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From: hugokraw@gmail.com [Hugo Krawczyk] 
Sent: Wednesday, July 08, 2009  
Hi, 
 
I am reading the document and was wondering what distinguishes "data authentication" 
from "entity authentication". For example, when IKE applies a signature it is certainly 
doing entity authentication but it is also signing data, for example, negotiated 
algorithms. 
 
As another example, is a signature in a certificate "entity authentication" or "data 
authentication"? 
 
A clue to what you mean by differentiating between the two cases seems to be the 
following text in page 5: "signature verification for entity authentication is performed 
immediately after signature generation; therefore. there is no requirement to retain a 
signature for later verification. " 
 
 Would I be correct to say that the actual differeniation you are doing is between 
signatures with long-term verification needs and those with short-term (or ephemeral) 
needs? 
 
This may still require an understanding of what is short-term and long-term (*) but still 
seems to be better defined than "entity vs data". 
 
(*) Deciding on short term vs long term is not straightforward. In the IKE example, an 
application may record IKE exchanges for the sake of auditing or archiving and may need 
to validate signatures well after the protocol run is complete. 
 
One additional question, only tangentially related to your paper. In table 4 you specify 
compliance with SP 800-56A. I was recently asked the following question to which I did 
not have an answer. Is it relevant to talk about MQV in the context of IKE given that IKE 
has its own signature-based mechanism for key exchange? What should be the answer to 
this question? 
 
Thanks 
 
Hugo 
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From: Ratcliffe, Steve [mailto:sratcliffe@icsalabs.com]  
Date: Wednesday, July 08, 2009 
 
Page 1, line 1, “providing”: Perhaps you should change this word to authoring. NIST did 
not just start doing/providing key management guidance 9 years ago!! 
 
Page 1, lines 2-3, “management guidance”: This included lessons learned over many 
years of dealing with key management issues”: It might sound better to say NIST began 
the task of providing cryptographic key management guidance via SP 800-57 (or any 
other document that shows you management guidance) to the US Federal Government 
and assistance to the commercial community, in the form of technical understanding. 
Remove century. That was only 9 years ago and key management has been going on a lot 
longer. 
 
Page 1, line 6, “algorithm breaks”: Is this actual breaks or academic breaks. I am not 
aware of any actual breaks so it might be safer to say academic this way no one gets the 
impression that any algorithm has actually been broken. 
 
Page 1, line 6, “techniques”: This is a really long sentence. "over many years" is that 2 
years or 50 years? "dealing with key management issues" is this government issues or has 
this been government and commercial? The later carries more weight if this paper is 
going to get any acceptance from the commercial/civilian community. "attempts to 
encourage the definition and implementation", this sounds like NIST has no idea so they 
kept pushing the world for a definition which goes against the many years of dealing with 
key management statement in the second sentence. 
 
Page 1, line 7, “Publication (SP) 800-57”: This is a three part document. so you should at 
least mention that here and list them separately in the back. You can add the term 
DRAFT. 
 
Page 1, para.2, “definition of security strengths, the association of the approved 
algorithms with these security strengths, and a projection of the time frames during which 
the algorithms could be expected to provide adequate security”: This information isn't 
really cut and dry within the document so it might be a good idea to state that this comes 
from section 5.6 of SP 800-57 part 1. Such as Some of the guidance provided in SP 800-
57 Part 1 specifically section 5.6 includes the definition of the security strengths, the 
association of the approved algorithms as they are associated with the security strengths 
and finally a projection o f the time frames.... 
 
Page 1, para. 3, line 2, “discovering the key”: This is a brute force attack. so this is a 
measurement of the difficulty of discovering the key during a brute force attack. 
 
Page 1, para. 4, line 5, “so easily done”: It might be good to site a few examples as to 
why you believe this is not so easily done. Such as cost, breakdown in interoperability, 
vast number of changes required to maintain continuity and so on. 
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Page 1, para. 4, line 6, “class of algorithm”: I do not understand what you mean by class 
of algorithm. I understand class as it might pertain to hash, cipher, mode of operation. I 
also understand algorithm as it might be SHA, AES, Triple DES. What exactly are you 
going to examine. That is what you should say here. 
 
Page 1, para. 4, line 6, “sometimes make some adjustments”: Are you talking about 
strength or algorithm implementation? Sometimes and some used here does not sound 
right. I would remove one of the words. 
 
Page 1, para. 5, line 2, “NIST’s”: The CMVP is both NIST and CSEC. So for political 
reason you might want to remove NIST's 
 
Page 1, para. 5, lines 3-4, “which is responsible for validations cryptographic modules for 
conformance to FIPS 140-2”: Does not sound right. which is responsible for validating 
cryptographic modules against FIPS 140-2 standards 
or 
which is responsible for validations of cryptographic modules against FIPS 140-2 
standards. 
 
