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I. Introduction

Software systems are complex and can incur 
exponential numbers of possible tests. Testing is 
expensive and trade-offs often exist to optimize 
the use of resources. Several systematic approaches 
to software testing have been proposed in the 
literature. Category partitioning is the base of all 
systematic approaches as finite values of param-
eters are identified for testing. Each of these finite 

parameter-values may be tested at least once, in 
specified combinations together, or in exhaustive 
combination. The simplest approach tests all values 
at least once. The most thorough approach exhaus-
tively tests all parameter-value combinations. While 
testing only individual values may not be enough, 
exhaustive testing of all possible combinations is 
not always feasible. Combination strategies are a 
reasonable alternative that falls in between these 
two extremes.
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Consider an on-line store that has four param-
eters of interest as shown in Table 1. There are 
three log-in types; three types of member status; 
three discount options; and three shipping options. 
Different end users may have different preferences 
and will likely use different combinations of these 
parameters. To exhaustively test all combinations 
of the four parameters that have 3 options each 
from Table 1 would require 34 = 81 tests.

In this example, exhaustive testing requires 
81 test cases, but pair-wise combinatorial testing 
uses only 9 test cases. Instead of testing every 
combination, all individual pairs of interactions 
are tested. The resulting test suite is shown in 
Table 2, and is contains only 9 tests. All pairs of 
combinations have been combined together at 
least once during the testing process. For instance, 
the first test from Table 2 covers the following 
pairs: (New member - not logged in, Guest), 
(New member - not logged in, $5 off holiday 
discount), (New member - not logged in, Standard 
(5-7 day)), (Guest, None), (Guest, Standard (5-7 

day)), and (None, Standard (5-7 day)). The entire 
test suite covers every possible pairwise combi-
nation between components. This reduction in 
tests amplifies on larger systems - a system with 
20 factors and 5 levels each would require 520 = 
95,367,431,640,625 exhaustive tests! Pairwise 
combinatorial testing for 520 can be achieved in 
as few as 45 tests.

II. Background

Combinatorial testing is simple to apply. As a 
specification-based technique, combinatorial 
testing requires no knowledge about the imple-
mentation under test. Note that the specification 
required by some forms of combinatorial testing 
is lightweight, as it only needs to identify a set of 
parameters and their possible values. This is in 
contrast with other testing techniques that require 
a complex operational model of the system under 
test. Finally, assuming that the parameters and 

Table 1. Four parameters that have three possible settings each for an on-line store 

Log-in Type Member Status Discount Shipping

New member - not logged in Guest None Standard (5-7 day)

New-member - logged in Member 10% employee discount Expedited (3-5 day)

Member - logged in Employee $5 off holiday discount Overnight

Table 2. A pair-wise combinatorial test suite 

Test 
No.

Log-in Type Member Status Discount Shipping

1 New member - not logged in Guest None Standard (5-7 day)

2 New member - not logged in Member 10% employee discount Expedited (3-5 day)

3 New member - not logged in Employee $5 off holiday discount Overnight

4 New-member - logged in Guest $5 off holiday discount Expedited (3-5 day)

5 New-member - logged in Member None Overnight

6 New-member - logged in Employee 10% employee discount Standard (5-7 day)

7 Member - logged in Guest 10% employee discount Overnight

8 Member - logged in Member $5 off holiday discount Standard (5-7 day)

9 Member - logged in Employee None Expedited (3-5 day)
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values are properly identified, the actual combina-
tion generation process can be fully automated, 
which is a key to industrial acceptance.

In this section, we review applications of 
combinatorial testing. Two major research themes 
exist on the empirical effectiveness of combinato-
rial testing:

1. 	 What measures of effectiveness exist for 
combinatorial testing?

2. 	 How much combinatorial testing is enough? 
(i.e.: what is largest number of variables 
which may be involved in failures)

Combinatorial testing is based on the premise 
that many errors in software can only arise from the 
interaction of two or more parameters. A number 
of studies have investigated the application of 
combinatorial methods to software testing (Burr 
1998; Cohen 1997; Dunietz 1997; Kuhn 2002; 
Kuhn 2004; Wallace 2001; Williams 2001; Yilmaz 
2006). Early research focused on pairwise testing, 
i.e., testing all 2-way combinations of parameter 
values, thus exercising all interactions between 
parameters or components at least once. Some of 
these were designed to determine the degree of test 
coverage obtained using combinatorial methods, 
e.g. (Dunietz 1997), (Cohen 1996). These studies 
use code coverage, rather than fault detection, to 
measure the effectiveness of combinatorial test-
ing. They show that combinatorial methods can 
produce coverage results that are comparable or 
better than other test schemes. Code coverage 
is an important metric, but only an indirect one. 
Testers seek to detect faults in an application, so 
a direct measure of effectiveness for a test method 
is the fault detection rate.

