
Determining Privileges of Mobile Agents

Wayne A. Jansen
National Institute of Standards and Technology

Jansen@nist.gov

Abstract

This paper describes a method for controlling the
behavior of mobile agent-system entities through the
allocation of privileges. Privileges refer to policy rules
that govern the access and use of computational
resources and services by mobile agents. Our method is
based on extending the platform processing environment,
using the capabilities present in most mobile agent
systems, and applying two forms of privilege management
certificates: attribute certificates and policy certificates.
Privilege management certificates are digitally signed
objects that allow various policy-setting principals to
govern the activities of mobile agents through selective
privilege assignment. The approach overcomes a number
of problems in existing agent systems and provides a
means for attaining improved interoperability of agent
systems designed and implemented independently by
different manufacturers. The paper also describes
applying the scheme to Java-based agent systems.

1. Introduction

 A mobile agent is a program that executes
autonomously over a set of network hosts, on behalf of an
individual or organization. An agent moves among hosts
to execute parts of its program and to interact with its
execution environment and other agents it encounters, in
working toward some goal. An agent may also remain
fixed on a host for an indefinite period, while conducting
its activities. The sequence of hosts that an agent visits
may be predetermined when the agent’s program is
written, or determined dynamically when the agent is
launched by its user or as it acquires information at a host.
For example, an agent may need to access information at
a specific network host, or prefer to execute parts of its
program on network hosts offering certain types of
services.
 Mobile agent computing is a radical form of
distributed computing, which poses significant challenges
to the security of the agents that form an application and
of the hosts on which they execute. One difficult class of

threats introduced by mobility is the possibility that the
computational environment (i.e., the host and supporting
software) may attempt to subvert visiting agents.
Solution to this problem is an active area of research.
Other threats include agents attacking the computational
environment or other agents visiting the host, and outside
entities attacking the overall agent framework. A wide
range of security techniques, both conventional and newly
developed for this paradigm, are available as technical
countermeasures against the security threats encountered
in deploying agent-based applications [1]. Agent systems
typically incorporate some basic countermeasures into
their design.
 The actions an agent can take at a host are dictated by
its privileges, which are controlled through either
capabilities or access control authorizations. Capabilities
are permissions or access rights assigned to and conveyed
with an agent, while access control authorizations are
similar, but statically configured at a host. In the most
general sense, they can be viewed as policy rules that
govern the behavior of an agent at a host. Most agent
systems support two categories of privilege: those
involving basic host resources such as processing time,
memory space, disk storage, network access, and file
access, and those involving agent middleware resources,
such as cloning, changing itinerary, issuing or subscribing
to messages, limiting conversation dialogues, and
controlling security services. Agent systems maintain
privileges mainly within internal data structures, as
opposed to some external form or representation. While
these structures are often very similar semantically, they
differ in their implementation, in such things as the
mechanisms used to protect them from tampering or
forgery.
 In reviewing a number of agent systems, we noted
several shortcomings in the way in which they manage
the privileges of agents:

• Among applications, the number of policy-
setting principals and the trust relationships that
are needed can vary considerably. However,
within an agent system those representations are
typically fixed and unchangeable. This
dichotomy forces developers of agent-based

applications to conform to the imposed scheme,
which may or may not match well the intended
security policy of their application.

• Policy expression varies among agent systems in
terms of granularity, language, and resource
entities, and is often difficult for an application
developer to modify or extend. When combined
with the previous shortcoming, the overall result
is to constrain a developer into a rigid framework
that may require an elaborate work-around to
express the intended policy or, at worst, may be
totally inadequate for the needs of the
application.

• The means of protecting policy, once expressed
and residing in an internal data structure, also
varies among agent systems, particularly
regarding strength of protection. Each agent
system must be closely reviewed to decide
whether the expressed policy is satisfactorily
protected for the risk environment of the
application.

• Because the internal policy-related data
structures, trust relationships, policy expression,
and strength of policy protection as a whole
differ widely among agents developed for
different agent systems, the opportunity for
interoperability of agent systems is severely
limited.

 To overcome these noted shortcomings, we devised a
method for allocating, managing, and applying security
policies in a flexible manner that allows freedom in
determining the granularity, language, and entities of the
policy expression, as well as the relevant policy-setting
principals and their precedence relationships. The
remainder of the paper describes our scheme, beginning
with an in-depth overview, followed by a detailed look at
its use in Java-based agent systems, and then ending with
a review of related work.