Page 1, para. 5, line 5, “approved cryptographic algorithms”: The phrase "approved 
cryptogrphic algorithms" is not used in Annex A. It might be better to say i.e.; AES, 
Triple-DES, SHA, DSA, HMAC to name a few. 
 
Page 1, para. 5, lines 6-10, “CMVP is the vehicle used for testing conformance to FIPS 
140-2 and the approved algorithm specifications. In some cases, an algorithm or protocol 
that has not been approved in a FIPS or NIST Recommendation is “allowed”; an 
algorithm is indicated as allowed by means of the FIPS 140-2 Implementation Guidance 
document”: Going off CMVP web site under What is the purpose of the CMVP. You 
might change this statement to read something like. 
 
The CMVP was establish to validate cryptographic modules to the current FIPS 140-2 
standard. Likewise the CAVP was established to validate cryptographic algorithms to the 
appropriate algorithm standard. CMVP is not a vehicle. It is a process. 
 
Recommend change this sentence to something like: 
Algorithms and/or protocols that are not listed as approved in FIPS or NIST 
Recommendation are sometimes permissible, in those cases FIPS 140-2 Implementation 
Guidance will provide the required details for those algorithms and/or protocols. In those 
cases any deviation from the Implementation Guidance is not allowed. Use of algorithms 
and/or protocols not listed in any NIST recommendation or FIPS would require 
permission from the Security Technology Group within NIST. 
 
Page 1, para. 5, last line, “can”: Remove this word. 
 
Page 2, Section 2, line 1, “confidentiality of sensitive information”: What about integrity, 
authentication and non-repudiation. These are all part of encryption. 
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Page 2, Section 2, line 1, “by the Federal government”: The CMVP is NIST and CSEC. 
Do you really want to say Federal?? Why not end the sentence following sensitive 
information. 
 
Page 2, bullet 1, line 1, “two key sizes”: This sounds more like the keys vary in actual 
size such as 64 and 128 bits when in fact what this should be is number of different keys. 
Two key Triple DES uses two different 
keys while three key Triple DES uses three different keys. 
 
Page 2, bullet 2, “was”: In keeping with the other two bullets recommend changing this 
word to "is". 
 
Page 2, bottom paragraph, “Federal government”: Again the use of Federal government. 
This may be a NIST publication but the program is CMVP and has both NIST and CSEC. 
Recommend removing. 
 
Page 2, bottom para., line 3, “performed”: Change this word to issued 
 
Page 2, bottom para., line 3, “these algorithms after that date”: This part of the sentence 
only talks about the CAVP and algorithm validation. Then the second part of the sentence 
talks about CMVP certificates issued will be modified to 
remove these algorithms. The algorithms are issued certificates (actually only numbers) 
by the CAVP and the cryptographic module certificates are issued from the CMVP. Two 
different certificates and two different programs. Both will need to be modified or pulled. 
 
Page 3, lines 1-2, “that module will no longer be valid”: This is a nice statement but how 
will a user of one of these modules know that the system they are using is no longer FIPS 
valid. 
 
Page 3, last line, “between”: Between does not sound right. Suggest change between to 
from since the transition is from one FIPS to another. 
 
Page 4, lines 1-2: On page one you say this paper is to bring attention to government and 
the public. While this statement is aimed more at the labs and not the government or the 
public. Perhaps you should say what the new tests are so as to better inform the 
government and public. 
 
Page 4, para. 2, last sentence: Recommend changing this sentence to: 
FIPS 186-3 features which currently have no tests implemented will require vendor 
affirmation when submitting for validation. 
 
Page 4, para. 3: New implementation submitted for testing and validated Dec 1 2010 
under FIPS 186-2 may find their validation being pulled come Jan 1 2011. I would highly 
recommend in order to cut down on confusion. wasted time and expenses that a statement 
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be added here and possible other parts advising vendors and end users to move to FIPS 
186-3 long before December 31, 2010. 
 
Page 5, bullet 1, lines 1-2, “New implementations must generate digital signatures with a 
security strength that is equal to or greater than 80 bits through December 31”: Although 
this statement is correct it is really impractical. A new implementation entering the 
CMVP process would not gain final validation until, at the earliest, November/ 
December 2009. 13 months later it would lose its validation. Users that procured any 
system with 80-bit security would have to replace the system or be forced to use a system 
that is not FIPS validated. I would propose that new implementations entering the process 
today have both 80 and 112 bits security available so as not to jeopardize the 
validation. This point should be driven home to both users and vendors. 
 
Page 6, Section 4, line 2, “random number generators (RNGs)”: NIST needs to determine 
what name they want to use and stick to it. I read one source that refers to random bit 
generators and another source like this says random number 
generators. 
 
