. Finally, with explicit policies
governing different types of agent behavior, we can begin to understand
and predict how policies would compose with one another, and how we
might automatically generate code to implement a given policy.

In the context of the DARPA CoABS program, we are partnering
with researchers at MIT, University of Massachusetts, and Cycorp in a
longer-term effort to understand the interplay among agent control and
conversation policies and mechanisms. In the coming months, we ex-
pect to have initial experimental results.

References
1. M. Klein and C. Dellarocas, “Exception Handling in Agent Sys-

tems,” to be published in Proc. Autonomous Agents ’99,ACM
Press, New York, 1999.

2. FIPA 97 Specification, 1997; www.fipa.org.
3. R. S. Cost et al., “Jackal: A Java-Based Tool for Agent Develop-

ment,”Proc. 1998 Nat’l Conf. Artificial Intelligence (AAAI-98)
Workshop on Software Tools for Developing Agents,AAAI Press,
Menlo Park, Calif., 1998, pp. 73–82.

4. M. Barbuceanu, “Coordinating Agents by Role-Based Social
Constraints and Conversation Plans,”Proc. AAAI ’97,AAAI
Press, 1997, pp. 16–21.

5. M. Greaves, H. Holmback, and J.M. Bradshaw, “Agent Conversa-
tion Policies,”Handbook of Agent Technology,J.M. Bradshaw,
ed., AAAI Press/ MIT Press, Cambridge, Mass., 1999.

6. M. Greaves, H. Holmback, and J.M. Bradshaw, “What Is a Con-
versation Policy?” to appear in Proc. Autonomous Agents ’99
Workshop on Specifying and Implementing Conversation Policies,
ACM Press, 1999.

finite-state machines to represent the allow-
able speech-act sequences in our conversa-
tion policies (see Figure 1). FSMs are easy
to conceptualize and implement, and might
be adequate for the routine interaction of
many kinds of simple agents. However, they
have limited ability to express many kinds of
constraints relevant to conversations (for
example, higher-level goal structures or
information about overall timing and secu-
rity). More expressive formalisms for con-
versation policies can be constructed out of
statements in a suitable dynamic logic; less
expressive (but perhaps more readily under-
standable) formalisms could be built out of
regular expression grammars. Our Conver-
sation Design Tool, which we describe later,
is a tool for designing and verifying certain
classes of conversation policies.

Assuming a suitably expressive constraint
representation, we could easily structure con-
versation policies to allow for some degree of
emergence. Rather than specifying the exact
sequence and type of messages involved, such
a policy would contain only high-level con-
straints. The resulting looser control of a con-
versation governed by this kind of policy
would allow great flexibility for the agents
involved, while of course requiring a greater
sophistication and shouldering of computa-
tional burden on their part. More specifically,
such a flexible policy might describe a rela-
tive sequence or pattern of landmarks(for
example, an offer has been made; an offer has
been accepted) in a conversation of a given
type, each landmark defining a set of specifi-
able properties that must hold the agents
involved at that point in the conversation, and
the overall policy simply requiring that the
transitions between conversational landmarks
be made by an appropriate sequence of one or
more communicative acts.

For example, a segment of the KAoS Offer
conversation policy shown in Figure 1
involves an offer made by some agent A,
immediately followed by an accept or decline
by some other agent B.5,8While it is reason-
able to think of offering and accepting as typ-
ically being a two-step process, this might
not always be the case: between A’s offer and
B’s acceptance, B might ask A for a clarifi-
cation about payment, or how long it will
take A to do the task, or if the offer will still
be around if B delays acceptance. In these
cases, there could be any number of subse-
quent exchanges between A and B until the
acceptance (or nonacceptance) of the origi-
nal offer. While the KAoS framework can-

not completely specify actual emergent dia-
logues ahead of time as to the number and
exact sequence of messages involved, it can
still describe them as a relative sequence or
pattern of messages (for example, it cannot
accept an offer until one is made) and will
have some restrictions on their structure
(general provisions for turn-taking) and con-
tent (a requirement for explicit expiry con-
ditions on the offer).

In the KAoS agent framework’s current
version,5 the responsibility for conversation
management is shared between two parts of
each agent: the conversation handler, which
the framework supplies along with other com-
ponents of the generic agent, and the agent-
specific extension,which the agent developer
supplies. The conversation handler deter-
mines what conversational moves are allowed
given the particular conversation policies cur-
rently in force and the conversation history to
that point, and the extension deliberates
among the possible options supplied by the
conversation handler. Once the agent’s exten-
sion has formulated a message to send, its
conversation handler makes sure that the mes-
sage complies with one of the allowable
options. The conversation handler also han-
dles any unforeseen errors and exceptions that
might happen during message transport.

The role of pragmatics in agent conversa-
tion. Although current work on the seman-
tics of basic communicative acts and team
behavior provides a good starting point for
conversation policy designers,8,9 agent re-
searchers have generally neglected the im-
portant role of pragmatics in agent commu-
nication languages. We believe that the
considerations of pragmatics are important
enough to warrant detouring from our main
line of discussion to elaborate on them (see
the “Pragmatics” sidebar).

Description of the conversation design tool.
We are designing and developing the conver-
sation design tool described in the “Pragmat-
ics” sidebar as a specialized type of heteroge-
neous reasoning system.10–13In brief, an HRS
is a composite formal reasoning support sys-
tem that includes multiple-component logical
subsystems, each with its own syntax, seman-
tics, and proof theory. The HRS also includes
inference rules that operate between the differ-
ent subsystems. The goal of an HRS is twofold:

• to provide a logically rigorous environ-
ment in which a user’s reasoning using

multiple different representations can
proceed simultaneously, and

• to support the logically sound transfer of
intermediate results among the compo-
nent reasoning systems.

An HRS is not itself an automatic theorem
prover, although it can incorporate compo-
nents that implement automated reasoning
over some defined logical fragment. Rather,
an HRS is a formal reasoning environment
in which a user can employ the resources of
several different representation and inference
systems in order to reason about a particular
domain.

Stanford University is developing the
OpenProof system as an extensible frame-
work that allows a logician to build a cus-
tom HRS for an identified domain. It is
implemented as a collection of Java Beans,
allowing additional user-defined deductive
subsystems to be smoothly integrated. Open-
Proof currently includes implementations of
several types of simple logical subsystems.
These include both graphically based logical
subsystems (for reasoning involving, for
instance, Venn diagrams and blocks worlds)
and sententially based logical subsystems
(for reasoning using the representations of
classical first-order and modal systems).
More importantly, though, OpenProof also
includes a sophisticated framework for link-
ing the various component subsystems
together to yield heterogeneous proof trees.
Its design supports adding proof managers
for different logics, and also supplies a
method to define inference rules that bridge
the different deductive subsystems.