2. Overview

 Mobile agent systems can be implemented in various
ways. Interpreted scripting languages or virtual machine-
based interpretive language compilers are frequently used
for their inherent flexibility in adapting heterogeneous
platforms to support agents uniformly. Depending on the
agent system, individual agents may be represented as
independent processes or lightweight threads. Similarly,
the computational environment for an agent may involve
a single host computer or multiple hosts. Our method for
privilege management applies to a variety of agent
systems, despite these kinds of implementation
differences. The approach taken also provides a means to
work independently of or, if available, in conjunction
with a Public Key Infrastructure (PKI), including one

built in compliance with the X.509 public key certificate
framework [2].
 A simple model of an agent system is sufficient for
describing the overall scheme. It consists of two main
components: the agent and the agent platform. An agent
represents the code and state information needed to carry
out some computation. The agent platform provides the
computational environment in which an agent operates.
Multiple agents can interact with one another at an agent
platform and use services offered by the platform, such as
transport to another agent platform. The platform where
an agent is instantiated and commences activity is
distinguished as the home platform, and is normally the
most trusted environment for an agent. An agent platform
comprises one or more hosts and may support multiple
places where agents can interact. Figure 1 illustrates the
agent and agent platform components along with other
components needed for the privilege management
enhancements described below.

Agent

Policy
Certificates

Agent
Platform

Policy
Engine

Attribute
Certificates

Figure 1: Agent system with enhancements

2.1 Privilege Management Certificates

 If mobile agents are to operate on behalf of
individuals and organizations, they must follow
prescribed security policies established by principals who
have the requisite authority. Rather than embody policy
rules within an agent, it is possible to push the policy
information to an external object – an attribute certificate.
Two variants of attribute certificates exist to distinguish
those certificates issued to an agent’s code from those
issued to an instance of an agent (i.e., its code and state
information). The distinction is subtle, but important,
since for the latter, the certificate includes the values of
any instance variables of the agent considered immutable
by the agent system. At a minimum, this must include the
globally unique identifier of the agent, assigned by the
agent system.
 To govern an agent's use of computational resources
and security mechanisms, the issuer of an attribute
certificate assigns the according privileges within the
certificate to the agent. An attribute certificate must be
signed by the issuer to protect the security-relevant

information about the agent from alteration. Elements of
an attribute certificate are pictured in Figure 2. They
include the identity of the owner (formed by a secure hash
over the agent’s code and information), the identity of the
issuer, the identifier of the algorithms used to protect the
certificate, the lifetime of the certificate, and the subject
attributes, which may be expressed as simple type-value
pairs or as more complex syntactical expressions. These
elements can be used to establish the validity of the
certificate and the binding between the attribute certificate
and the agent. Efforts to standardize the form and content
of attribute certificates are ongoing. Their focus,
however, has been mainly on stationary communicating
programs (e.g., client-server systems) or programs having
limited mobility (e.g., applet-like movement from a server
to a client) and conveying no state information or
computation data.

Certificate Serial Number

Attributes

Owner

Extensions

Issuer Unique ID

Validity Period

Issuer

Signature Algorithm ID

Version

Is
su

er
 S

ig
na

tu
re

Figure 2: Attribute certificate elements

 Policy certificates are counterparts to attribute
certificates, but express policy rules assigned to an agent
platform instead of an agent. Policy certificates follow
the same structure as attribute certificates. While an
attribute certificate conveys the policy rules associated
with an agent, the policy certificate conveys policy rules
governing the behavior of all agents that may attempt to
visit an agent platform or a specific place on an agent
platform. Policy certificates also convey information
about the precedence relationships of policies set by
different policy-setting principals, which affect the policy
processing of ambiguous or contradictory rules. Since
many agent systems take advantage of the security
mechanisms provided by the underlying operating system
or virtual machine, maintaining the platform policy rules
separate from the certificate, in the system access control
and authorization files where they normally reside, can be
advantageous. Therefore, policy certificates are designed
to accommodate such external file references, where
needed, by including the location of the file and a
cryptographic hash of the file’s contents into the policy
certificate, for later access and validation during
certificate processing.