Page 6, 1st line under Table 3, “RNGs specified in SP 800-90”: Recommend this be RBG 
and you should add in deterministic since 800-90 deals with deterministic random bit 
generators. I also suggest adding in the following information: 
The DRBG mechanisms specified in this Recommendation support four security 
strengths: 112, 128, 192 or 256 bits. The actual security strength supported by a given 
instantiation depends on the DRBG implementation and on the amount of entropy 
provided to the instantiate function. A DRBG mechanism requires instantiate, 
uninstantiate, generate, and health testing functions. A DRBG mechanism may also 
include a reseed function. A DRBG shall be instantiated prior to the generation of output 
by the DRBG. This info comes from section 8. Specifics on HASH, HMAC, CTR, and 
DUAL_EC is in section 10. 
 
Page 6, last line “SP 800-56A”: I believe the doc is actually 800-56A Revised. 
 
Page 7, line 5, “MQV primitives”: ( section 5.7 pertains). 
 
Page 7, line 5, “approved KDFs”: (section 5.8 pertians). 
 
Page 7, Para. beginning with “Protocols...”, lines 2-3, “capability to interoperate with the 
older protocols”: Commonly referred to as backwards compatibility. 
 
Table 4, last 8 rows: I would recommend listing besides each protocol one source (RFC, 
FIPS, SP, IETF doc). Remove any confusion an Engineer might have and a tester have if 
everyone is working from the same source. 
 
Page 8, Section 6, para. 2, sentence 2: I recommend removing this statement. It is true in 
the sense that we are not required to test but when ever I get a product that identifies 
using one of these I at least verify that it 
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is used by running a sniffer. Any good analyst will at least verify that something is at 
least implemented if it is humanly possible. 
 
Page 8, Section 7, line 3, “RNG”: RNG or RBG??? 
 
Page 8, Section 7, para. 2, lines 4-5, “a new section of the FIPS 140-2 Implementation 
Guidance will be developed”: This is an interesting statement. Will be developed, leads 
me to believe that nothing has been started. So is this 30 days, 90 day or 6 months 
away?? It might be better to say 
that it is being worked on and expected to be released sometime over the next what ever 
period. 
 
Page 8, last line, “Note that since Two-key Triple DES will be disallowed after”: I can 
not find this statement in 800-57 relating to key wrapping and effective dates. If I am 
wrong please identify the source. Otherwise I would recommend changing this 
statement to something like: 
Note that since Two-key Triple DES will be disallowed after December 31, 2010 (see 
section 2 above), it can be derived that Two-key Triple DES will not be allowed for key 
wrapping after that date. 
 
Page 9, bullet 2: You mention the use of protocols like IKEv1 and IKEv2 above which 
are reference in RFC's. These references list SHA1 as MUST. It is possible the RFC will 
get changed but highly doubtful. I would recommend that a caveat be added somewhere 
here or in the section above about protocols or both that says the allowance of security 
functions as stated here or in another SP/FIPS document will be followed over the MUST 
statements within the protocol documents. This is not to say those protocol documents 
are at fault or in error but fro security considerations those documents are not updated to 
meet today’s ever changing security needs. 
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From: Stan Kladko [mailto:kladko@bkpsecurity.com]  
Sent: Tuesday, July 07, 2009  
Folks, 
 
Here are some comments for the whitepaper 
 
1. The document does not include a discussion of HMAC which is important since 
HMAC is used in a number of security protocols.  
 
2. The document does discuss IKE but does not discuss IPSec. IPSec uses truncated 
HMAC-SHA-1 which is only 96 bits long. This means that for long-lived IPSec 
connections, there will be two messages with the same HMAC after approximately 2^48 
IPSEC messages are transmitted. If IPSEC is used to secure a terabit optical link, sending 
2^48 messages is actually feasible. The fate of IPSEC and specifically the truncated 
HMAC-SHA-1 needs to be discussed.  
 
3. The issue of key transport using SSH or TLS needs to be addressed since it is of 
widespread use. As an example can an  administrator use a remote SSH connection to 
import cryptographic keys into a module?  
 
There are actually two options: 
 
a) SSH is allowed after 2010 and key transport using SSH is allowed after 2010 
b) SSH is allowed after 2010 but key transport using SSH is NOT allowed after 2010 
since SSH is not an approved key transport method and since SSH provides less than 112 
bits of security. 
 
The document needs to articulate whether a) or b) is true.  
 
In general which key transport methods using symmetric algorithms are going to be 
allowed after 2010? 
 