The CDT will bind together a particular,
identified set of logical subsystems that are
found to be useful for reasoning about and
modeling conversations in particular ACLs.
Because part of our research involves identi-
fying these useful deductive subsystems, the
precise collection of components in the CDT
has not yet been finalized. Our strategy will
be to select a base set of logical subsystems
for the CDT, and to evaluate this selection
using a group of KAoS developers at Boe-
ing. On the basis of their feedback about
usability and appropriateness to their prob-
lem domain, we will expand and modify our
base set of representations. In its initial incar-
nation, the CDT will provide the following
types of deductive systems to its users:

• A natural deduction reasoning system for
standard first-order logic. This will let

56 IEEE INTELLIGENT SYSTEMS

users of the CDT perform reasoning
using classic natural deduction introduc-
tion and elimination techniques over a
first-order language with equality. This
subsystem will also include automatic
theorem provers for this logic. OpenProof
currently includes two such theorem
provers: one based on resolution and one
based on the matrix method, as well as a
specialized variant of the matrix method
prover that incorporates domain knowl-
edge to increase its speed in a certain
class of domains. We might extend this

subsystem to support simple reasoning
(though not theorem-proving) in modal
logic, as many of the important semantic
properties of agent conversations are nat-
urally expressed via modalities.

• A Petri net deductive system. Petri nets
are a common graphical formalism for
modeling systems that are driven by dis-
crete events and whose analysis essen-
tially involves issues in concurrency and
synchronization. They have a fairly sim-
ple and intuitive semantics based on state
transition graphs, and a well-understood

set of update rules. They are an important
technical tool with which to investigate
communication and coordination in agent
systems. The basic CDT will contain a
Petri net reasoning tool integrated as an
OpenProof subsystem.

• An enhanced Dooley graph deductive
system. Enhanced Dooley graphs are a
variety of FSM diagram H. Van Dyke
Parunak developed for the analysis of
agent dialogue at a speech-act level.14

They occupy an attractive middle ground
between FSMs that label nodes with par-

MARCH/APRIL 1999 57

Pragmatics in agent communication
Pragmatics is implicitly a part of the semantic analysis of agent com-

munication languages in that the semantics of message types (for ex-
ample, request and tell) is typically based on the pragmatic analysis of
the ACL speech act designators associated with the eponymous natural
language performatives.1 (We note, however, that specifying the seman-
tics of the communicative act designators in not equivalent to specifying
the semantics of the ACL expressions that use these designators.) As we
will argue, interoperability is not just a matter of using the same set of
speech act designators with the same meaning and a common syntax for
the messages that include them. It also involves being as cooperative and
sensitive to context as possible so that the intended meaning of an ACL
message can be correctly and efficiently inferred. This is one of several
areas where an understanding of the role of the pragmatics can provide
valuable guidance to agent designers.

Developers of current ACLs have exploited the parallels between
agent communication and human communication in developing the
syntax and semantics of their languages. The area of syntax is relatively
noncontroversial, the major ACL-related requirement being that the
syntactic scheme adopted be sufficiently expressive to capture the
structure of what is being communicated. The major new development
in ACL syntax is that, due to the ubiquity of XML content and ready
availability of XML parsers, developers are increasingly abandoning
Lisp-like ACL syntax in favor of richly structured markup languages.

In contrast, the area of semantics has generated a diversity of ap-
proaches.2-4The approach we describe in this article is consistent with
the Cohen-Levesque analysis of joint intentions, although some of the
concepts could certainly be adapted to other types of semantics.2,5Joint-
intention theory supplies a denotational semantics based on ascribing
certain mental states to the communicating agents. A basic principle of
this style of semantics is compositionality,meaning that we can derive
the semantics of a complex act from the semantics of the acts that are its
syntactic components. Using this kind of model, we can define an ACL
that allows for principled extensibility. In other words, we can define a
language with a small core set of operators and define additional opera-
tors in terms of this core set; the semantics of the newly added operators
are defined to be the compositional result of the component core opera-
tors in its definition. This type of semantics stands in contrast to the origi-
nal operational semantics proposed for KQML.3,6Because KQML’s
message types were defined independently, it is not possible to determine
the exact relationship between a pair of messages, or to understand how
new messages can be reused in existing conversation structures.

Both semantics and pragmatics are involved in the meaning of ACL
expressions. (Note that the entire ACL expression, not just the commu-
nicative act, is in the proper subject of pragmatic analysis.) In the study
of natural languages, semantics is often viewed as an account of the
core truth conditions of a sentence—the basic conditions under which
the sentence or the proposition it expresses is true independent of con-

text. An expression’s semantics thus defines its literal meaning—that
aspect of a sentence’s meaning that is common across every context of
usage. The pragmatics of natural-language expressions, on the other
hand, is concerned with that aspect of meaning that arises from the con-
text of use,and how that context contributes to both the total meaning
and the effects of an utterance. For example, the statement “It is cold in
this room” has a syntactic analysis and a literal, semantic meaning that
is constant across all of its possible uses,7 namely that the temperature
in the room is cold relative to the speaker. However, given a specific
context, the sentence could be used to state a fact, request that the lis-
tener close a window, warn the listener not to enter the room, or some
combination of the above.

Although analyses of some of the KAoS core conversation policies
and the application of the joint-intention theory semantics to conversa-
tion policy design have been published previously,8 we have only
recently begun to investigate the role of pragmatics.1 Like many agent
communication languages, KAoS makes a distinction between commu-
nication, content, and contextual portions of agent messages. The com-
munication portion encodes information enabling proper message rout-
ing, such as the identity of the sender and recipient. The content portion
contains the actual gist of the message (for example, the specific request
or information being communicated). The contextual portion describes
the act intended by sending the message (this is done by tagging the mes-
sage with a communication act designator such as request or inform),
a reference to the governing conversation policy or policies, a unique
identifier for the conversation instance, and the various conversation
option parameters proposed or currently in force. In addition, this mes-
sage context might also contain other descriptive information useful for
the agent interpreting the message, such as the language used to express
the content and references to particular ontologies associated with it.

One way we think pragmatics comes into play in ACL expressions is
in the selection of an appropriate communicative act designator to convey
the agent’s intention or purpose for a particular message in the context of
a conversation policy. Given, for example, that a certain agent wants to
request X, it seems intuitive that the best way to do this would be through
an ACL expression with something like REQUEST as the communicative
act designator and a description of X as the propositional content. How-
ever, there is no reason from a strictly semantic or syntactic perspective
why the agent could not instead use INFORM as the communicative act
designator and something like “I ask you to give me X” or even “I want
you to give me X” as the propositional content to perform the request.
Because these two forms are semantically interchangeable, it is a prag-
maticprinciple of ACL usage that would account for one or the other
messages (typically the one with REQUEST) being preferred.