 Although the format and structure of the policy
certificate closely follow that of the attribute certificate,
one significant difference between them is the binding of
the certificate to the entity issued the certificate. While an
attribute certificate has a clear and singular subject – the
agent assigned the privileges – a policy certificate, in
general, may apply to a broader range of subjects than an
individual platform. For example, having a policy
certificate issued by a domain authority apply to many
agent platforms (i.e., those comprising the domain)
would be desirable in some situations. Such multi-
platform policy allocation can be accomplished through
an appropriate choice of an entity name for the owner of
the certificate (e.g., a DNS domain name). As with most
security policy information, the platform administrator or
security officer is relied upon to apply the relevant policy
certificates for the platform by setting configuration
parameters. Policy certificates may reside elsewhere,
other than the platform itself, if the location does not
provide an avenue for attack. Policy certificates are
validated by an agent platform during its initialization and
the policy content can be applied at that time or later, on
demand.
 Privilege management certificates can be represented
in a variety of ways – typically using the Abstract Syntax
Notation 1 (ASN.1) Distinguished Encoding Rules.
While an ASN.1 encoding does work sufficiently, it has a
serious drawback in not being a human readable
representation. Moreover, ASN.1 parser tools are neither
widely available nor platform independent. To overcome
these limitations, we elected to use an eXtended Markup
Language (XML) representation for privilege
management certificates.
 The XML certificate representation closely follows
the basic certificate structure in Figure 2. Although the
structure of a privilege management certificate is fixed,
portions of it were purposely left open to refinement and
substitution. The “attributes” and the “extensions”
elements are intended to convey policy represented in
various types of specification languages and certificate
handling information, respectively. The contents of the
“attributes” element are determined by a syntax identifier,
making it easy to select among different forms of policy
representation. The “extensions” element by its very
nature supports adding additional elements to a privilege
management certificate to meet the needs of an agent
system or an application running over it. Convention
dictates that each extension element contains a criticality
flag and that the processing platform, upon encountering a
critical extension it does not recognize, rejects the
certificate.
 Consider the types of policy expression that might be
conveyed within privilege management certificates by
examining related efforts in distributed system
management. Matchmaker [3] uses a complex form of

policy expression to broker between service providers and
consumers via a classified advertisement (or classads)
data model. A classad allows logical expressions to be
used within attributes to qualify the service offered or
required and also supports arithmetic expressions and
computations involving real numbers in determining a
match. A more general scheme devised by Koch et ali.
entails the use of a Policy Definition Language (PDL) to
specify executable rules suitable for automation of
management policy [4]. The PDL supports logical
expressions used as the precondition for triggering
management actions. The IETF’s Security Policy
Specification Language [5], although specialized for
security and Internet communications, generally follows
the PDL in terms of functionality. Here the management
actions involve the form of protection to be applied to the
communications.

2.2 Policy-Setting Principals

 The types of policy-setting principals supported
among existing agent systems vary in both number and
definition. We discovered, however, that these policy-
setting principals could be mapped into one of three
distinct classes of principals: branding, using, or hosting
classes. Branding principals are those entities involved in
attesting for characteristics of the agent’s code. A
branding principal could be, for example, the
manufacturer who develops the code, an evaluator who
reviews the code, or an owner who purchases the code.
Using principals represent the individual or organization
on whose behalf the agent operates, and cause the agent to
be launched. Typically, a single using principal exists for
each agent, the user of the agent, but multiple users could
be involved in situations where concurrence of other
individuals is required, such as in some military command
and control operations where a two-person rule applies.
Hosting principals are those entities having resource
authorization control over the agent platform. A hosting
principal could be, for example, the system administrator,
the system security officer, the owner of the platform, or
an authorization authority for the domain in which the
platform operates.
 With our method, a policy-setting principal is, in
effect, any entity that issues privilege management
certificates. Therefore, the relationship between policy-
setting principals of existing agent systems and those
represented under our method must be established
through the types of certificates a principal can issue.
Specifically, hosting principals issue policy certificates,
while branding and using principals issue attribute
certificates, which differ only insofar as those issued by
the latter convey additional information peculiar to a
specific instance of an agent. Certificate assignment is
illustrated in Figure 3. Joint signing and issuing of

certificates by multiple policy-setting principals is an
option not explored here.

Branding HostingUsing

Policy
Certificates

Attribute
Certificates

Attribute
Certificates

Agent Agent
Platform

Figure 3: Certificate assignment

 As with identity certificates, privilege management
certificates may involve chains of delegation, whereby the
privileges of an issued certificate are derived from those
held by the issuer in the form of a privilege management
certificate. That is, besides agents and agent platforms,
privilege management certificates can be issued to
designated individuals, if needed, who in turn redelegate
their assigned privileges to other entities through
certificate issuance, forming verifiable authorization
chains. Thus, the scheme can support many different
styles of privilege authorization and delegation, from a
push-style, where a policy-setting principal first gains
privileges from an authorization authority before
allocating them to an agent, to a pull style where the
visited platforms contact an authorization authority to
confirm the legitimacy of privileges allocated to an agent
by a policy-setting principal. Agent systems, which
typically have fixed principals, cannot match the
flexibility afforded through privilege management
certificates and the ability to chain authorizations.
 This is not meant to imply that privilege management
certificates should be applied unconditionally. On the
contrary, policy-setting principals should be designated
judiciously and their certificate issuing applied selectively
to minimize policy-processing overhead, yet meet the
intended security policy requirements. For example, not
all agents need to carry issued certificates, only those
needing special privileges for their actions. Similarly, not
all three classes of policy-setting principals need be
involved in an application, only those having relevance.

