
1

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 14

Combinatorial Testing
Renée C. Bryce

Utah State University, USA

Yu Lei
University of Texas, Arlington, USA

D. Richard Kuhn
National Institute of Standards and Technology, USA

Raghu Kacker
National Institute of Standards and Technology, USA

I. Introduction

Software systems are complex and can incur
exponential numbers of possible tests. Testing is
expensive and trade-offs often exist to optimize
the use of resources. Several systematic approaches
to software testing have been proposed in the
literature. Category partitioning is the base of all
systematic approaches as finite values of param-
eters are identified for testing. Each of these finite

parameter-values may be tested at least once, in
specified combinations together, or in exhaustive
combination. The simplest approach tests all values
at least once. The most thorough approach exhaus-
tively tests all parameter-value combinations. While
testing only individual values may not be enough,
exhaustive testing of all possible combinations is
not always feasible. Combination strategies are a
reasonable alternative that falls in between these
two extremes.

Abstract

Software systems today are complex and have many possible configurations. Products released with
inadequate testing can cause bodily harm, result in large economic losses or security breaches, and af-
fect the quality of day-to-day life. Software testers have limited time and budgets, frequently making it
impossible to exhaustively test software. Testers often intuitively test for defects that they anticipate while
less foreseen defects are overlooked. Combinatorial testing can complement their tests by systematically
covering t-way interactions. Research in combinatorial testing includes two major areas (1) algorithms
that generate combinatorial test suites and (2) applications of combinatorial testing. The authors review
these two topics in this chapter.

DOI: 10.4018/978-1-60566-731-7.ch014

2

Combinatorial Testing

Consider an on-line store that has four param-
eters of interest as shown in Table 1. There are
three log-in types; three types of member status;
three discount options; and three shipping options.
Different end users may have different preferences
and will likely use different combinations of these
parameters. To exhaustively test all combinations
of the four parameters that have 3 options each
from Table 1 would require 34 = 81 tests.

In this example, exhaustive testing requires
81 test cases, but pair-wise combinatorial testing
uses only 9 test cases. Instead of testing every
combination, all individual pairs of interactions
are tested. The resulting test suite is shown in
Table 2, and is contains only 9 tests. All pairs of
combinations have been combined together at
least once during the testing process. For instance,
the first test from Table 2 covers the following
pairs: (New member - not logged in, Guest),
(New member - not logged in, $5 off holiday
discount), (New member - not logged in, Standard
(5-7 day)), (Guest, None), (Guest, Standard (5-7

day)), and (None, Standard (5-7 day)). The entire
test suite covers every possible pairwise combi-
nation between components. This reduction in
tests amplifies on larger systems - a system with
20 factors and 5 levels each would require 520 =
95,367,431,640,625 exhaustive tests! Pairwise
combinatorial testing for 520 can be achieved in
as few as 45 tests.

II. Background

Combinatorial testing is simple to apply. As a
specification-based technique, combinatorial
testing requires no knowledge about the imple-
mentation under test. Note that the specification
required by some forms of combinatorial testing
is lightweight, as it only needs to identify a set of
parameters and their possible values. This is in
contrast with other testing techniques that require
a complex operational model of the system under
test. Finally, assuming that the parameters and

Table 1. Four parameters that have three possible settings each for an on-line store

Log-in Type Member Status Discount Shipping

New member - not logged in Guest None Standard (5-7 day)

New-member - logged in Member 10% employee discount Expedited (3-5 day)

Member - logged in Employee $5 off holiday discount Overnight

Table 2. A pair-wise combinatorial test suite

Test
No.

Log-in Type Member Status Discount Shipping

1 New member - not logged in Guest None Standard (5-7 day)

2 New member - not logged in Member 10% employee discount Expedited (3-5 day)

3 New member - not logged in Employee $5 off holiday discount Overnight

4 New-member - logged in Guest $5 off holiday discount Expedited (3-5 day)

5 New-member - logged in Member None Overnight

6 New-member - logged in Employee 10% employee discount Standard (5-7 day)

7 Member - logged in Guest 10% employee discount Overnight

8 Member - logged in Member $5 off holiday discount Standard (5-7 day)

9 Member - logged in Employee None Expedited (3-5 day)

3

Combinatorial Testing

values are properly identified, the actual combina-
tion generation process can be fully automated,
which is a key to industrial acceptance.