The philosopher H.P. Grice suggested that there is an overall pragmatic
principle—the Cooperative Principle—that speakers of natural languages
implicitly follow as they engage in conversation. This principle relies on
the assumption that communication succeeds because speakers and hear-
ers assume they are cooperating to achieve communicative goals:

ticipants and FSMs that label nodes with
dialog states. M.P. Singh has done some
recent work using EDGs as a descriptive
mechanism for his ACL semantic theo-
ries.15 We are hoping to implement an
EDG subsystem and editor as an Open-
Proof plug-in module for the CDT.

Once the CDT’s logical subsystems are
fully developed, we will populate them with
the necessary aspects of semantic and prag-
matic theory to allow reasoning about vari-
ous ACL properties. For example, one of our
initial goals is to explore the logical conse-
quences of the theory of joint intentions.8,16

We would like to verify, for example, that the
semantic properties of formalized KAoS
basic conversation policies would result in
team formation. The results of these and other
analyses will serve as the foundation for a
library containing a starter set of proven con-
versation policies that agent designers can
reuse or specialize. When agent designers
using CDT are satisfied that the models they
have built adequately capture their assump-

tions and intent for agent communication
within a particular setting, they will use the
CDT to generate the actual conversation pol-
icy definitions required.

The CDT’s integration of an appropriate set
of representational and deductive tools along
with the availability of a starter set of proven
conversation policies will make the job of
designing sophisticated agents easier. Cur-
rently, reasoning about ACLs requires famil-
iarity with modal logic, plus a fair amount of
comfort with formal proof techniques. How-
ever, by importing these same problems into
the reasoning environment of the CDT, we
hope to see decreases in proof complexity,
coupled with increases in proof readability
and usability for those not trained in logic.
Essentially, we believe that using structured
graphics, or mediating representations,17–19

to carry part of the cognitive load in reason-
ing will result in a simpler and more intuitive
environment in which to explore the conver-
sational possibilities in a given ACL. Because
of this, we hope that agent designers and
developers who have had only a minimum of

training will be able to use the CDT to explore
and verify individual conversation policies.

Framework and tools for
agent management

The second part of our research is aimed at
creating agent management tools based on
policy-based mechanisms. This will require
substantial enhancements to basic Java secu-
rity and resource management platform fea-
tures to better support agent technology re-
quirements. Although Java is currently the
most popular and arguably the most security-
conscious mainstream language for agent
development, current versions fail to address
many of the unique challenges posed by agent
software. While few if any requirements for
Java security and resource management are
entirely unique to agent software, typical
approaches used in nonagent software for
defining and executing security policies and
mechanisms are usually hard-coded. They do
not allow the degree of on-demand config-

58 IEEE INTELLIGENT SYSTEMS

Make your conversational contribution such as is required, at the
stage at which it occurs, by the accepted purpose or direction of
the talk exchange in which you are engaged.9

The Cooperative Principle is admittedly vague and does not by itself
account for much of the form and content of human conversation. How-
ever, since the time this principle was first formulated it has become
generally accepted that speakers and hearers implicitly follow this and
related principles when they use and interpret natural language.

Meaningful agent conversation is also subject to pragmatic princi-
ples. What might these pragmatic principles be? First, we think it is
reasonable to assume that agents are at their most cooperative when
they are most direct in their communication. (Note that this assumption
is not always valid for human communication where conditions such as
politeness enter in.) We propose the following agent cooperative prin-
ciple as a specialization of the Cooperative Principle for agents using
speech-act-based ACLs:

Make your conversational contribution as direct as possible by
using an ACL expression whose communicative act designator
most directly represents the intended communicative act.1

For the ACP to be useful, it is necessary to give criteria for determin-
ing what is the most “direct” communicative act designator in a given
context. One promising idea involves an analysis of the logical entail-
ment relations between different communicative acts (illocutionary
acts) with respect to their conditions of success and satisfaction. (The
conditions of satisfaction are based on the semantics of the communi-
cative act and constitute those conditions that must obtain in a context
for the act to count as having been fulfilled in the context.) For exam-
ple, Daniel Vanderveken notes that

many illocutionary acts have stronger conditions of satisfaction
than others, so that whenever they are satisfied in a possible con-
text of utterance, the other illocutionary acts are also satisfied.
For example, if a promise to be nice is kept then the assertion
that the speaker can be nice is eo ipsotrue.10

A speech act whose formal conditions of satisfaction are stronger than

those of another speech act would thus be the more direct. As applied to
agent communication, consider the following abstract ACL expressions:

REQUEST: Send me four widgets by tomorrow
INFORM: I want you to send me four widgets by tomorrow

The ACL expression with REQUEST has stronger conditions of sat-
isfaction than the ACL expression with INFORM, because the condi-
tions of satisfaction of the former include those of the latter (that is,
part of satisfying a request to send four widgets is that the sender is
informed of the receiver’s desire for four widgets, but not vice
versa). Thus, if the goal is to be sent the four widgets, then the ACP
would dictate that REQUEST should be the ACL message chosen.
However, as should be obvious, if A’s communicative intent is to
just make its desires known to B, then the REQUEST is too strong for
the communicative intent and an INFORM should be sent. In this
fashion, the ACP, in conjunction with criteria for judging directness,
provides principled grounds for selecting one type of message over
another.

Following the ACP necessarily limits the freedom of the developer
or agent by restricting the kind of content that can be put in a given
message. For example, it would exclude the less direct requests within
the content of an INFORM message mentioned above. But recall that
one of the purposes of making the communicative act designator
explicit within ACLs was to lessen the inferences necessary by the
message recipient.11Without the limitations provided by the ACP, this
burden might well increase because the content language might be
powerful enough to express any number of indirect communicative
acts. Previous analysis has shown that this can happen in subtle ways.8

We acknowledge that the pragmatic restrictions provided by the ACP
definitely involve a trade-off of this sort over the expressive power of
the agent content language, but see this as a necessary consideration
for agent researchers interested in the practicalities of fielding agent
systems in large-scale applications.