2.3 Policy Processing

 An agent moves among agent platforms carrying
along any issued attribute certificate(s). To simplify
processing at a platform, an agent may optionally carry
information about the issuer(s) of its attribute
certificate(s) (e.g., a user or other policy-setting
principal), such as any attribute certificate(s) and identity

certificate(s) held. The policy certificates for a platform
must be validated when the platform is initialized and
used to establish the platform policy. A platform
receiving the agent determines the validity and relevancy
of the agent’s certificate(s), verifies the issuer’s identity,
perhaps with the assistance of a PKI, and determines
whether the agent’s privileges conveyed in its attribute
certificates and the platform’s prevailing policy
established through the policy certificates form a
compatible security context for the agent.
 The agent platform, which provides the
computational environment of an agent system, inherently
shoulders responsibility for the processing of policy. This
is quite reasonable, given the design goals for an agent
system regarding security (e.g., perform the requisite
authentication and access control of other entities).
Policy computation is a security-relevant mechanism and,
in classical security terms, must be part of the trusted
computing base. Therefore, policy computation must be
implemented as a trusted component of the agent
platform, and its results, the privilege set computed for
the agent, must be enforced by the platform security
mechanisms within the computing base. Most agent
systems have a means for extending the agent platform
with additional program components, for example, in the
form of static agents, which is needed for flexible
implementation of the policy computation.
 Policy computation can be characterized as a policy
engine component that in turn is divided into two parts:
an outer and an inner policy engine. The operations of
the outer policy engine are generic, while those of the
inner engine can be tailored to the specific contents of the
privilege management certificates. Figure 4 illustrates
this characterization.

Inner
Policy
Engine

Attribute
Certificates

Policy Object

Ordered Set of
Validated Attribute
Certificate Objects

Policy
Certificates

Security
Context

for Agent

Outer
Policy Engine

Figure 4: Policy engine organization

 The outer policy engine is responsible for parsing and
verifying the well-formedness of those certificates
associated with an agent, validating the certificates’
contents including the signature and any certificate

chains, eliminating any certificates not applicable at the
platform, and ordering the validated attribute certificates
according to the policy precedence hierarchy among
issuers. It also fetches the platform policy regarding the
agent, established from the policy certificates of the
platform at initialization. Validation of certificate chains
can be a complicated process involving the possibility of
expired or revoked certificates and the necessity to
retrieve supporting information. In ordering attribute
certificates, the outer engine must ascertain the principals
involved, their role in the process (i.e., as an issuer of
specific certificate types and variants) and the precedence
relationships existing among principals.
 The job of the inner engine is to determine the
security context for an agent at a platform using the
information provided by the outer engine. It does this by,
processing the contents of validated attribute certificates
against the platform policy and rendering a verdict on
whether to allow processing by the agent and under what
set of privileges to do so. The two-part organization
allows the inner engine to be relatively simple and
tailorable to the needs of the application, while the outer
engine handles the complex yet common interpretation
and validation work.
 From this overview, we see that the scheme relies on
the placement of policy rules within certificates bound to
agents and agent platforms, and on the placement of
policy processing capability at an agent platform. This
approach provides sufficient flexibility to encompass a
very broad range of policies, suitable for most agent-
based applications. The benefits of this approach are
derived from the kinds of certificates supported and their
form and content.

3. Java-Based Agent Systems

 Many agent systems rely on the Java programming
language and runtime environment for their
implementation. While not an agent system itself, Java
supports code mobility, dynamic code downloading,
digitally signed code, remote method invocation, object
serialization, platform heterogeneity, and other features
that make it an ideal foundation for an agent system. Java
follows a so-called sandbox security model, used to
isolate memory and method access, and maintain
mutually exclusive execution domains. Java enforces
strong type safety using a variety of mechanisms. Static
type checking in the form of byte code verification is used
to check the safety of downloaded code. Some dynamic
checking is also performed during runtime. A distinct
name space is maintained for untrusted downloaded code,
and linking of references between modules in different
name spaces is restricted to public methods. A security
manager mediates all accesses to system resources,
serving in effect as a reference monitor.

 A Java language compiler produces byte codes for an
abstract computer called the Java Virtual Machine, which
interprets the codes for the host computer on which it
executes. More than one Java Virtual Machine (JVM)
may be operating simultaneously on a host computer.
Typically, a single JVM is used to support the execution
environment for multiple agents (e.g., Aglets [6]), each as
an independent thread, rather than multiple JVMs (e.g.,
Nomads [7]). Dynamic class loading and method
invocation features of the JVM provide a simple, but
effective way to support agent platform extensions.
 Another feature supported by Java, is the Java
Archive (JAR) file format, which is based on the de facto,
standard ZIP archive format and useful for managing
collections of Java class files and resources. It is a
convenient way for packaging an agent’s classes for
initial distribution and subsequent movement among
visited platforms. The contents of JAR files may also be
signed for authentication and integrity protection
purposes. Thus, many Java-based mobile agent systems
incorporate this format in their design to protect and
simplify management of an agent’s code. A special
password-protected database of private keys and their
associated digital certificates, called the key store, is
supported by Java and its contents used when signing
JAR files.