Many studies demonstrated the effectiveness 
of pairwise testing in a variety of applications. But 
what if some failure is triggered only by a very 
unusual combination of more than two values? 
What degree of interaction occurs in real failures 
in real systems? Studies that investigated the dis-
tribution of t-way faults are summarized in Figure 

1 and Table 3 (Kuhn 2002; Kuhn 2004). As can be 
seen from the data, across a variety of domains, 
all failures could be triggered by a maximum of 
4-way to 6-way interactions. Figure 1 shows that 
the detection rate increases rapidly with interaction 
strength. With the server, for example, 42% of the 
failures were triggered by only a single parameter 
value, 70% by 2-way combinations, and 89% by 
3-way combinations. The detection rate curves 
for the other applications are similar, reaching 
100% detection with 4 to 6-way interactions. 
That is, six or fewer variables were involved in 
all failures for the applications studied, so 6-way 
testing could in practice detect nearly all of the 
failures. So far we have not seen a failure from 
combinatorial interaction involving more than 
six variables. While not conclusive, these results 
suggest that combinatorial testing which exercises 
high strength interaction combinations can be an 
effective approach to software assurance. Much 
more empirical work will be needed to under-
stand the effectiveness of combinatorial testing 
in different domains. Note that the detection rate 
at different interaction strengths varies widely 
for the studies shown in Figure 1. Additional 
research will help determine the extent to which 
these limited results can be generalized to other 
types of software.

III. Tools that Generate 
Combinatorial Test Suites

Three main types of algorithms construct combi-
natorial test suites: algebraic, greedy, or heuristic 
search algorithms. A high-level overview of the 
major advantages and disadvantages of the al-
gorithms that construct combinatorial test suites 
include:

1. 	 Algebraic methods offer efficient construc-
tions in regards to time; however, it is dif-
ficult to produce accurate results on a broad 
and general variety of inputs with algebraic 
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methods. (See Colbourn 2004 and references 
given therein.)

2. 	 Greedy algorithms are a well-studied type 
of algorithm for the construction of cover-
ing arrays because they have been found 
to be relatively efficient in regards to time 
and accuracy (Bryce 2007; Bryce to appear; 
Cohen 1996; Cohen 1997; Lei 2008; Tai 
2002; Tung 2000).

3. 	 Heuristic search, particularly through the 
application of Simulated Annealing (SA) 
has provided the most accurate results in 

several instances to date. This local search 
method has provided many of the smallest 
test suites for different system configura-
tions; however, at a cost in execution time 
to generate test suites (Cohen 2008).

We refer the reader to the papers above for more 
details of these algorithms and here we include 
an overview of a freely available research tool, 
called FireEye, to generate combinatorial test 
suites. The IPO algorithm was first proposed for 
pairwise testing (Tai 2002), and was later extended 

Figure 1. Fault detection at interaction strengths 1 to 6 (Source: Kuhn 2004; Bell 2006)

Table 3. Percent fault detection at interaction strengths 1 to 6 (Source: Kuhn 2004; Bell 2006) 

Interaction strength
Med Devices Browser Server

NASA 
Database

Network  
Security

1 66% 29% 42% 68% 17%

2 97 76 70 93 62

3 99 95 89 98 87

4 100 97 96 100 98

5 100 99 96 100 100

6 100 100 100 100 100
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to general t-way combinatorial testing (Lei 2008). 
The FireEye tool implements the general version 
of the IPO algorithm, called IPOG (Lei 2008). We 
provide both an overview of the algorithm and 
screenshots of the tool that uses the algorithm. 
Thus the readers have an example that helps them 
to build their own test suites.