Beyond the ACP, pragmatic considerations determine how contextual
factors (for example, time constraints, resource availability, trust between
the participating agents) come into play in agent conversations and con-

urability, extensibility, and fine-grained con-
trol required by agent-based systems. More-
over, at first glance, there are seemingly
opposing demands to be reconciled. The need
for people to be in control of software running
on their machines argues for hiding agent
management policies and mechanisms from
agent software and putting them fully under
human supervision. On the other hand, the
need for agents to act autonomously in the
face of moment-to-moment contingencies
argues for exposing at least some control
mechanisms to trusted agents who can par-
tially assume the responsibility for agent man-
agement.

The model in Java is rapidly evolving to
provide the increased flexibility and fine-
grained control required for agents. Early ver-
sions of Java featured a typed pointerless vir-
tual machine instruction set, a bytecode
verifier, class loaders, a security manager, and
the concept of a “sandbox” to prevent applets
from accessing “dangerous” methods. Ver-
sion 1.1 added an API for user security fea-
tures such as signing of JAR archives. A

major feature of the security model in the Java
2 release is that it is permission-based. Unlike
the previous all-or-nothing approach, Java
applets and applications can be given vary-
ing amounts of access to system resources,
based upon security policies created by the
developer, system or network administrator,
the end user, or even a Java program.

Despite these improvements, much work
remains for creating robust extensible indus-
trywide agent-specific management policies,
mechanisms, and tools that can accommo-
date the most demanding of agent application
settings. Moreover, as in the domain of agent
conversation, we assume that the design and
operation of secure agents will be done
increasingly by people without specialized
backgrounds. Hence our motivation to re-
search and develop a prototype agent man-
agement tool (see the “Agent management
tool” sidebar).

The AMT and accompanying framework
will provide for at least the following basic
scenarios.20,21A public-key infrastructure
would be provided whereby two arbitrary

agents could reliably authenticate each
other’s identity and the authority by which
they are acting. Standardized message-en-
cryption mechanisms would allow arbitrary
sets of agents to safely exchange confiden-
tial information. The resource use of mobile
agents can be guaranteed or constrained at a
fine-grained level at design time or runtime,
and can also be accounted for by the hosting
agent system. Through the use of secure
transparent Java checkpointing, “anytime”
agent mobility would be transparently avail-
able at the demand of the server or the agent
rather than just as specifically pre-deter-
mined entry points. At runtime, various lev-
els of monitoring and dynamic control would
be available to track and manage agent
behavior and resource consumption.

Authentication and encryption. Java’s secu-
rity model currently emphasizes static control
of resource access according to the source of
a class file more than it does dynamic control
based on authorized roles or the identity of
individuals. While suitable for short-lived pro-

MARCH/APRIL 1999 59

versation policies. Contextual factors might affect the selection or compo-
sition of appropriate conversation policies, the relevance and sequencing
of individual messages within those policies (and whether or not certain
kinds of optional message insertions are allowed), the number of iterations
in an iterative sequence (for example, offer, counter-offer, counter-
counter-offer, and so forth), the need for agreement on explicit nonperfor-
mance penalties, and the maximum duration of the overall conversation.
Some pragmatic conditions are unique to particular kinds of messages.
For example, in human conversations offers typically have implicit or
explicit expiration conditions. Identification of the types of usage condi-
tions that are likely to be part of a given message type will reduce the like-
lihood of errors of omission by conversation-policy designers.

Other pragmatic considerations cut across all conversation-policy
types. For example, when communicating over noisy or unreliable
radio channels, people use explicit requests for acknowledgment
(“Do you copy?”), special conversational delimiters (“over”) and
stereotyped opening and closing statements (“over and out”) to com-
pensate. Other mechanisms come into play when adults converse with
small children who might or might not understand what they are
being told. Similarly, in agent applications certain agents might re-
quire more frequent acknowledgments that their messages have been
heard and understood, depending on the moment-to-moment reliabil-
ity of the communications channel and mutual perceptions of compe-
tence among the communicating agents. Another general pragmatic
issue is to determine how agents interrupt each other. Though some
agent conversation policies might not allow intentional interruption at
all, those that do should include a specification of when and how the
interruption can occur and the available mechanisms for recovery.

Given that pragmatics and semantics can both contribute to the design
of conversation policies, the core question of this article arises anew:
What kind of tools can we provide that will assist agent conversation
policy developers who are not specialists in semantic and pragmatic the-
ory? We have begun the development of a conversation design tool as a
first prototype of such a tool.12Though as of this writing, the CDT does
not exist as an integrated whole; important pieces of it have been written
over the years in the course of various other projects.

References
1. H. Holmback, M. Greaves, and J.M. Bradshaw, “A Pragmatic Prin-

ciple for Agent Communication,” to be published in Proc. Auton-
omous Agents ’99, ACM Press, New York, 1999.

2. P.R. Cohen and H. Levesque, “Communicative Actions for Artifi-
cial Agents,Software Agents,J.M. Bradshaw, ed. AAAI Press/MIT
Press, Cambridge, Mass., 1997, pp. 419–436.

3. Y. Labrou,Semantics for an Agent Communication Language,
doctoral dissertation, Univ. of Maryland, Baltimore County, 1996.

4. M.P. Singh,Conceptual Foundations for Agent Communication
Languages: Evaluation Criteria and Challenges, tech. report,
Dept. of Computer Science, Univ. of North Carolina, 1998.

5. P.R. Cohen and H. Levesque, “Intention is Choice with Commit-
ment,”Artificial Intelligence, Vol. 42, No. 3, 1990, pp. 213–261.

6. Y. Labrou and T. Finin, “A Semantics Approach for KQML—A
General Purpose Communication Language for Software Agents,”
Proc. Third Int’l Conf. Information and Knowledge Management,
ACM Press, 1994, pp. 447–455.

7. J. Searle, “Indirect Speech Acts,”Syntax and Semantics 3: Speech
Acts, P. Cole and J.L. Morgan, eds., Academic Press, New York,
1975.

8. I.A. Smith et al., “Designing Conversation Policies Using Joint
Intention Theory,”Proc. Third Int’l Conf. Multi-Agent Systems
(ICMAS-98), IEEE Computer Society Press, Los Alamitos, Calif.,
1998, pp. 269–276.

9. H.P. Grice, “Logic and Conversation,”Syntax and Semantics 3:
Speech Acts, P. Cole and J.L. Morgan, eds. Academic Press, 1975.

10. D. Vanderveken,Meaning and Speech Acts, Cambridge Univ.
Press, Cambridge, UK, 1990.

11. M.R. Genesereth, “An Agent-Based Framework for Interoperabil-
ity,” Software Agents, 1997, pp. 317–345.

12. M.T. Greaves et al., “CDT: A Tool for Agent Conversation
Design,”Proc. Nat’l Conf. AI (AAAI-98) Workshop on Software
Tools for Developing Agents, AAAI Press, 1998, pp. 83–88.

grams whose instances do not differ signifi-
cantly from one another, such a model is insuf-
ficient for long-lived agent programs whose
shifting roles and accumulating knowledge
require strong authentication mechanisms that
can identify precisely which unique instance
is requesting access rights or communication
privileges.