In this section, we review applications of
combinatorial testing. Two major research themes
exist on the empirical effectiveness of combinato-
rial testing:

1. 	 What measures of effectiveness exist for
combinatorial testing?

2. 	 How much combinatorial testing is enough?
(i.e.: what is largest number of variables
which may be involved in failures)

Combinatorial testing is based on the premise
that many errors in software can only arise from the
interaction of two or more parameters. A number
of studies have investigated the application of
combinatorial methods to software testing (Burr
1998; Cohen 1997; Dunietz 1997; Kuhn 2002;
Kuhn 2004; Wallace 2001; Williams 2001; Yilmaz
2006). Early research focused on pairwise testing,
i.e., testing all 2-way combinations of parameter
values, thus exercising all interactions between
parameters or components at least once. Some of
these were designed to determine the degree of test
coverage obtained using combinatorial methods,
e.g. (Dunietz 1997), (Cohen 1996). These studies
use code coverage, rather than fault detection, to
measure the effectiveness of combinatorial test-
ing. They show that combinatorial methods can
produce coverage results that are comparable or
better than other test schemes. Code coverage
is an important metric, but only an indirect one.
Testers seek to detect faults in an application, so
a direct measure of effectiveness for a test method
is the fault detection rate.

Many studies demonstrated the effectiveness
of pairwise testing in a variety of applications. But
what if some failure is triggered only by a very
unusual combination of more than two values?
What degree of interaction occurs in real failures
in real systems? Studies that investigated the dis-
tribution of t-way faults are summarized in Figure

1 and Table 3 (Kuhn 2002; Kuhn 2004). As can be
seen from the data, across a variety of domains,
all failures could be triggered by a maximum of
4-way to 6-way interactions. Figure 1 shows that
the detection rate increases rapidly with interaction
strength. With the server, for example, 42% of the
failures were triggered by only a single parameter
value, 70% by 2-way combinations, and 89% by
3-way combinations. The detection rate curves
for the other applications are similar, reaching
100% detection with 4 to 6-way interactions.
That is, six or fewer variables were involved in
all failures for the applications studied, so 6-way
testing could in practice detect nearly all of the
failures. So far we have not seen a failure from
combinatorial interaction involving more than
six variables. While not conclusive, these results
suggest that combinatorial testing which exercises
high strength interaction combinations can be an
effective approach to software assurance. Much
more empirical work will be needed to under-
stand the effectiveness of combinatorial testing
in different domains. Note that the detection rate
at different interaction strengths varies widely
for the studies shown in Figure 1. Additional
research will help determine the extent to which
these limited results can be generalized to other
types of software.

III. Tools that Generate
Combinatorial Test Suites

Three main types of algorithms construct combi-
natorial test suites: algebraic, greedy, or heuristic
search algorithms. A high-level overview of the
major advantages and disadvantages of the al-
gorithms that construct combinatorial test suites
include:

1. 	 Algebraic methods offer efficient construc-
tions in regards to time; however, it is dif-
ficult to produce accurate results on a broad
and general variety of inputs with algebraic

4

Combinatorial Testing

methods. (See Colbourn 2004 and references
given therein.)

2. 	 Greedy algorithms are a well-studied type
of algorithm for the construction of cover-
ing arrays because they have been found
to be relatively efficient in regards to time
and accuracy (Bryce 2007; Bryce to appear;
Cohen 1996; Cohen 1997; Lei 2008; Tai
2002; Tung 2000).

3. 	 Heuristic search, particularly through the
application of Simulated Annealing (SA)
has provided the most accurate results in

several instances to date. This local search
method has provided many of the smallest
test suites for different system configura-
tions; however, at a cost in execution time
to generate test suites (Cohen 2008).