Overview of IPOG

The general framework of the IPOG algorithm 
can be described as follows: For a system with at 
least t parameters, the IPOG strategy first builds 
a t-way test set for the first t parameters, it then 
extends the test set to a t-way test set for the first 
t + 1 parameters, and then continues to extend the 
test set until it builds a t-way test set for all the 
parameters. The extension of an existing t-way 
test set for an additional parameter begins with 
horizontal growth, which extends each existing 
test by adding one value for the new parameter. 
The t-way tuples covered by the addition of those 
new values are tracked and removed from the set 
of uncovered tuples. Note that horizontal growth 
does not add any new tests, but only extends the 
existing ones. After horizontal growth, if all the 
tuples have not yet been covered the test set is 
extended vertically, i.e., new tests are added to 
cover the remaining tuples. The IPOG algorithm 
utilizes local optimums to provide a bound of 
accuracy for worst case scenarios.

In the following we use an example system to 
illustrate the working of the IPO algorithm. This 
example system consists of three parameters P1, 
P2, and P3, where P1, and P2 have two values 0 
and 1, and P3 has three values 0, 1, and 2. Figure 
2 shows the construction of a 2-way test set for 
the example system using the IPO algorithm.

The IPO algorithm first builds a 2-way test set 
for the first two parameters P1 and P2, which is 
shown in Figure 2 (a). This test set simply contains 
4 tests, each of which is one possible combina-
tion of values of P1 and P2. Next, this test set is 
extended to cover parameter P3. In order to cover 
P3, we only need to cover all the combinations 
involving P3 and P1 and those involving P3 and 
P2. This is because all the combinations involving 
P1 and P2 have already been covered. There are 
in total 12 combinations to cover: 6 combinations 
involve P3 and P1, and 6 combinations involve 
P3 and P2. Those combinations are covered in 
the following two steps:

•	 Horizontal growth: This step extends each 
of the four existing tests by adding a value 
for the P3, as shown in Figure 2 (b). These 
values are chosen in a greedy manner. That 
is, each value is chosen and added into a test 
such that it covers the most combinations 
that have not been covered yet. In Figure 
2 (b), the four existing tests are extended 
with values 0, 1, 2, 0, respectively, each of 

Figure 2. Illustration of IPO
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which covers two new combinations. Note 
that since there are only three parameters, 
adding a value of P3 can cover at most two 
combinations. For example, the 1st test is 
extended with 0, which covers two new 
combinations {(P1.0, P3.0), (P2.0, P3.0)}. 
Note that adding value 1 or 2 into the 1st 
test also covers two new combinations. 
In this case, the tie is broken arbitrarily 
for value 0. As another example, the last 
test is extended with value 0, which cov-
ers two new combinations combinations 
{(P1.1, P3.0), (P2.1, P3.0)}. If the fourth test 
was extended with value 1 or 2, it would 
only cover one new combination. This is 
because (P2.1, P3.1) (or (P1.1, P3.2)) has 
already been covered in the second test (or 
in the third test) when it is extended with 
value 1 (or value 2).

•	 Vertical growth: This step adds two new 
tests to cover the remaining uncovered 
combinations, as shown in Figure 2 (c). 
After horizontal growth, there are four 
combinations that have not been covered 
yet: {(P1.0, P3.2), (P1.1, P3.1), (P2.0, P3.1), 
(P2.1, P3.2)}. To cover (P1.0, P3.2), we add 
a new test (P1.0, P2.*, P3.2), where P2.* 
indicates that the value of P2 is not deter-
mined yet. To cover (P1.1, P3.1), we add a 
new test (P1.1, P2.*, P3.1). To cover (P2.0, 
P3.1), we change the value of P2 from * to 
0 in the last test. To cover (P2.1, P3.2), we 
change the value of P2 from * to 1 in the 5th 
test. At this point, we have covered all the 
2-way combinations, and thus have built a 
pairwise test set for the example system.

Due to space limitation, the readers are referred 
to (Lei 2008) for a detailed presentation of the 
IPO algorithm.