We currently base our agent authentication
and encryption mechanisms on the extensive
Java support for public-key certificate tech-
nology.22Public-key technology is an advance
over conventional forms of protection—
because certificates are public information, no
sensitive data (for example, passwords or pri-
vate keys) need ever flow over the network
where it could be intercepted. Additionally, a
chain of certificates can be used to establish
the line of authority of a particular agent and
to resolve liability issues resulting from mis-
behaving agents. In our framework, JAR files
containing agent code are digitally signed
using a certificate issued by a trusted third
party. Additionally, agents who desire secure
transmission of confidential information may
communicate using a Secure Sockets Layer,
which, following an exchange of certificates
between the agents, sets up an encrypted chan-
nel for messages between them.

We are studying various approaches to
building a complete public-key infrastructure
tailored for agent systems that would provide

management of keys and certificates. Beyond
the basic functions, the PKI must also pro-
vide support for certificate revocation, key
backup and recovery, and updating of key
pairs and certificates. We also plan to evalu-
ate the notion of flexible, adaptive manage-
ment of agent policies and privileges by
attribute certificate chains. Our work will
complement that of other agent researchers
seeking to extend ACLs with additional lan-
guage security primitives—effectively allow-
ing agents to communicate and reason about
security policies by elevating the visibility of
selected security mechanisms to the knowl-
edge level.

Host-resource management. Mechanisms
for monitoring and controlling agent use
of host resources are important for three
reasons:20

• It is essential that access to critical host
resources such as the hard disk be denied
to unauthorized agents.

• The use of resources to which access has
been granted must be kept within reason-
able bounds, assuring a specific quality of
service for each agent. Denial-of-service
conditions resulting from a poorly pro-
grammed or malicious agent’s overuse of
critical resources are impossible to detect
and interrupt without monitoring and con-

trol mechanisms for individual agents.
• Tracking of resource use enables account-

ing and billing mechanisms that hosts can
use to calculate charges for resident agents.

Resource-protection mechanisms are avail-
able at several levels to software developers,
including those provided by the networking
environment, hardware, the operating system,
and the features of a high-level language. With
agent technology, however, a persuasive case
can be made for the advantages of an approach
based on language-based protection primi-
tives.23 While such an approach limits the
developer to a restricted set of languages that
can be supported, the increased precision in
specification of rights, the relative efficiency
of rights amplification, the ability to analyze
programs statically and not just at runtime,
and the portability of the language-based
approach argue strongly in its favor. Also, in
the context of our work with DARPA and
FIPA, most of the language-based mecha-
nisms we describe below can be incorporated
transparently into any Java-based agent frame-
work with little or no code modification.

Given its status as the most popular and
most rapidly evolving general-purpose safe
language for Internet and agent applications,
Java is the best first target for a language-
based resource-management approach for the
agent community. However, there is still

60 IEEE INTELLIGENT SYSTEMS

Agent-management tool
In the AMT, we aim to provide a graphical interface for the configu-

ration of security policies for agents and hosts. Unlike the basic poli-
cytool Java currently provides to assist users in editing policy files,
we are enhancing the initial AMT implementation to contain domain
knowledge and conceptual abstractions to allow agent designers to
focus their attention more on high-level policy intent than on the details
of implementation. For example, resource usage policies for memory,
threads, and file space may be specified by simply typing limit parame-
ters into the appropriate graphical field. Mobility policies describing
the conditions under which the host is permitted to move the agent can
be specified, ranging from informed consent, to notification, to com-
plete transparency to the agent being moved.

Domain knowledge in the AMT can help agent designers determine
what kinds of policies are appropriate for a given situation. For example,
when does it makes sense for an agent to be mobile, and, in the case of
several agents acting on behalf of a single principal, which agents should,
could, and should not be mobile? Another special problem involves mo-
bile agents that would be at risk from potentially hostile hosts when trav-
eling with private keys. Given the state of current agent frameworks, we
do not think that an agent should ever carry private keys when it travels,
as safer alternatives can be found for most motivating situations. For
instance, if the desire to carry a private key is to increase fault tolerance
(that is, in case the machine where the agent’s private key is stored fails),
perhaps it would be better to have another agent on another machine
under the same security domain provide signing services on the mobile
agent’s behalf. Thus it may make sense for negotiation agentsto be

mobile, while contracting agents remain static so they can be available to
review and sign agreements in a secure local environment.

We are exploring policies for various configurations of hybrid static-
mobile agent ensembles to determine optimal policies and performance
trade-offs. In our agent-minion approach, simpler lightweight mobile
agents (minions) are sent on missions to perform shorter-term tasks by
more intelligent static agents. Jini could provide an infrastructure for
the distribution of minions, while higher-level coordination and man-
agement mechanisms would be used at the agent level.

The AMT prototypes we have been building also provide a graphical
interface for the monitoring, visualization, and dynamic control of re-
source usage at runtime so that certain agents in an application can have
greater access to resources than others. The goal of the runtime interface is
threefold: to guarantee some specified level of agent access or quality of
service to agents providing critical functions; to minimize the possibility
of unauthorized access or reduce the impact of denial-of-service attacks;
and to provide the possibility of detailed resource accounting. We are
exploring the tradeoff between intrusiveness on the agent and level of
control. For example, our most basic level of management would
allow limited control of agents using mechanisms that would work
regardless of how the agents were coded; additional levels of manage-
ment would require minimal code modifications to support advanced
features (for example, certificate management) but would in return
allow the agent more full resource access and perhaps better per-
formance. Use of a special VM such as Aroma could be regarded as a
high level of intrusiveness on an agent, but would allow the finest
grain possible of resource monitoring and control without necessarily
requiring any code changes by the agent developer.

much to do to make it suitable for the indus-
trial-strength agent applications of the future.
Although the Java 2 security model is a step
in the right direction, we anticipate that agent
developers will require ever greater levels of
flexibility and host systems will need ever
greater protection against vulnerabilities that
could be exploited by malicious agents. It is
likely that some of these features will ulti-
mately require changes to the Java architec-
ture, such as the inclusion of an explicit
Resource Manager to complement the cur-
rent Class Loader and Security Manager.24

For example, while new iterations of the Java
security model will increasingly support con-
figurable directory access by supplying the
equivalent of access control lists to the Java
Security Manager, there is no way to impose
limits on how much disk storage or how many
I/O operations or how many simultaneous
print jobs might be performed by agents. Nor
are there ways of controlling thread and
process priorities, memory allocation, or even
basic functions such as the number of win-
dows that can be opened. A unique opportu-
nity of our research is to explore techniques
for dynamic negotiation of resource con-
straints between agents and the host. We are
taking a two-pronged approach: one prong
relying on features provided by standard Java
mechanisms and security policies, and the
other relying on whatever extensions are cur-
rently possible through clever programming.