We refer the reader to the papers above for more
details of these algorithms and here we include
an overview of a freely available research tool,
called FireEye, to generate combinatorial test
suites. The IPO algorithm was first proposed for
pairwise testing (Tai 2002), and was later extended

Figure 1. Fault detection at interaction strengths 1 to 6 (Source: Kuhn 2004; Bell 2006)

Table 3. Percent fault detection at interaction strengths 1 to 6 (Source: Kuhn 2004; Bell 2006)

Interaction strength
Med Devices Browser Server

NASA
Database

Network
Security

1 66% 29% 42% 68% 17%

2 97 76 70 93 62

3 99 95 89 98 87

4 100 97 96 100 98

5 100 99 96 100 100

6 100 100 100 100 100

5

Combinatorial Testing

to general t-way combinatorial testing (Lei 2008).
The FireEye tool implements the general version
of the IPO algorithm, called IPOG (Lei 2008). We
provide both an overview of the algorithm and
screenshots of the tool that uses the algorithm.
Thus the readers have an example that helps them
to build their own test suites.

Overview of IPOG

The general framework of the IPOG algorithm
can be described as follows: For a system with at
least t parameters, the IPOG strategy first builds
a t-way test set for the first t parameters, it then
extends the test set to a t-way test set for the first
t + 1 parameters, and then continues to extend the
test set until it builds a t-way test set for all the
parameters. The extension of an existing t-way
test set for an additional parameter begins with
horizontal growth, which extends each existing
test by adding one value for the new parameter.
The t-way tuples covered by the addition of those
new values are tracked and removed from the set
of uncovered tuples. Note that horizontal growth
does not add any new tests, but only extends the
existing ones. After horizontal growth, if all the
tuples have not yet been covered the test set is
extended vertically, i.e., new tests are added to
cover the remaining tuples. The IPOG algorithm
utilizes local optimums to provide a bound of
accuracy for worst case scenarios.

In the following we use an example system to
illustrate the working of the IPO algorithm. This
example system consists of three parameters P1,
P2, and P3, where P1, and P2 have two values 0
and 1, and P3 has three values 0, 1, and 2. Figure
2 shows the construction of a 2-way test set for
the example system using the IPO algorithm.

The IPO algorithm first builds a 2-way test set
for the first two parameters P1 and P2, which is
shown in Figure 2 (a). This test set simply contains
4 tests, each of which is one possible combina-
tion of values of P1 and P2. Next, this test set is
extended to cover parameter P3. In order to cover
P3, we only need to cover all the combinations
involving P3 and P1 and those involving P3 and
P2. This is because all the combinations involving
P1 and P2 have already been covered. There are
in total 12 combinations to cover: 6 combinations
involve P3 and P1, and 6 combinations involve
P3 and P2. Those combinations are covered in
the following two steps:

•	 Horizontal growth: This step extends each
of the four existing tests by adding a value
for the P3, as shown in Figure 2 (b). These
values are chosen in a greedy manner. That
is, each value is chosen and added into a test
such that it covers the most combinations
that have not been covered yet. In Figure
2 (b), the four existing tests are extended
with values 0, 1, 2, 0, respectively, each of

Figure 2. Illustration of IPO

6

Combinatorial Testing

which covers two new combinations. Note
that since there are only three parameters,
adding a value of P3 can cover at most two
combinations. For example, the 1st test is
extended with 0, which covers two new
combinations {(P1.0, P3.0), (P2.0, P3.0)}.
Note that adding value 1 or 2 into the 1st
test also covers two new combinations.
In this case, the tie is broken arbitrarily
for value 0. As another example, the last
test is extended with value 0, which cov-
ers two new combinations combinations
{(P1.1, P3.0), (P2.1, P3.0)}. If the fourth test
was extended with value 1 or 2, it would
only cover one new combination. This is
because (P2.1, P3.1) (or (P1.1, P3.2)) has
already been covered in the second test (or
in the third test) when it is extended with
value 1 (or value 2).