Generating a Combinatorial 
Test Suite with FireEye

The FireEye tool implements the IPOG algorithm 
to generate combinatorial test suites for users. 
Consider the input from Table 1 which has four 
parameters: Log-in type, Member status, Discount, 
and Shipping. Each of these parameters can take 
on one of three possible options. The FireEye 
tool can generate a combinatorial test suite for 
this input. Users enter the parameters and their 
possible values and FireEye then automatically 
generates a t-way test suite, where t is the strength 
of coverage that the user specifies. Figure 3 pro-
vides an example of the input from Table 1. The 
user entered the parameters and values on the 
left side of the window. The right side shows a 
summary of the parameters and values that have 
been entered. The user may additionally specify 
relations or constraints on other tabs from this 
window if there are combinations of parameters 
and values that can only occur together, or can not 
be combined together. The user may then choose 
to save the data that they enter on this screen and 
choose to generate a combinatorial test suite. In 
this example, we choose for FireEye to build a 
pairwise combinatorial test suite. The test suite is 
shown in Figure 4. (Note that the asterisks in the 
test cases are “don’t care” values, meaning that 
a tester can use any option for a parameter and 
still cover all pairwise combinations.) The test 
suite can be saved in multiple formats for testing 
purposes. Figure 5 shows an subset of the test 
case from our example in XML format. The left 
side of the figure shows that the parameters and 
values are saved in a simple format and the right 
side shows a few tests in XML format.

IV. Research Directions

In this section, we will discuss research direc-
tions of both algorithms and applications. We can 
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categorize these issues as algorithms for t-way 
combinatorial testing and approaches to the ap-
plication of combinatorial testing.

Algorithms for t-way 
Combinatorial Testing

Combinatorial test suites can also provide higher 
strength t-way coverage. Generating covering 

Figure 3. Example inputs to FireEye

Figure 4. Example Combinatorial Test Suite created with FireEye



8

Combinatorial Testing

arrays of higher t-way coverage can consume 
significant computational resources and produce 
large results. For instance, Table 5 shows a sample 
of inputs and the combinatorial growth of tuples 
that occur as t increases. The input 313 (read as 
13 parameters have 3 possible values each) in-
cludes 702 pairs, 7,722 triples, and reaches over 
a million 6-tuples. As the size of the tuples and 
their number increase, the size of corresponding 
test suites increase. Managing this combinatorial 
growth with regard to both accuracy and execution 
time is still an open research issue.

The majority of algorithms for combinatorial 
testing focus on the special case of 2-way combi-
natorial testing. Two greedy algorithms recently 

appeared for t-way combinatorial testing (Bryce 
to appear; Lei 2008). However, the efficient gen-
eration of t-way combinatorial test suites remains 
an ongoing research topic.

Approaches for 
Combinatorial Testing

There are basically two approaches to combina-
torial testing – use combinations of configura-
tion parameter values, or combinations of input 
parameter values. In the first case, the covering 
array is used to select values of configurable pa-
rameters, possibly with the same tests run against 
all configuration combinations. For example, a 

Figure 5. An abbreviated example of a test case in XML format
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server might be tested by setting up all 4-way 
combinations of configuration parameters such 
as number of simultaneous connections allowed, 
memory, OS, database size, etc., with the same 
test suite run against each configuration.

In the second approach, the covering array 
is used to select input data values, which then 
become part of complete test cases, creating a 
test suite for the application. Applying this form 
of combinatorial testing to real-world software 
presents a significant challenge: for higher degree 
interactions, a very large number of tests can be 
required. Thousands of tests may be needed to 
cover all 4-way to 6-way combinations for many 
typical applications, and for each test, the expected 
result from the application under test must be 
determined. Approaches to solving this “oracle 
problem” for combinatorial testing include:

Crash testing: the easiest and least expensive 
approach is to simply run tests against the system 
under test (SUT) to check whether any unusual 
combination of input values causes a crash or other 
easily detectable failure. This approach clearly 
produces limited information – a bookstore ap-
plication that crashes is clearly faulty, but one that 
runs and produces incorrect results may cost the 
e-commerce firm its business. Crash testing using 
combinatorial methods can be an inexpensive yet 
thorough basic method of checking a system’s 
reaction to rare input combinations that might take 
months or years to occur in normal operation.

Embedded assertions: An increasingly popu-
lar “light-weight formal methods” technique 

is to embed assertions within code to ensure 
proper relationships between data, for example 
as preconditions, post-conditions, or input value 
checks. Tools such as the Java Modeling language 
(JML) (Leavens 1999) can be used to introduce 
very complex assertions, effectively embedding a 
formal specification within the code. The embed-
ded assertions serve as an executable form of the 
specification, thus providing an oracle for the test-
ing phase. With embedded assertions, exercising 
the application with all t-way combinations can 
provide reasonable assurance that the code works 
correctly across a very wide range of inputs. This 
approach has been used successfully for testing 
smart cards detecting 80% - 90% of application 
faults (du Bousquet 2004).