The most important standard Java security
mechanisms to exploit are permission classes
and policy files. Unlike previous versions,
the Java 2 security model defines security
policies as distinct from implementation
mechanism. Access to resources is controlled
by a Security Manager, which relies on a
security policy object to dictate whether class
X has permission to access system resource
Y. The policies themselves are expressed in
a persistent format such as text so they can
be viewed and edited by any tools that sup-
port the policy syntax specification. This
approach allows policies to be configurable,
and relatively more flexible, fine-grained,
and extensible. Developers of applications
(such as agents) no longer have to subclass
the Security Manager and hard-code the
application’s policies into the subclass.
Agents can make use of the policy file and
the extensible permission object to build an
application whose security policy can change
without requiring changes in source code.

We have launched an effort to show how a
limited form of dynamic security services for

an agent host can be provided by standard
Java security mechanisms. For example,
although the virtual machine’s Security Man-
ager cannot be replaced at runtime, the in-
stance of the policy class can. The permis-
sions in the policy file can be rewritten at any
time to reflect new contingencies such as
events that require overall tightened or
relaxed security restrictions. The policy ob-
ject’s refresh() method can then call for
an immediate reload of the policy file and will
immediately change its behavior. The policy
object must be granted by the Security Man-
ager to the calling code in the policy file and,
of course, extreme care must be taken to pro-
tect this code from anything that might try to
hijack its ability to modify the policy file.

Approaches relying on standard Java secu-
rity mechanisms can currently do little more
than either grant or deny access to a particu-
lar service. A more sophisticated approach
would guarantee some specified level of
agent quality of service, minimize the impact
of denial-of-service attacks, or provide
meaningful resource accounting. To this end,
we are investigating mechanisms and tools
for more adequate resource management.
Some of these mechanisms, such as load-
time byte code rewriting, can be imple-
mented without severely impacting perfor-
mance or requiring changes to the Java
Virtual Machine.24 However, the need to
evaluate and test other important mecha-
nisms (such as those requiring changes to the
thread-scheduling algorithm), as well as the
desire to support “anytime” mobility, moti-
vated the design and implementation of a
custom virtual machine tailored for investi-
gation of safe agent execution.

“Anytime” mobility. Until recently, each
mobile-agent system has defined its own

approach to agent mobility. Though new pro-
posals such as FIPA’s agent-mobility stan-
dards and OMG’s Mobile Agent Facility are a
step forward, some of the required elements
of security cannot be implemented without
foundational support in the Java language
standard. The ultimate goal is to define a set of
standard underlying Java security policies and
mechanisms that will make agent mobility as
safe as possible for both the agent and its host.
The mobile agent must be able to deal with
situations where it has been shipped off to the
wrong address, or to a place where needed
resources are not available, or to what turns
out to be a hostile environment.20 Agent hosts
might become unavailable or compromised at
a moment’s notice, and the agent might need
to immediately migrate to a safe place or
“die.” Also, there is the very real possibility
of unauthorized inspection or tampering while
the agent is traveling. Agent hosts, on the other
hand, must deal with all the resource-man-
agement issues we described earlier.

To provide the most flexible and robust
approach to these problems, agent mobility
must be made fully transparent. This means
that mobility must become an “anytime” con-
cept, meaning that an agent can in principle
(and in accordance with its unique policies)
move or be moved on demand, in the middle
of an arbitrary point of execution. There are
many Java-based mobile agent systems cur-
rently available, such as ObjectSpace Voyager
(www.objectspace.com/products/voyager/
index. html), Concordia from Mitsubishi Elec-
tric ITA Horizon Labs (www.meitca.com/
HSL/Projects/Concordia/whatsnew.htm),
Odyssey from General Magic (www.genmagic.
com/technology/odyssey.html), Jumping Beans
from Ad Astra (www.JumpingBeans.com), and
Aglets from IBM.25 While all of these sys-
tems provide the ability to transport an agent
from one server to another across a network
connection, none of these transport mecha-
nisms are completely transparent. The secu-
rity measures provided in these systems are
also not mature enough to enforce the level
of fine-grained security and resource control
we desire.

Anytime mobility requires that the entire
state of the running agent, including its exe-
cution stack, be saved prior to a move so that
it can be restored once the agent has moved to
its new location. The standard term describ-
ing this process is checkpointing.26 Over the
last few years, the more general concept of
orthogonal persistencehas also been devel-
oped by the research community.27 The goal

MARCH/APRIL 1999 61

WE HAVE LAUNCHED AN

EFFORT TO SHOW HOW A

LIMITED FORM OF DYNAMIC

SECURITY SERVICES FOR AN

AGENT HOST CAN BE

PROVIDED BY STANDARD JAVA

SECURITY MECHANISMS.

of orthogonal persistence research is to define
language-independent principles and lan-
guage-specific mechanisms by which persis-
tence can be made available for all data, irre-
spective of type. Ideally, the approach would
not require any special work by the program-
mer (for example, implementing serialization
methods in Java or using transaction interfaces
in conjunction with object databases), and
there would be no distinction made between
short-lived and long-lived data.

One of Java’s powerful features as a pro-
gramming language is that its bytecode for-
mat, which is interpreted or compiled on the
fly by the Java Virtual Machine (VM) residing
on the host platform, enables checkpointing
in a machine-independent format. This allows
the bytecode in principle to be restored on
machines of differing architecture. A similar
but somewhat less general approach was orig-
inally implemented in General Magic’s Tele-
script language.28 While it is possible to
achieve some measure of transparent persis-
tence by techniques such having a special
class loader insert read and write barriers
into the source code before execution, such an
approach poses many problems:29

• the transformed bytecodes could not be
reused outside of a particular persistence
framework, defeating the Java platform
goal of code portability;

• such an approach would not be applica-
ble to the core classes, which cannot be
loaded by this mechanism; and

• the code transformations would be
exposed to debuggers, performance mon-
itoring tools, the reflection system, and
so forth, compromising the goal of com-
plete transparency.