•	 Vertical growth: This step adds two new
tests to cover the remaining uncovered
combinations, as shown in Figure 2 (c).
After horizontal growth, there are four
combinations that have not been covered
yet: {(P1.0, P3.2), (P1.1, P3.1), (P2.0, P3.1),
(P2.1, P3.2)}. To cover (P1.0, P3.2), we add
a new test (P1.0, P2.*, P3.2), where P2.*
indicates that the value of P2 is not deter-
mined yet. To cover (P1.1, P3.1), we add a
new test (P1.1, P2.*, P3.1). To cover (P2.0,
P3.1), we change the value of P2 from * to
0 in the last test. To cover (P2.1, P3.2), we
change the value of P2 from * to 1 in the 5th
test. At this point, we have covered all the
2-way combinations, and thus have built a
pairwise test set for the example system.

Due to space limitation, the readers are referred
to (Lei 2008) for a detailed presentation of the
IPO algorithm.

Generating a Combinatorial
Test Suite with FireEye

The FireEye tool implements the IPOG algorithm
to generate combinatorial test suites for users.
Consider the input from Table 1 which has four
parameters: Log-in type, Member status, Discount,
and Shipping. Each of these parameters can take
on one of three possible options. The FireEye
tool can generate a combinatorial test suite for
this input. Users enter the parameters and their
possible values and FireEye then automatically
generates a t-way test suite, where t is the strength
of coverage that the user specifies. Figure 3 pro-
vides an example of the input from Table 1. The
user entered the parameters and values on the
left side of the window. The right side shows a
summary of the parameters and values that have
been entered. The user may additionally specify
relations or constraints on other tabs from this
window if there are combinations of parameters
and values that can only occur together, or can not
be combined together. The user may then choose
to save the data that they enter on this screen and
choose to generate a combinatorial test suite. In
this example, we choose for FireEye to build a
pairwise combinatorial test suite. The test suite is
shown in Figure 4. (Note that the asterisks in the
test cases are “don’t care” values, meaning that
a tester can use any option for a parameter and
still cover all pairwise combinations.) The test
suite can be saved in multiple formats for testing
purposes. Figure 5 shows an subset of the test
case from our example in XML format. The left
side of the figure shows that the parameters and
values are saved in a simple format and the right
side shows a few tests in XML format.

IV. Research Directions

In this section, we will discuss research direc-
tions of both algorithms and applications. We can

7

Combinatorial Testing

categorize these issues as algorithms for t-way
combinatorial testing and approaches to the ap-
plication of combinatorial testing.

Algorithms for t-way
Combinatorial Testing

Combinatorial test suites can also provide higher
strength t-way coverage. Generating covering

Figure 3. Example inputs to FireEye

Figure 4. Example Combinatorial Test Suite created with FireEye

8

Combinatorial Testing

arrays of higher t-way coverage can consume
significant computational resources and produce
large results. For instance, Table 5 shows a sample
of inputs and the combinatorial growth of tuples
that occur as t increases. The input 313 (read as
13 parameters have 3 possible values each) in-
cludes 702 pairs, 7,722 triples, and reaches over
a million 6-tuples. As the size of the tuples and
their number increase, the size of corresponding
test suites increase. Managing this combinatorial
growth with regard to both accuracy and execution
time is still an open research issue.

The majority of algorithms for combinatorial
testing focus on the special case of 2-way combi-
natorial testing. Two greedy algorithms recently

appeared for t-way combinatorial testing (Bryce
to appear; Lei 2008). However, the efficient gen-
eration of t-way combinatorial test suites remains
an ongoing research topic.

Approaches for
Combinatorial Testing

There are basically two approaches to combina-
torial testing – use combinations of configura-
tion parameter values, or combinations of input
parameter values. In the first case, the covering
array is used to select values of configurable pa-
rameters, possibly with the same tests run against
all configuration combinations. For example, a

Figure 5. An abbreviated example of a test case in XML format

9

Combinatorial Testing

server might be tested by setting up all 4-way
combinations of configuration parameters such
as number of simultaneous connections allowed,
memory, OS, database size, etc., with the same
test suite run against each configuration.