Model-checker based test generation uses 
a mathematical model of the SUT and a model 
checker to generated expected results for each 
input. Conceptually, the model checker can be 
viewed as exploring all states of a system model to 
determine if a property claimed in a specification 
statement is true. What makes a model checker 
particularly valuable is that if the claim is false, 
the model checker not only reports this, but also 
provides a “counterexample” showing how the 
claim can be shown false. If the claim is false, 
the model checker indicates this and provides a 
trace of parameter input values and states that will 
prove it is false. In effect this is a complete test 
case, i.e., a set of parameter values and expected 
result. It is then simple to map these values into 
complete test cases in the syntax needed for the 

Table 5. A sample of the exponential growth of t-tuples as t increases 

104 313 1116

t=2 600 702 14,520

t=3 4,000 7,722 745,360

t=4 10,000 57,915 26,646,620

t=5 - 312,741 703,470,768

t=6 10,000 1,250,954 1,301,758,600

t=k 10,000 1,594,323 45,949,729,863,572,200
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system under test (Ammann 1999). This process 
is illustrated in Figure 6.

V. Future and 
International Impact

Combinatorial testing has attracted a lot of atten-
tion from both academia and industry. Several 
studies have indicated that combinatorial testing 
could dramatically reduce the number of tests 
while remaining effective for detecting software 
faults. Moreover, combinatorial testing is rela-
tively easy to apply. As a black-box technique, 
combinatorial testing does not require analysis of 
source code, which is often difficult for practical 
applications. To apply combinatorial testing, a set 
of parameters, as well as their possible values, 
need to be identified. This information is often 
much easier to obtain than an operational model 
as required by many other black-box techniques. 
After the parameters and their values are identi-
fied, the actual test generation process can be 

fully automated, which is the key to industrial 
acceptance.

Combinatorial testing research has made sig-
nificant progress in recent years, and continues to 
make progress every day, especially in the direc-
tions outlined in the previous section. With these 
progresses, combinatorial testing is expected to be 
fully integrated with the existing testing processes 
and become an important tool in the toolbox of 
software practitioners. The wide use of combina-
torial testing will help to significantly reduce the 
cost of software testing while increasing software 
quality. It will also improve the productivity of 
software developers by reducing the time and 
effort they spend on testing.

VI. Conclusion

Software is growing in complexity. This poses 
a challenge to testers since there are often more 
combinations of system settings than there is time 
for testing. Combinatorial testing is an approach 

Figure 6. A process for model-checker based test generation with covering arrays
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that can systematically examine system settings 
in a manageable number of tests. This chapter 
provides a summary of the different types of 
algorithms that exist to efficiently generate tests. 
This provides readers not only with one example 
of how test suites can be constructed, but they 
are also pointed to a publicly available tool that 
generates tests. Further, we provide a discussion 
of empirical studies that reveal the effectiveness 
of combinatorial testing for different types of 
applications. These studies show how and when 
to apply the techniques, but also open questions 
for future research.

Certain commercial equipment or materials are 
identified in this paper. Such identification is not 
intended to imply recommendation or endorse-
ment by NIST, nor is it intended to imply that the 
equipment or materials identified are necessarily 
the best available for the purpose.
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Key Terms and Definitions

Covering Array: CAλ(N;t,k,v), is an N x k array. 
In every N x t subarray, each t-tuple occurs at least 
λ times. In combinatorial testing, t is the strength 
of the coverage of interactions, k is the number 
of components (degree), and v is the number of 
symbols for each component.
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Combinatorial Testing

Covering Array Number (CAN): The size of 
a covering array, or a mixed-level covering array 
and is considered optimal when it is as small as 
possible.

Pairwise Combinatorial Testing: An interac-
tion test in which the strength, t, is equal to two. 
Pair-wise permutations of factors are executed 
during testing.

Pseudo-Exhaustive Testing: The term used 
when interaction testing is considered effectively 
exhaustive. Interaction testing at levels of 4-way 
to 6-way coverage have been suggested to be 
pseudoexhaustive (Kuhn, Reilly 2002)

n-way Combinatorial Testing: An interaction 
test in which the strength, t, is equal to a specified 
value n. Permutations of n-tuples of factors are 
executed during testing