 
4. The document splits signatures into signatures used for "non-repudiation" and 
signatures used for "authentication". I am sure that there will be many discussions on this 
subject in the future, since in many cases a signature will serve both purposes. A user 
may use a smartcard with an RSA private key to authenticate to a bank and issue a 
transaction. Later the bank may use the fact that the user signed in using the smartcard to 
show that the transaction was authorized by the user - this is non-repudiation. Therefore, 
the distinction between non-repudiation and authentication is in many cases quite blurred.  
 
5. The wireless 802.11i protocol uses HMAC-SHA-1 to derive session keys during the 
four-way handshake. Is this use of HMAC-SHA-1 going to be allowed after 2010?  
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6. The document mentions two RSA signature types - PKCS#1 and ANSI X9.31. There is 
actually another RSA signature type which is implicitly approved by NIST but not 
mentioned in the document. In particular, during TLS 1.0 handshake the ephemeral 
Diffie-Hellman parameters may be signed by an RSA signature. This signature is "TLS-
RSA" signature and is neither PKCS#1 nor 
ANSI X9.31. The signature generation for "TLS-RSA" signatures is described in the TLS 
1.0 standard specification. 
 
The document needs to mention this signature type. Many people think that TLS 1.0 uses 
PKCS#1 signatures. This is not exactly true. There are actually two RSA signature types 
used in TLS 1.0. RSA PKCS#1 may be used to sign certificate chains. "TLS-RSA" is 
used to sign ephemeral Diffie-Hellman parameters.  
 
With best regards, 
Stan Kladko, Aspect Labs 
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From: Paul Hoffman [mailto:paul.hoffman@vpnc.org]  
Sent: Monday, July 06, 2009  
 
a) The title is incomplete in that it is too general. This document is, as it points out later, 
from the view of the CMVP. That should be reflected in the title of the document, such as 
"FIPS 140 and the Transitioning...". 
 
b) Although two-key Triple DES is discussed in FIPS 140 and SP 800-56A, it is almost 
never seen in deployed products. For example, I see no certificates in 
<http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm> that list two-
key Triple DES. Its inclusion, particularly in Table 1, could be confusing to someone 
who thinks "Triple DES" means three-key, as it does nearly everywhere. As much as I 
hate footnotes, I suggest that you relegate three-key Triple DES to a footnote to keep the 
focus on three-key TripleDES. (As a picky side-note, you should be consistent about the 
usage of "2-key" vs "two-key".) 
 
c) Section 3.2 says that SP 800-57 Part 1 "needs to be revised". This should be committed 
to: "will be revised soon". 
 
d) Table 2 has a very deep problem in that current signatures that use SHA-1 as the hash 
algorithm are much weaker than 80 bits today. The current collision attacks on SHA-1 
have reduced it to 52 or 62 bits, depending on who you listen to. NIST has said that the 
security strength of a signature (particularly in certificates) is affected by the collision 
strength of the hash function used. Thus, using the number "80" in the "New Validations" 
column is terribly misleading because current validations cover signature algorithms that 
are significantly weaker than that. 
 
e) There is no rationale for the 2015 date in Table 3, but there should be, similar to the 
way you explained the extended date for entity authentication earlier in the document. 
 
f) The future testability of IKEv1, IKEv2, TLS, SSH, and so on in Section 5 is quite 
muddled. The last paragraph is particularly confusing, given that earlier you say 
"However, the KDFs that do not comply with the KDFs in SP 800-56A will not be 
tested." Similarly, it is not clear whether "Non-tested DH and MQV primitives" in Table 
4 refers to those from IETF protocols or something else. You need to use consistent 
wording throughout this section so readers can understand whether you are talking about 
IETF protocols or something else. I recognize that this is a tricky area for NIST, but it is 
particularly important because many US Federal agencies mandate the use of some of 
these protocols and need to know NIST's long-term plans for those protocols. 
 
g) Similarly, in Section 5, the sentence "However, any new versions of these protocols 
using DH and MQV key agreement must be designed to conform to SP 800-56A" is just 
plain silly. NIST has no power over the IETF or other SDOs. You could threaten "any 
new versions of these protocols using DH and MQV key agreement that are not designed 
to conform to SP 800-56A will not be tested", but that is also shooting yourself in the 
foot because everyone is using those protocols, not the ones that meet 800-56A. I propose 
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that NIST instead deal with the topic more directly by simply saying that it strongly 
suggests that all future KDFs conform to 800-56A but it will continue to choose to test 
KDFs in FIPS 140 on a case-by-case basis, and tie this stated desire in with the text from 
bullet point (f). 
 
I hope these comments help the process. Again, it is great to see that NIST is going to 
publish this guide! 
 
--Paul Hoffman, Director 
--VPN Consortium 
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 From: Ian Simmons [mailto:ian@athena-scs.com]  
Sent: Wednesday, July 22, 2009  
 
Dear NIST, 
 
Thank you for publishing the paper The Transitioning of Cryptographic Algorithms and Key 
Sizes. We have the following questions. 
 