To make it possible to explore issues of
anytime mobility and of agent security and
resource control not possible to do with cur-
rent Java VMs, we have developed a new VM
(Aroma) from scratch.21 The new virtual
machine supports checkpointing at almost
any moment. This capability lets an agent-
based system implement fully transparent
agent mobility in Java, a feature not available
in any other commercial agent framework.
This feature can be extended to provide any-
time mobility, where the agent or the system
can initiate the move of an agent from one
host to another while retaining the complete
state of the agent. The new VM also supports
a finer grain of security and resource control
than is available using the current Java stan-

dard implementation, allowing the system or
user to dynamically monitor and control
resource usage rates and permissions accord-
ing to the behavior of the agent, the avail-
ability of resources, and demands by other
agents. We hope that research results deriv-
ing from our implementation of the VM and
its application in an agent context will help
spur the adoption of required features for any-
time mobility and fine-grained resource con-
trol in future versions of the standard Java
platform. We are coordinating our work with
related research efforts in persistent Java, such
as those underway at Sun Laboratories.29

Secure transparent mobility involves other
concerns beyond simply saving and restoring
execution state. Encryption mechanisms must

ensure that the mobile agent not be available
for inspection or alteration en route to its new
destination and that the running agent be
securely transported along with the agent from
the current host to the new host. The agent also
must deal with issues of reliably releasing re-
sources on the old host, acquiring them on the
new one, and handling the situation gracefully
if expected resources are unavailable. More-
over, a mobile agent cannot always know
which classes it will need to take with it. If the
agent’s host is no longer available after the
move, additional required classes will need to
be found elsewhere, which might introduce
versioning problems as well as some new
security and liability issues.

Transparent anytime mobility is vital for
situations where there are long-running or
long-lived agents and, for reasons external to
the agents, they need to suddenly move or be
moved from one host to another. In princi-
ple, such a transparent mechanism would
allow the agents to continue running without
any loss of their ongoing computation and,
depending on circumstances, the agents need
not even be aware of the fact that they have
been moved. Such an approach will be use-
ful in building distributed systems with com-

plex load-balancing requirements. The same
mechanism could also be used to replicate
agents without their explicit knowledge. This
would allow the support system to replicate
agents and execute them possibly on differ-
ent hosts for safety, redundancy, perfor-
mance, or other reasons.

A TRULY POWERFUL TOOL CAN
change its user. That, in a nutshell, is what
we hope we, along with the rest of the agent
research community, can achieve: a change
for the better in the process of agent devel-
opment. As computer scientists, this research
casts us in a familiar role: we create the tools
that implement the underlying theory, which
in turn will leverage and extend the capabil-
ities of the domain experts who will develop
the individual agents. Just as the advent of
verification tools led to digital circuits that
were more dependable, we expect that tools
such as the ones we have described for con-
versation and security design will lead to
agent-based systems that are more robust and
reliable.

As can be seen by the tentative and gen-
eral nature of some of our conclusions above,
there is still much work to be done in the
realm of agent theory to support the devel-
opment of good tools. We agree with the
observation of Kurt Lewin, who said that
there is nothing quite so practical as a good
theory.30 We expect an agent-design tool to
prove useful to the extent that we have ser-
viceable theories to explain its basis of oper-
ation and delineate its scope of application.

For example, tool-makers can exploit theory as
a basis for clarifying their underlying assump-
tions, and also as an infrastructure upon which
to build integrated collections of tools and tech-
niques. Tool-users, on the other hand, need a
robust theory to serve as the conceptual ratio-
nale for the principled application of their tools:
an operator’s manual alone is not sufficient.17

Good tools can also benefit those who are
developing agent theory. By creating power-
ful tools that allow us to explore specific
decisions about appropriate management or
conversation policies in the context of a given
application, we will have thereby created a
mechanism with which to explore the theo-
ries themselves.

62 IEEE INTELLIGENT SYSTEMS

WE AGREE WITH THE

OBSERVATION OF KURT

LEWIN, WHO SAID THAT

THERE IS NOTHING QUITE SO

PRACTICAL AS A GOOD THEORY.

Acknowledgments
The work we’ve described is supported in part

by a contract from DARPA’s Control of Agent
Based Systems (CoABS) Program (Contract
F30602-98-C-0170); supported in part by grant R01
HS09407 from the Agency for Health Care Policy
Research to the Fred Hutchinson Cancer Research
Center; and by the Aviation Extranet joint-spon-
sored research agreement between NASA Ames,
The Boeing Company, and the University of West
Florida (Contract NCA2-2005). OpenProof is the
result of a joint research project between the Logic
Software Group at Stanford’s Center for the Study
of Language and Information and Indiana Univer-
sity’s Visual Inference Laboratory. We extend our
appreciation to other members of the Boeing Intel-
ligent Agent Technology group (Bob Carpenter,
Rob Cranfill, Renia Jeffers, Mike Kerstetter, Luis
Poblete, and Amy Sun); to Ian Angus, Geoff Arnold,
Isabelle Bichindaritz, Michael Brooks, Alberto
Cañas, Kathryn Chalfan, Phil Cohen, Scott Cost,
Pam Drew, Tim Finin, Ken Ford,Yuri Gawdiak, Jim
Hendler, Jim Hoard, Dick Jones, Cathy Kitto,Yan-
nis Labrou, Ken Neves, Ira Smith, Kate Stout, Keith
Sullivan, and Steve Whitlock; and to faculty (Jack
Woolley, David A. Umphress, and William Bricken)
and members of the Seattle University software
engineering program who have collaborated with
Boeing on various aspects of agent development.

References
1. J.M. Bradshaw, “Everything I Know About

Systems Design I Learned from My Archi-
tect: Building Systems that Work with Time
Rather than against It,”Education and
Smart Machines,K. Forbus, P. Feltovich,
and A.J. Cañas, eds., AAAI Press/MIT
Press, Cambridge, Mass., 1999.

2. I. Foster and C. Kesselman, eds.,The Grid:
Blueprint for a New Computing Infrastruc-
ture,Morgan Kaufmann, San Francisco,
1999.

3. B. Logan and J.M. Bradshaw, eds., Special
issue on Software Tools for Agent Develop-
ment, to be published in Int’l J. Human-
Computer Systems,1999.

4. J. Hendler and R. Metzger, “Putting It All
Together: The DARPA Control of Agent-
Based Systems (CoABS) Program,” this
issue.

5. J.M. Bradshaw et al., KAoS: Toward an In-
dustrial-Strength Generic Agent Architec-
ture,Software Agents,J.M. Bradshaw, ed.,
AAAI Press/MIT Press, 1997, pp. 375–418.