Agent Platform

Key Store

Policy Engine

Agent

JAR File

Attribute
Certificates

Policy
Certificates Policy

File(s)

JVM

Figure 5: A Java-based agent system with

enhancements

 Java provides a single system-wide policy file and an
optional user policy file, as well as a tool for specifying
other policies. Each entry in a policy file indicates the set
of permissions authorized for code from a specified code
source. Policy rules are expressed using a grant-style
policy specification language, whereby all permissions
are denied unless explicitly assigned to a code source.
Permissions represent authorized actions on system
objects. The loader uses the assigned permissions to
manage the name space and form a protection domain for
any loaded code. Actions attempted by the code are

checked against the domain permissions via the security
manager. Besides standard Java permissions, developers
may also define permissions specific to an application.
 Figure 5 illustrates a Java-based mobile agent system
and the needed enhancements to enable processing of
privilege management certificates. Note that each policy-
setting principal, as a certificate issuer, must hold a
cryptographic public key pair for certificate signing. In a
Java-based agent system, this requirement results in a key
store entry for each principal. The sections that follow
discuss an implementation of the enhancements in detail.

3.1 Policy Certificates

 For any Java-based agent system, the agent platform
is a specialized application that runs over the JVM.
Rather than inventing a solution for policy specification
and enforcement, these systems normally rely on the
security policy mechanism afforded by the JVM via the
policy authorizations in the standard Java policy file(s).
As noted earlier, the simplest way to capture extant policy
information residing within system files is to have the
issuer of a policy certificate encapsulate them (i.e., the
according Java policy files), by reference, within the
certificate. Besides encapsulated policy files, the policy
certificate conveys additional policy information related
to policy-setting principals and permissions conveyed
externally with agents. To illustrate the kind of
information useful in policy processing, the following
features were included in the policy certificate:

• The ability to specify a policy hierarchy based on
the class of policy-setting principal,

• The ability to govern certificate occurrence,
• The ability to stratify permissions into mutually

exclusive sets corresponding to and controlled by
each class of policy-setting principal, and

• The ability for non-hosting principals to both
lower and raise privilege.

 The policy hierarchy specification was augmented
with the ability to set the minimum and maximum
occurrences of each type of certificate. This information
allows the policy engine to determine whether an agent
has sufficient certificates to begin processing and the
order in which to apply the policy rules. For example, the
hierarchy specification – Hosting1

1 >> Using0
1 >>

Branding1
1 – indicates that policies issued by hosting

principals dominate policies issued by using principals,
which in turn dominate policies issued by branding
principals. The subscripts and superscripts respectively
denote the minimum and maximum certificate
occurrences for the class of principal. Therefore, the
example specification also indicates that every agent
instance may have zero (i.e., the minimum) or one (i.e.,
the maximum) certificates issued by a using principal, and
exactly one certificate issued by a branding principal.

The policy hierarchy specification is conveyed in the
“extensions” element of the policy certificate. It would be
possible, of course, to introduce finer granularity into the
hierarchy specification if required.
 To account for hosting principals needing to maintain
some control over their computational resources, as
opposed to relinquishing them wholesale, hosting
principals, by default, dominate other policy-setting
principals in the policy hierarchy. However, hosting
principals can perform selective allocation of privilege
adjustment to other policy-setting principals through a
sparse authorization matrix (principals x permissions)
within the “attributes” element of the policy certificate.
Each class of policy-setting principal can be granted
rights to raise or lower an indicated permission. If that
right is withheld, any unauthorized attempts to adjust the
permission are ignored and a security notification issued.
The approach is flexible and allows the stratification of
privileges into mutually exclusive sets for each class of
policy-setting principle to control. For example, using
principals may be limited to controlling features of the
agent system, while branding principals, such as
manufacturers, may be limited to certain virtual machine
resources.
 The current version of Java is designed with a
number of features that allow controlled modification and
extension to the runtime environment. They include the
ability to define new security properties, to specify a
replacement class for the standard policy class, to define
new permissions, and to place trusted code in a directory
where it is treated as part of the virtual machine for class
loading and operations. These features were used in
implementing our privilege management scheme. By
replacing the standard policy class, a new policy
certificate aware handler can be instantiated during
initialization of the JVM. By defining new security
properties, the handler is able to locate, validate, and
translate the appropriate policy certificates into an internal
form suitable for processing by the policy engine. By
defining a new permission, the ability to adjustment
permissions can be controlled through a standard policy
entry (see discussion below). Finally, by locating
privilege management components within the virtual
machine directory for trusted extensions, they obtain
complete access to system level resources.
 Java policy is by nature platform-centric. Standard
policy rules do not take into account any policy-setting
principals except those associated with the platform,
namely the system administrator and home user, which
are often synonymous. Under the grant-styled policy
mechanism of Java, the most direct means of having
external policy rules associated with an agent accepted
and incorporated at a platform is to define a permission
that allows the granting of those external permissions.
Such a privilege-adjustment permission allows a platform