1. Section 2 on the use of 80 bits of security strength for encryption states: “CMVP 
certificates that were previously issued will be modified to remove these algorithms from 
the approved list for the FIPS mode”. If we look at one of our certificates (for example, 
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm#925) it states -
FIPS-approved algorithms: Triple-DES (Cert. #560). If you find this on the CAVP DES 
Validation List 
(http://csrc.nist.gov/groups/STM/cavp/documents/des/tripledesval.html#560) you will see 
it is here that KO 2 is specified. 

 
Are the actual actions then: 

• KO 2 will be removed from all CAVP certificates on the Triple DES Validation 
List. 

• Any CAVP certificates on the Triple DES Validation List that only had KO 2 
will be removed. 

• Any removed CAVP certificates will be removed from CMVP certificates on the 
Validated FIPS 140-1 and FIPS 140-2 Cryptographic Modules list. 

• CMVP certificates on the Validated FIPS 140-1 and FIPS 140-2 Cryptographic 
Modules that only had this approved algorithm will be removed. 

 
For the given example this will mean: 

• KO 2 will be removed from CAVP Triple DES Validation List certificate #560. 
• The certificate will remain valid because it is also for KO 1. 
• The CMVP Validated FIPS 140-1 and FIPS 140-2 Cryptographic Modules 

certificate #925 will therefore be unchanged. 
 
2. Section 3.2 states: “the generation of digital signatures with less than 112 bit of security 

strength will no longer be considered valid for the FIPS mode on a FIPS 140-2 validation 
certificate”. Will existing certificates be modified in the same way as for encryption? 
That is, will all certificates on the CAVP RSA Validation List with less than 112 bit of 
security strength (due to SHA-1 or 1024-bit RSA) be removed and the changes echoed 
through to the CMVP list? 

 
3. What is the position for digital signatures for data authentication with Triple-DES MAC 

(from the IG rather than FIPS 186-3)? Is it the same that for 80 bits of security strength 
generation will not be supported after 2010 but verification will be allowed? 

 
4. Same as question 2 but for SHA-1 in Section 9 Hash Functions. That is, will all 

certificates on the CAVP SHS Validation List with less than 112 bit of security strength 
(SHA-1) be removed and the changes echoed through to the CMVP list? 

 
There are also some very minor typos: 
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1. Page 1, paragraph 5 superfluous word “can” at end. 
2. Page 2 uses “2-key” and “3-key”, and page 3 uses “two-key” and “three-key”. 
3. Page 4: Table 2 caption is orphaned at bottom of page. 

 
Best, 
Ian 
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From: Wallner, Debbie M [mailto:dmwalln@tycho.ncsc.mil]  
Sent: Monday, July 27, 2009 5:41 PM 
 

- Table entries: 

Suggested to use a different term than "OK" as an entry, perhaps "Allowed". 

- Page 1, Section 1, paragraph 3: 

Describing security strength "only" as a measure of the difficulty of discovering "the key" 
is too simplistic. 

Perhaps NIST could say that the security strength of a cryptographic mechanism is a 
measure of the difficulty of discovering any secret key(s) associated with the mechanism 
or otherwise defeating the intended purpose of the mechanism.  

In that same paragraph, replace reference to "RSA using a key length of 1024 bits..." by 
"RSA using a modulus whose length is 1024 bits..."  

There are too many possible interpretations of what constitutes the public/private RSA 
key -- and for a 1024-bit modulus, most of those keys would require more than 1024 bits. 
(E.g., e, (e,N), d, (d,N), (e,d,N).) 

- Page 4, Section 3.1, penultimate paragraph: 

There is a statement here that invalidation of certificates for implementations providing 
only 80 bits of security will affect "all DSA 

(currently) validated implementations" is contradicted by Table 2 and the discussion that 
follows it. 

- Page 4, Section 3.1, penultimate paragraph: 

The meaning of the last sentence of this paragraph is not clear "Note that the invalidation 
..... for non-repudiation purposes." 

- Page 4, Section 3.2: 

The security strength of the digital signature key is not the same thing as the strength of 
the scheme that uses it. FIPS 186-3 allows the use of under-sized hash functions which 
could lower the strength of the scheme below that which might be expected by looking 
only at the cryptographic subgroup. 

- Pages 4-6, Section 3.2:  
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The issue is more over authentication that needs to be maintained over a period of time vs 
one-time authentcation rather than between data authentication, entity authentication, and 
software/firmware integrity. Entity authentication is probably always in the latter case -
 One only cares about authenticating the entity they are communicating with right 
before they communicate with that entity. Or in the case of an email, the first time they 
read the email is the when it matters. Software/firmware integrity probably always falls in 
the first case - one may wish to verify that the software has not been modified every 
time they use it. The data case can go either way depending on the lifespan of the data. 