In the second approach, the covering array
is used to select input data values, which then
become part of complete test cases, creating a
test suite for the application. Applying this form
of combinatorial testing to real-world software
presents a significant challenge: for higher degree
interactions, a very large number of tests can be
required. Thousands of tests may be needed to
cover all 4-way to 6-way combinations for many
typical applications, and for each test, the expected
result from the application under test must be
determined. Approaches to solving this “oracle
problem” for combinatorial testing include:

Crash testing: the easiest and least expensive
approach is to simply run tests against the system
under test (SUT) to check whether any unusual
combination of input values causes a crash or other
easily detectable failure. This approach clearly
produces limited information – a bookstore ap-
plication that crashes is clearly faulty, but one that
runs and produces incorrect results may cost the
e-commerce firm its business. Crash testing using
combinatorial methods can be an inexpensive yet
thorough basic method of checking a system’s
reaction to rare input combinations that might take
months or years to occur in normal operation.

Embedded assertions: An increasingly popu-
lar “light-weight formal methods” technique

is to embed assertions within code to ensure
proper relationships between data, for example
as preconditions, post-conditions, or input value
checks. Tools such as the Java Modeling language
(JML) (Leavens 1999) can be used to introduce
very complex assertions, effectively embedding a
formal specification within the code. The embed-
ded assertions serve as an executable form of the
specification, thus providing an oracle for the test-
ing phase. With embedded assertions, exercising
the application with all t-way combinations can
provide reasonable assurance that the code works
correctly across a very wide range of inputs. This
approach has been used successfully for testing
smart cards detecting 80% - 90% of application
faults (du Bousquet 2004).

Model-checker based test generation uses
a mathematical model of the SUT and a model
checker to generated expected results for each
input. Conceptually, the model checker can be
viewed as exploring all states of a system model to
determine if a property claimed in a specification
statement is true. What makes a model checker
particularly valuable is that if the claim is false,
the model checker not only reports this, but also
provides a “counterexample” showing how the
claim can be shown false. If the claim is false,
the model checker indicates this and provides a
trace of parameter input values and states that will
prove it is false. In effect this is a complete test
case, i.e., a set of parameter values and expected
result. It is then simple to map these values into
complete test cases in the syntax needed for the

Table 5. A sample of the exponential growth of t-tuples as t increases

104 313 1116

t=2 600 702 14,520

t=3 4,000 7,722 745,360

t=4 10,000 57,915 26,646,620

t=5 - 312,741 703,470,768

t=6 10,000 1,250,954 1,301,758,600

t=k 10,000 1,594,323 45,949,729,863,572,200

10

Combinatorial Testing

system under test (Ammann 1999). This process
is illustrated in Figure 6.

V. Future and
International Impact

Combinatorial testing has attracted a lot of atten-
tion from both academia and industry. Several
studies have indicated that combinatorial testing
could dramatically reduce the number of tests
while remaining effective for detecting software
faults. Moreover, combinatorial testing is rela-
tively easy to apply. As a black-box technique,
combinatorial testing does not require analysis of
source code, which is often difficult for practical
applications. To apply combinatorial testing, a set
of parameters, as well as their possible values,
need to be identified. This information is often
much easier to obtain than an operational model
as required by many other black-box techniques.
After the parameters and their values are identi-
fied, the actual test generation process can be

fully automated, which is the key to industrial
acceptance.

Combinatorial testing research has made sig-
nificant progress in recent years, and continues to
make progress every day, especially in the direc-
tions outlined in the previous section. With these
progresses, combinatorial testing is expected to be
fully integrated with the existing testing processes
and become an important tool in the toolbox of
software practitioners. The wide use of combina-
torial testing will help to significantly reduce the
cost of software testing while increasing software
quality. It will also improve the productivity of
software developers by reducing the time and
effort they spend on testing.