authority to control the privilege not only with respect to
a code source, but also with respect to a specific set of
policy-setting principals who issue one or the other
variant of an attribute certificate. The information
conveyed by privilege-adjustment permissions
complements the more detailed information within the
policy certificate regarding the specific permissions a
class of policy-setting authority can adjust. One analogy
is that granting a privilege-adjustment permission to an
agent opens the doorway to the room where specific
permission adjustments may occur.
 The form of the privilege-granting permission we
used begins with its name, “privilegeAdjustment,”
followed by the key store aliases of the permitted
certificate issuers (may be any, represented by “*”), and
completed by either of the actions, “sealedBy” for
branding principals or “launchedBy” for using principals.
In simple terms, the permission grants an agent’s code
source the right to gain the privileges expressed within an
attribute certificate issued by some policy-setting
principal to either the agent or an instance of the agent.
For example, to permit any agent’s code base, sealed by a
trusted reviewer (i.e., the enterprise security officer
(ESO)) and launched by any trusted user (i.e., one having
an entry in the key store), to adjust its platform privileges
(i.e., be accepted for privilege adjustment processing), the
Java policy rule would be
 Grant {
 Permission privilegeAdjustment “*”
 “launchedBy”;
 Permission privilegeAdjustment “ESO”
 “sealedBy”;
 };
 Thus, the standard Java policy mechanisms can be
extended in a manner suitable for meeting the security
policy requirements of most agent systems.
Implementing the scheme as described, does not affect the
syntax or structure of Java policy files, which remain the
primary means for expressing platform policy. Instead of
replacing policy files, policy certificates incorporate their
contents through reference. This approach allows policy
certificates to be issued to any standard Java policy file by
a policy-setting principal in the same manner as attribute
certificates are issued to an agent – via a cryptographic
hash of the contents of the policy file.

3.2 Attribute Certificates

 An attribute certificate is an external XML
representation of the policy rules assigned to an agent.
For a Java environment, the policy is represented as
standard Java permissions conveyed within the
“attributes” element of the attribute certificate. The
responsibility for maintaining relevant attribute
certificates with an agent as it moves among platforms

falls to the agent system. Java-based mobile agent
systems usually allow movement of mobile code as either
individual class files or a JAR file. Because JAR files are
the prescribed means within the Java framework for
signing and verifying code, most security-conscious
designers incorporate them into the agent system. In
addition to the archived code, a signed JAR file contains a
pair of files, a signature instruction and a digital signature
file, for each signer of one or more of the files contained
in the archive. These files are maintained in a special
directory – the META-INF directory. Additional meta-
information, such as the identity certificates of the entity
that signed the code, may also be included within the
META-INF directory to simplify the verification
processing of the JAR contents by a recipient.
 Because of its flexibility for conveying meta-
information, an agent’s JAR file also makes a suitable
container for attribute certificates issued to the agent.
Once the agent's code resides within the JAR, it can be
cryptographically bound to a certificate, and the
certificate placed within the META-INF directory for
subsequent use. Multiple certificates can be
accommodated to support policies involving multiple
policy-setting principals. Not confusing the standard Java
security features regarding signed JAR files with those of
attribute certificates is important. In principle, they are
distinct and can be applied either individually or jointly.
The described JAR extensions follow this principle.
However, some redundancy exists in situations where a
branding principal issues an attribute certificate for an
agent in addition to signing its JAR, since the certificate’s
message digest over the agent's code affords similar
protection. One advantage of using attribute certificates
is that their expiration date can be set much shorter than
the validity period of the signing key, effectively enabling
the lifetime of the authorization to be limited to an
appropriate period.
 As with the policy certificate, other useful
information can appear in the “extensions” portion of an
attribute certificate. They include a constraint indicator to
determine whether the entity issued the certificate is a
terminal policy-setting principal or an intermediate one
able to reassign privileges for a designated number of
decedents, and a renewal service location to determine
where an expiring attribute certificate can be extended
and for what duration and number of times. In the case
where an attribute certificate is issued to an instance of an
agent, the “extensions” portion of the attribute certificate
is used to convey values of immutable instance variables
and, thus, protect them from tampering via the
certificate’s signature. Recall that the globally unique
identifier of an agent must be treated this way.