- Page 5, Table 2: 

It is not clear as to the difference between the treatment of "already validated 
implementations" w/r/t signature generation for data authentication and signature 
generation for "software and firmware integrity testing." (E.g., isn't software a type of 
data? Why is it OK to generate new, weaker signatures on software after 2010 but not 
OK to generate such signatures on other forms of data? Malware is a BIG problem.) 

- Pages 6-8, Section 5: 

This is an especially important section, but it is not entirely clear.  It might help if this 
section was split into two sub-sections, one on DH/MQV primitives, the other addressing 
KDFs.  

- Page 7, First full paragraph: 

RE: the talk of eventually testing the DH or MQV primitives used by commonly-used 
protocols for SP 800-56A compliance (independent of the KDF). Be aware that SP 800-
56A uses cofactor DH for elliptic-curve-based implementations, so implementers not 
using prime-order curves should be warned. Also, how will compliance be tested? By 
comparing Z values generated by NIST against those generated by the IUT? The failure 
by the IUT to zeroize Z would constitute a violation of SP 800-56A (let alone outputting 
the value!) It's a catch-22. 
If testing is non-invasive, how are they going to test the output of the primitives when a 
non-NIST KDF is used? We don't want operational devices able to output Z. 

- Page 7, Second full paragraph: 

What constitutes a "new" version of an old protocol? When does the "new" timer start? 

- Page 7, Table 4: 

What about protocols that explicitly make reference to carrying out a TLS-like handshake 
to produce a master secret? Are they covered by the TLS entry? (That is, what about 
things like DTLS, EAP-TLS, and maybe even some wireless protocols.) 

- Page 7, Table 4: 
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KDFs for S/MIME, SSH and other established IETF protocols are not addressed. 

- Page 9, (the other) Table 4: 

Isn't this Table 5? Anyway, more guidance has to be given to distinguish beween "hash-
only" and "all other applications." For example, one could argue that HMAC is a "hash-
only" application. (What else does it use?) 

- Page 9, Bullets on SHA-1. 

Something should be said about the (80-bit) security level associated with SHA-1 (when 
used with signature schemes) before pointing back to table 2. It's a little confusing, since 
that table is in a section talking about security strengths for signature keys. Actually that 
table doesn't even say what the 80- and 112-bit strengths refer to. It really should refer to 
the signature schemes, not just the keys. One could use a 128-bit-strong key (i.e., 224-bit 
cryptographic subgroup) but if it is combined with a SHA-1 hash, they have an 80-bit-
strong digital signature. 
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From: Chang, Shu-jen H. [mailto:shu-jen.chang@nist.gov]  
Sent: Tuesday, July 28, 2009 11:32 AM 
 
Regarding the Discussion Paper: The Transitioning of Cryptographic Algorithms and Key 
Sizes, I have a few comments: 
 

• Page 1, Paragraph 5, Line 3: the first word should be “validating” rather than 
“validations”. 

• Same paragraph: Shouldn’t the current standard FIPS 140-3 be cited instead of 
FIPS 140-2? If so, other occurrences may need to be changed too.  

• Same paragraph, the last sentence: Is the last word in the sentence (“can”) 
needed? 

 
Other than these, the draft looks fine to me. 
 
Shu-jen 
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From: Natarajan Vijayarangan [n.vijayarangan@tcs.com] 
Sent: Tuesday, July 28, 2009 1:24 PM 
 
SHA-1 hash algorithm can be strengthened via Message Preprocessing methods (MP). 
Until  SHA-3 algorithm is finalised, we can use SHA-1 via MP. This MP approach shows 
that SHA-1 is efficient. Michael Szydlo (RSA Security), Yiqun Lisa Yin (Independent 
Consultant) and Natarajan Vijayarangan (TCS Innovation labs) proved that SHA-1 via 
MP is simple and secure.  
 
In page 9, the following change has to be incorporated in Table 4: Hash functions 
transitioning  
 
Hash algorithm                                           New Validations 
--------------            ------------------------------------------------------------------------------------ 
SHA-1 via MP           OK for all hash function applications SHA-1 via MP through 
December 31, 2012 
 
Regards 
 
Natarajan Vijayarangan 
TCS Innovation labs Hyderabad 
India 
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From: Reiter, Robert [mailto:rwreite@tycho.ncsc.mil]  
Sent: Wednesday, July 29, 2009 10:12 AM 
 
I did not go through in detail to review and did not get comments to Debby. 
I will note that one portion I did need to refer to, the treatment of KDFs, was hard to 
understand. I note that others had similar comments. It is not clear how KDFs from 
established IETF protocols would be handled, near term and longer term. 
  