VI. Conclusion

Software is growing in complexity. This poses
a challenge to testers since there are often more
combinations of system settings than there is time
for testing. Combinatorial testing is an approach

Figure 6. A process for model-checker based test generation with covering arrays

11

Combinatorial Testing

that can systematically examine system settings
in a manageable number of tests. This chapter
provides a summary of the different types of
algorithms that exist to efficiently generate tests.
This provides readers not only with one example
of how test suites can be constructed, but they
are also pointed to a publicly available tool that
generates tests. Further, we provide a discussion
of empirical studies that reveal the effectiveness
of combinatorial testing for different types of
applications. These studies show how and when
to apply the techniques, but also open questions
for future research.

Certain commercial equipment or materials are
identified in this paper. Such identification is not
intended to imply recommendation or endorse-
ment by NIST, nor is it intended to imply that the
equipment or materials identified are necessarily
the best available for the purpose.

References

Ammann, P., & Black, P. E. (1999). Abstracting
Formal Specifications to Generate Software Tests
via Model Checking. IEEE 18th Digital Avionics
Systems Conference, 2(10), 1-10.

Bell, K. Z. (2006). Optimizing Effectiveness and
Efficiency of Software Testing: a Hybrid Ap-
proach. PhD Dissertation, North Carolina State
University.

Bryce, R., & Colbourn, C. J. (2007). The Density
Algorithm for Pairwise Interaction Testing. Jour-
nal of Software Testing . Verification and Reliabil-
ity, 17(3), 159–182. doi:10.1002/stvr.365

Bryce, R., & Colbourn, C. J. (in press). A Density-
Based Greedy Algorithm for Higher Strength
Covering Arrays. Journal of Software Testing,
Verification, and Reliability.

Burr, K., & Young, W. (1998). Combinatorial test
techniques: Table-based automation, test genera-
tion, and code coverage. International Conference
on Software Testing Analysis and Review (pp.
503-513).

Cohen, D.M., Dalal, S. R., Fredman, M. L., &
Patton, G. C. (1996). Method and system for
automatically generating efficient test cases for
systems having interacting elements [United States
Patent, Number 5, 542, 043].

Cohen, D. M., Dalal, S. R., Fredman, M. L., &
Patton, G. C. (1997). The AETG system: an ap-
proach to testing based on combinatorial design.
IEEE Transactions on Software Engineering,
23(7), 437–444. doi:10.1109/32.605761

Cohen, D. M., Dalal, S. R., Parelius, J., & Patton,
G. C. (1996). The combinatorial design approach
to automatic test generation. IEEE Software, 13(5),
83–88. doi:10.1109/52.536462

Cohen, M. B., Colbourn, C. J., Gibbons, P. B., &
Mugridge, W. B. (2003). Constructing test suites
for interaction testing. International Conference
on Software Engineering (pp. 38-48).

Cohen, M. B., Colbourn, C. J., & Ling, A. C.
H. (2008). Constructing Strength 3 Covering
Arrays with Augmented Annealing. Discrete
Mathematics, 308, 2709–2722. doi:10.1016/j.
disc.2006.06.036

Colbourn, C. J. (2004). Combinatorial aspects
of covering arrays. Le Matematiche (Catania),
58, 121–167.

Dalal, S. R., Jain, A., Karunanithi, N., Leaton,
J. M., Lott, C. M., Patton, G. C., & Horowitz,
B. M. (1999). Model-Based Testing in Practice.
International Conference on Software Engineer-
ing (pp. 285-294).

12

Combinatorial Testing

du Bousquet, L., Ledru, Y., Maury, O., Oriat, C.,
& Lanet, J.-L. (2004). A case study in JML-based
software validation. IEEE International Confer-
ence on Automated Software Engineering (pp.
294-297).

Dunietz, S. Ehrlich, W. K. Szablak, B. D. Mallows,
C. L. & Iannino, A. (1997). Applying design of
experiments to software testing. International.
Conference on Software Engineering (pp. 205-
215).