3.3 Policy Engine

 Besides verifying the prevailing policy certificates
and the binding to their associated policy file, the agent
platform must be extended to invoke attribute certificate
processing for an agent when it arrives. The policy
engine is a pair of new object classes whose job is to
perform the needed computations and determine the
allowable privileges for the agent’s code. The privileges
consist of an authorized set of Java permissions,
representing the amalgamation of policy rules within the
attribute and policy certificates. Null privileges imply
that no processing is permitted (i.e., no permissions
granted). The policy engine classes can be located and
loaded by the agent platform as a trusted component at
initialization time, through an entry in either the standard
Java security properties file or the properties file of the
agent system. Since the inner and outer parts of the
policy engine are Java object classes, their instantiation is
straightforward. It would, therefore, be possible to
support more than one policy engine at a platform, if
support for multiple places or application contexts were
needed. An optional but critical extension, the policy
identifier, is defined within the “extensions” element of
all privilege management certificates specifically for use
in matching certificates to a policy engine.
 The outer policy engine supports a single method,
called to verify the relevant attribute certificates and
return the allowable set of privileges. As explained
earlier, the outer policy engine invokes the inner engine
once all the certificates are evaluated and ordered. Since
the replacement policy class keeps intact all standard Java
policy mechanisms, the policy engine is able to rely on
them during processing. This simplifies the
implementation of the policy engine. For example, when
the policy engine needs to determine the baseline
permissions assigned to a particular protection domain, it
can use the standard Java Application Programming
Interface (API) to ask the currently installed Java policy
object for that information. Similarly, through an existing
API, it can determine whether a permission asserted in an
attribute certificate is implied by those baseline
permissions. For a grant-style policy mechanism, the
policy engine computation essentially becomes the logical
union of the baseline permissions with any permissions
conveyed in the attribute certificates, subject to the
precedence of policy-setting principals who issued the
certificates and any privilege adjustment constraints
imposed by the prevailing platform policy.
 While the policy engine determines allowable
privileges, it does not enforce them. Enforcement is the
responsibility of the program component of the agent
platform that is also responsible for code migration and
other administrative functions. This component must be
augmented to restrain the agent’s code by asserting the

associated security permissions within a protection
domain using features of the Java security class loader.

4. Related Work

 Work has progressed within standardization bodies
[2, 8] to compliment the original X.509 identity-based
certificate standards with standards for privilege
management. The framework for privilege management
generally follows X.509 principles by which a trusted
party, called an authorization authority, issues attribute
certificates to human or machine entities that may in turn
delegate that authorization. In addition to the issuing and
delegation of privileges via attribute certificates, their
revocation is also addressed within the framework. The
framework includes definition of the information objects
needed for a privilege management infrastructure,
including attribute certificates, privilege policy format
and attribute certificate revocation list. Work is also
being done within the IETF [9] to establish an
interoperability profile of these standards, intended for
generic applications, such as electronic mail, involved in
client-server types of transactions.
 The Anchor Toolkit is a mobile agent system that
provides for the secure transmission and management of
mobile agents [10]. The toolkit protects the agents being
dispatched between hosts through encrypted channels. A
mobile agent’s host platform is required to sign the
agent's persistent state before dispatching the agent to the
next platform. The signed persistent state can be used
later to detect potential problems with the agent's state.
The toolkit uses another security tool, called Akenti,
developed by the authors to provide access control to the
resources of a mobile agent’s host platform. Akenti uses
public/private key signed certificates to express user
identity, resource use-conditions, and user attributes.
Use-conditions are used to express platform policy, while
user attributes typically represent a single privilege
granted to the mobile code by some authority. Akenti
makes access control decisions for each trusted agent and
allows execution only after it authenticates the agents, the
server that dispatched the agent, and all the hosts the
agent visited in attaining its current state. This scheme
relies on a level of trust between mobile agent platforms
to make access control decisions in order to mitigate the
risk associated with accepting mobile agents.
 SESAME is a multi-domain distributed-system
security architecture built around the use of authentication
and privilege certificates [11]. Both users and
applications are controlled in the same way when
accessing protected resources - they must first obtain
proof of their privileges in the form of a Privilege
Attribute Certificate (PAC) and then present it to a target
application when requesting resource access. The target
application may in turn access another target using the