It was good to see that the outside crypto folks had good comments and were 
complimentary to NIST for responding to need for this paper. 
  
Thanks, 
Bob 
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From: Kim Schaffer [mailto:KSchaffer@cygnacom.com]  
Sent: Thursday, July 30, 2009 4:07 PM 
 

Corrections: 
Section 3 – Digital Signatures 

All ECDSA implementations that have been validated to FIPS 186-2 (all current 
ECDSA validations) use only SHA-1, so all of them will be affected, along with all 
current DSA validations. 

 
Section 4 – Random Number Generation: 

Footnote 3 is Footnote 3 is incorrect.  The ANSI X9.31 RNG always used 2-key 
Triple DES (described in terms of multiple passes of DES).  The NIST pdf 
referenced extended that to 3-key Triple-DES and also 128, 192, and 256 AES. 
 

The Approved ANSI X9.62 RNG is not listed.  It should be listed with the FIPS 186-
2 RNGs on lines 2 & 3 of table 3. 
 

Comments: 
Section 3.2 – Security Strength for Digital Signature Keys 

Given that Signature Verification of ≥ 80-bit is going to be permitted past 2010 and 
Signature Generation for Entity Validation of ≤ 112-bit is going to be permitted 
through 2013; reaffirm that CAVS algorithm testing for new DSA and RSA 
implementation using 1024-bit keys and/or SHA-1 will continue for key & 
signature generation through 2013 and continue for digital signature verification 
indefinitely. 

 
Using the same logic that permits 80-bit signature verification after 2010, recommend 

reinstituting FIPS-approved digital signature verification, and associated algorithm 
testing, for DSA keys of < 80-bit security.  (The 512, 576, 640, 704, 768, 832, 896, 
and 960-bit keys were revoked and algorithm testing removed as of May 19, 2007) 

 
Clarify the definition of “Entity Authentication” and, if appropriate, point out its 

impact on PIV Validated modules. 
 
Consider issuing new FIPS 140-2 guidance that requires vendors to add guidelines to 

the Security Policy for recommended digital signature strength vs. planned digital 
signature lifetime (based on the key strength table and recommendation for SP 800-
57)  

 
Section 4 - Random Number Generation 

What is the basis for the claim that non SP800-90 RNGs support < 112-bit security 
strength?  Note that NIST Special Pub (SP) 800-57, table 3 claims that SHA-1 used 
for random number generation provides 128-bit security. 
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Section 5 – Key Agreement Using Diffie-Hellman and MQV 

A reference to minimum allowable key size should be added for Diffie-Hellman and 
MQV for both FF and EC based keys.  SP 800-57, table 2, shows how key-pair size 
maps to security strength.  (For example DH needs a 2048-bit public & 224-bit 
private key to achieve 112-bit security strength) 

 
Section 6 – Key Agreement and Key Transport Using RSA 

A reference to minimum allowable key size should be added for RSA. SP 800-57, 
table 2, shows how key size maps to security strength. (For example RSA needs a 
2048-bit key to achieve 112-bit security strength) 
 

Section 9 – Hash Functions 
Recommend that, due to the complexity of determining if SHA-1 is used for any 

functions that are permitted after 2010 (Digital Signature Verification, Entity 
Authentication, Integrity Test, Key Derivation) that no SHA-1 certificate be 
revoked.  Instead state that a warning will be applied on the CAVP validation list to 
all SHS certificates that contain SHA-1, declaring that SHA-1 is non-conformant 
for digital signature generation or hashing after 2010. 

 
General - Message Authentication 

This discussion paper needs to cover what, if any, impact the December 31, 2010 
deadline has on FIPS-approved message authentication algorithms. 
* CCM  
* CMAC  
* HMAC: all HMAC algorithms (including HMAC SHA-1) are allowed past 2010. 
[Based on SP 800-57, Table 3: Hash function security strengths for cryptographic 
applications] 
* Triple-DES MAC 
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From: n.vijayarangan@tcs.com [mailto:n.vijayarangan@tcs.com]  
Sent: Friday, July 31, 2009 9:32 AM 
 
We are happy that NIST has come up with The Transitioning of Cryptographic 
Algorithms and Key sizes. We have the following comments: 
 
Page 1, Paragraph 5, lines 7-9, "In some cases, an algorithm or protocol that has not been 
approved in a FIPS or NIST Recommendation is "allowed"; " 
 
 
We recommend this sentence to be: 
 
Algorithms or protocols that are not listed in FIPS or NIST Recommendation are 
exceptionally allowed through Public evaluation. 
 