Fischer, R. A. (1926). The Arrangement of Field
Experiments. Journal of Ministry of Agriculture
of Great Britain, 33, 503–513.

Hartman, A., Klinger, T., & Raskin, L. (2008).
IBM Intelligent Test Case Handler. Retrieved on
August 30, 2008, from http://www.alphaworks.
ibm.com/tech/whitch

Hartman, A., & Raskin, L. (2004). Problems
and algorithms for covering arrays. Discrete
Mathematics, 284, 149–156. doi:10.1016/j.
disc.2003.11.029

Kuhn, R., & Reilly, M. (2002). An investigation
of the applicability of design of experiments to
software testing. NASA Goddard/IEEE Software
Engineering Workshop (pp. 91-95).

Kuhn, R., Wallace, D., & Gallo, A. (2004).
Software Fault Interactions and Implications for
Software Testing. IEEE Transactions on Soft-
ware Engineering, 30(6), 418–421. doi:10.1109/
TSE.2004.24

Leavens, G. T., Baker, A. L., & Ruby, C. (1999).
JML: A notation for detailed design. In H. Kilov,
B. Rumpe, & I. Simmonds, (Ed.) Behavioral
Specifications of Businesses and Systems.

Lei, Y. Kacker, R. Kuhn, D. Okun, & V. Lawrence
J. (2008). IPOG/IPOD: Efficient Test Generation
for Multi-Way Combinatorial Testing. Journal of
Software Testing, Verification, and Reliability,
18(3), 125–148. doi:10.1002/stvr.381

Lei, Y., & Tai, K. C. (1998). In-parameter-order:
a test generation strategy for pairwise testing. In-
ternational High-Assurance Systems Engineering
Symposium (pp. 254-261).

NIST. (2003). The Economic Impacts of In-
adequate Infrastructure for software testing.
Retrieved from http://www.nist.gov/director/
prog-ofc/report02-3.pdf

Tai, K. C., & Lei, Y. (2002). A test generation
strategy for pairwise testing. IEEE Transac-
tions on Software Engineering, 28(1), 109–111.
doi:10.1109/32.979992

Tung, Y. W., & Aldiwan, W. S. (2000). Automating
test case generation for the new generation mission
software system. IEEE Aerospace Conference
(pp. 431-437).

Wallace, D. R., & Kuhn, D. R. (2001). Failure
Modes in Medical Device Software: an Analysis
of 15 Years of Recall Data. International Journal
of Reliability Quality and Safety Engineering,
8(4). doi:10.1142/S021853930100058X

Williams, A., & Probert, R. L. (2001). A measure
for component interaction test coverage. ACS/
IEEE International Conference on Computer
Systems and Applications (pp. 301-311).

Yilmaz, C., Cohen, M. B., & Porter, A. (2006).
Covering arrays for efficient fault characterization
in complex configuration spaces. IEEE Transac-
tions on Software Engineering, 32(1), 20–34.
doi:10.1109/TSE.2006.8

Key Terms and Definitions

Covering Array: CAλ(N;t,k,v), is an N x k array.
In every N x t subarray, each t-tuple occurs at least
λ times. In combinatorial testing, t is the strength
of the coverage of interactions, k is the number
of components (degree), and v is the number of
symbols for each component.

13

Combinatorial Testing

Covering Array Number (CAN): The size of
a covering array, or a mixed-level covering array
and is considered optimal when it is as small as
possible.

Pairwise Combinatorial Testing: An interac-
tion test in which the strength, t, is equal to two.
Pair-wise permutations of factors are executed
during testing.

Pseudo-Exhaustive Testing: The term used
when interaction testing is considered effectively
exhaustive. Interaction testing at levels of 4-way
to 6-way coverage have been suggested to be
pseudoexhaustive (Kuhn, Reilly 2002)

n-way Combinatorial Testing: An interaction
test in which the strength, t, is equal to a specified
value n. Permutations of n-tuples of factors are
executed during testing