6. T. Winograd and F. Flores,Understanding
Computers and Cognition, Ablex, Norwood,
N.J., 1986

7. M. Greaves, H. Holmback, and J.M.
Bradshaw, “Agent Conversation Policies,”
to be published in Handbook of Agent
Technology,J.M. Bradshaw, ed., AAAI
Press/The MIT Press, 1999.

8. I.A. Smith et al., “Designing Conversation
Policies Using Joint Intention Theory,”
Proc. Third Int’l Conf. Multi-Agent Systems

(ICMAS-98), IEEE Computer Society Press,
Los Alamitos, Calif., 1998, pp. 269–276.

9. P. Breiter and M.D. Sadek, “A Rational
Agent as a Kernel of a Cooperative Dia-
logue System: Implementing a Logical The-
ory of Interaction,”Proc. ECAI-96 Work-
shop on Agent Theories, Architectures, and
Languages,Springer-Verlag, Berlin, 1996,
pp. 261–276.

10. G. Allwein and J. Barwise, eds.,Logical
Reasoning with Diagrams,Oxford Univ.
Press, New York, 1996.

11. D. Barker-Plummer and M. Greaves,
“Architectures for Heterogeneous Reason-
ing: On Interlinguae,”Proc. First Conf.
Inference in Multimedia and Multimodal
Interfaces (IMMI-1),Edinburgh, 1994.

12. J. Barwise and J. Etchemendy,Hyperproof,
CSLI Publications, Stanford, Calif., 1994.

13. M. Greaves,The Philosophical Status of
Diagrams, doctoral dissertation, Stanford
Univ., Stanford, Calif., 1997.

14. H.V.D. Parunak, “Visualizing Agent Conver-
sations: Using Enhanced Dooley Graphs for
Agent Design and Analysis,”Proc. ICMAS-
96,IEEE CS Press, 1996.

15. M.P. Singh,Developing Formal Specifica-
tions to Coordinate Heterogeneous Auton-
omous Agents,tech. report, Dept. of Com-
puter Science, University of North Carolina,
Raleigh, N.C., 1998.

16. P. Cohen and H. Levesque, “Communica-
tive Actions for Artificial Agents,”Software
Agents, J.M. Bradshaw, ed., MIT Press,
Cambridge, Mass., 1997, pp. 419–436.

17. J.M. Bradshaw et al., “Beyond the Repertory
Grid: New Approaches to Constructivist
Knowledge Acquisition Tool Development,”
Knowledge Acquisition as Modeling,K.M.
Ford and J.M. Bradshaw, eds., John Wiley &
Sons, New York, 1993, pp. 287–333.

18. K.M. Ford et al., “Knowledge Acquisition as
a Constructive Modeling Activity,”Knowl-
edge Acquisition as Modeling,K.M. Ford
and J.M. Bradshaw, eds., John Wiley &
Sons, 1993, pp. 9–32.

19. N.E. Johnson, “Mediating Representations
in Knowledge Elicitation,”Knowledge Elic-
itation: Principles, Techniques and Applica-
tions,D. Diaper, ed., John Wiley & Sons,
1989.

20. K.A. Neuenhofen and M. Thompson, “Con-
templations on a Secure Marketplace for
Mobile Java Agents,”Proc. Autonomous
Agents 98, ACM Press, New York, 1998.

21. N. Suri, J.M. Bradshaw, and A. Wong,
“Experiences with Implementing a Java Vir-
tual Machine and API for Agent Support,”
tech. report, Inst. for Human and Machine
Cognition, Univ. West Florida, 1999.

22. J.M. Bradshaw et al., “Extranet Applica-
tions of Software Agents,” to be published
in ACM Interactions, 1999.

23. C. Hawblitzel and T. von Eicken,A Case for
Language-Based Protection, Tech. Report
98-1670, Dept. of Computer Science, Cor-
nell Univ., Ithaca, New York, 1998.

24. G. Czajkowki and T. von Eicken, “JRes: A

Resource Accounting Interface for Java,”
Proc. 1998 ACM OOPSLA Conf.,ACM
Press, 1998.

25. D.B. Lange and M. Oshima,Programming
and Deploying Java Mobile Agents with
Aglets, Addison-Wesley, Reading, Mass.,
1998.

26. J.S. Plank,An Overview of Checkpointing in
Uniprocessor and Distributed Systems Foc-
using on Implementation and Performance,
Tech. Report UT-CS-97-372, Dept. of Com-
puter Science, Univ. of Tennessee, Knox-
ville, Tenn., 1997.

27. M.P. Atkinson and R. Morrison, “Orthogo-
nally Persistent Object Systems,VLDB J.,
Vol. 4, No. 3, 1995, pp. 319–401.

28. J. White, “Mobile Agents,”Software Agents,
J.M. Bradshaw, ed., AAAI Press/MIT Press,
1997, pp. 437–472.

29. M. Jordan and M. Atkinson,Orthogonal
Persistence for Java—A Mid-Term Report,
Sun Microsystems Labs, 1998.

30. K. Lewin,A Dynamic Theory of Personal-
ity, McGraw-Hill, New York, 1935.

Jeffrey M. Bradshaw is an associate technical fel-
low at the Boeing Company, where he leads the
Intelligent Agent Technology program. He is gen-
eral chair of the Autonomous Agents ’99 Confer-
ence and editor of Software Agents(AAAI/MIT
Press, 1997) and the forthcomingHandbook of
Agent Technology(AAAI/MIT Press). Contact
him at the Boeing Co., PO Box 3707, M/S 7L-44,
Seattle, WA 98124-2207; jeffrey.m.bradshaw@
boeing.com; www.coginst.uwf.edu/~jbradsha/.

Mark Greaves is a member of the Natural Lan-
guage Processing Group at Boeing’s Applied
Research and Technology Division. Contact him at
mark.t.greaves@boeing.com.

Heather Holmback leads a project to develop
word-sense disambiguation for language-check-
ing applications at Boeing. Contact her at heather.
holmback@pss.boeing.com.

Wayne Jansen is a computer scientist at the
National Institute of Standards and Technology.
Contact him at jansen@nist.gov.

Tom Karygiannis is a member of the National
Institute of Standards and Technologies’Computer
Security Division. Contact him at karygiannis@
nist.gov.

Barry G. Silverman is a professor of systems
engineering and computers and information sci-
ence at the University of Pennsylvania. Contact
him at www.seas.upenn.edu/~barryg/index.html.

Niranjan Suri is a research scientist at the Insti-
tute for Human and Machine Cognition at the Uni-
versity of West Florida. Contact him at nsuri@
nuts.coginst.uwf.edu.

Alex Wong is a senior project engineer at Sun
Microsystems. Contact him at alexw@toolshed.
org.

MARCH/APRIL 1999 63