delegated privileges. Access control information is
represented generically to facilitate mapping to the
different types of access controls on targeted resources.
SESAME follows a delegation-only model for
authorization. PAC revocation is avoided by relying on
short delegation periods. While the focus of SESAME is
solely on static client-server type applications, it provides
a good example of the underlying framework needed
when applying certificate-based solutions for distributed-
system security.
 Nikander and Partanen [12] describe a method for
enhancing the Java language environment with policy
expression and processing via Simple Public Key
Infrastructure (SPKI) certificates. SPKI certificates are a
proposed alternative to using X.509 certificates,
emphasizing key, rather than individual, identities. The
motivation for the enhancement was to make it possible to
distribute Java security policy management fully in a way
that does not affect the local configuration. They
accomplished this by assigning permissions to class files
bundled within a JAR file, using SPKI certificates in a
manner similar to our use of attribute certificates. No
counterpart to policy certificates appears in their method,
however. The approach essentially goes from one
extreme (i.e., platform-centric policy specification) to
another (i.e., a code-centric policy specification), and
relies completely on the contents of validated certificate
chains for determining the permissions for a protection
domain of a given class. As with SESAME, the focus
here is on client-server type applications. However,
because of the method’s flexibility and grounding in Java,
it could be extended for use in Java-based agent systems.
 State Appraisal defines a security mechanism for
protection of mobile agents. The goal of State Appraisal
is to ensure that an agent has not been somehow
subverted due to alterations of its state information [13].
Both the author and owner of an agent produce appraisal
functions that become part of an agent's code. Appraisal
functions are used to determine what privileges to grant to
an agent, based both on conditional factors and whether
the identified state invariants hold. An agent whose state
violates an invariant can be granted no privileges, while
an agent whose state fails to meet some conditional
factors may be granted a restricted set of privileges.
When the author and owner each digitally sign an agent,
their respective appraisal functions are protected from
undetectable modification. One way of looking at this in
comparison with attribute certificates is that state
appraisal conveys both the policy engine and the
prescribed policy internal to the agent. An agent platform
uses the functions to verify the correct state of an
incoming agent and to determine what privileges the
agent can possess during execution. Privileges are issued
by a platform based on the results of the appraisal
function and the platform's security policy.

5. Summary

 Attribute certificates are a convenient way to express
the privileges associated with a mobile agent, in
accordance with the principle of least privilege. Attribute
certificates also provide a flexible alternative to using
fixed predefined policy structures commonly found in
most agent systems. When combined with policy
certificates for the agent platform and the ability for most
agents systems to extend the agent platform with a policy
engine, they collectively form a useful framework that is
tailorable to meet the security policy of an application.
The degree of tailorability includes the ability to define
various policy-setting principals, precedence relationships
among the policy set by those principals, application
specific attributes, and policy processing algorithms.

6. References

[1] Wayne Jansen, “Countermeasures for Mobile Agent
Security,” Computer Communications, 23 (2000), Elsevier,
October 2000, pp. 1667-1676.

[2] ITU-T Recommendation X.509 | ISO/IEC 9594-8:

Information Technology - Open Systems Interconnection -
The Directory: Public Key and Attribute Certificate
Frameworks, March 2000.

[3] Rajesh Raman, Miron Livny, Marvin Solomon,

“Matchmaking: Distributed Resource Management for
High Throughput Computing,” Proceedings of the Seventh
IEEE International Symposium on High Performance
Distributed Computing, July 1998.

[4] Thomas Koch, Christoph Krell, Bernd Krämer, “Policy

Definition Language for Automated Management of
Distributed Systems,” Proceedings of the Second
International Workshop on Systems Management, IEEE
Computer Society, June 1996.

[5] Matthew Condell, Charles Lynn, John Zao, “Security

Policy Specification Language,” Internet Engineering Task
Force (IETF) Internet Draft, March 10, 2000.

[6] Günter Karjoth, Danny B. Lange, and Mitsuru Oshima, “A

Security Model for Aglets,” IEEE Internet Computing, pp.
68-77, August 1997.

[7] Niranjan Suri et ali., “NOMADS: Toward a Strong and

Safe Mobile Agent System,” Proceedings of the Fourth
International Conference on Autonomous Agents (Agents
2000), June 3-7, 2000.

[8] American Bankers Association, Enhanced Management

Controls Using Digital Signatures and Attribute
Certificates, ANS X9.45-1999, American National
Standards Institute (ANSI) X9 Committee, February 11,
1999.

[9] Stephen Farrell, Russel Housley, “An Internet Attribute
Certificate Profile for Authorization,” Internet Engineering
Task Force (IETF) Internet Draft, June 2001.

[10] Srilekha Mudumbai, Abdeliah Essiari, William Johnston,

“Anchor Toolkit: A Secure Mobile Agent System,”
Proceedings of Mobile Agents '99 Conference, October
1999.

[11] Paul Ashley, “Authorization for a Large Heterogeneous

Multi-Domain System,” Proceedings of the Australian
Unix and Open Systems Group National Conference, 1997,
pp. 159-169.

[12] Pekka Niklander, Jonna Partanen, “Distributed Policy

Management for JDK 1.2,” Proceedings of the 1999
Network and Distributed Systems Security Symposium,
February 1999, pp. 91-102.

[13] William Farmer, Joshua Guttman, Vipin Swarup, “Security

for Mobile Agents: Authentication and State Appraisal,”
Proceedings of the Fourth European Symposium on
Research in Computer Security (ESORICS '96), September
1996, pp. 118-130.