 
SHA-1 hash algorithm can be strengthened via Message Preprocessing methods (MP). 
Until SHA-3 algorithm is finalised, we can use SHA-1 via  MP. This MP technique 
shows that SHA-1 is efficient. Michael Szydlo (RSA Security), Yiqun Lisa Yin 
(Independent Consultant) and Natarajan Vijayarangan (TCS Innovation labs) have 
contributed that Hash algorithms via MP are simple and secure. 
 
In page 9, the following modification is to be incorporated in Table 4: Hash functions 
transitioning 
 
Hash algorithm   New Validations 
 
SHA-1 via MP     OK for all hash function applications SHA-1 via MP through 
December 31, 2012 
 
 
Page 3, under the heading ECDSA, "FIPS 186-3 allows the generation of alternative 
curves, using methods specified in ANS X9.62." 
 
We recommend this sentence to be: 
 
FIPS 186-3 allows the generation of other Recommended Elliptic curves, using methods 
specified in ANS X9.62. 
 
 
Regards 
 
Natarajan Vijayarangan 
TCS Innovation labs Hyderabad 
India 
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From: David McGrew [mailto:mcgrew@cisco.com]  
Sent: Friday, July 31, 2009 6:18 PM 
 
Thanks to NIST for writing this tranition document and for soliciting comments on it.  It 
is very useful to have all of the issues gathered together.  I hope that the following 
comments are useful. 
 
Section 3.2, "Security Strengths for Digital Signature Keys" 
 
It is not clear what the rationale is behind the allowance of 80-bit signature verification 
beyond the time that 80-bit signatures may be generated.  Certainly it is expedient, 
because it will be difficult for users to re-sign data with larger keys.  But it seems 
inconsistent to forbid the generation of 80-bit signatures, since it is only during the 
verification process that an adversary can perpetrate a forgery. Preventing legitimate 
users from generating signatures with 80-bit strength will not prevent an attacker from 
doing so.   Perhaps there is some unstated intent that would remove thia apparent 
inconsistency, such as a plan to disallow the verification of signatures with 80-bit 
strength in the future.   I suggest that the rationale be added or referenced. 
 
An issue related to the preceeding one is the quesiton of whether or not an 
implementation performing a signature validation would be required to ascertain when a 
digital signature was created. 
 
It would be good to clarify what Entity Authentication means.  Would this include 
signatures in public key certificates, for example? 
 
Section 5, "Key Agreement Using Diffie-Hellman and MQV" 
 
Page 7 says that "... any new versions of these protocols using DH and MQV key 
agreement must be designed to conform to SP 800-56A."   It seems from the context that 
"these protocols" would include protocols like IKE and TLS, whose normative definition 
is controlled by standards-generating organizations that have international scope.  It 
would be expecting far too much to require that implementers who aim to conform to 
NIST's crypto specificiations will somehow influence the generation of future standards 
in such a way as to ensure that they all conform to SP 800-56A.   It seems better to 
replace this statement, perhaps with one such as "... the suitability of any new versions of 
these protocols, or any completely new protocols, which do not coform to SP 800-56A, 
will need to be individually assessed.  The use of SP 800-56A is strongly encouraged." 
 
Table 4 omits Secure RTP.  The KDF for this protocol is allowed in the current 
Implementation Guidance, but it is not listed in this table, perhaps as an inadvertent 
omission.   It is highly desirable to include the SRTP KDF in the transition plan. 
 
I would guess that the comments on the TLS KDF are meant to apply to its use in DTLS 
as well as TLS; it would be useful for their document to clarify this. 
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Section 8, "Key Wrapping".  The CMVP Implementation Guidance allows the use of key 
wrapping as defined in the GDOI Group Key Management Protocol, but this method is 
not mentioned in the transition document.   It would be useful to develop more detailed 
guidance on the use of GDOI key wrapping, as related to key sizes and cryptographic 
parameters.  It would also be valuable to add other key wrapping mechanisms, such as 
those using encryption or authenticated encryption methods that are already well 
specified and commonly supported, though in making this recommendation we are 
probably going beyond the scope of the transistions document. 
 
Best regards, 
 
David McGrew, Fellow 
Cisco Systems 



 25

From: Hsieh, George [mailto:George_Hsieh@sra.com]  
Sent: Monday, August 03, 2009 8:06 AM 
 
This discussion paper offers little information on NIST’s plans around key establishment 
schemes briefly described in the open paragraph of section 4 in SP 800-56A.  Draft SP 
800-56B offers more information about key agreement scheme (KAS) and key transport 
scheme (KTS) in sections 8 and 9 respectively.   
 
Now that CAVP has added a KAS validation list, will a KTS validation list materialize 
soon?  Perhaps the next iteration of this paper (or a different discussion paper) can offer 
guidance for mapping KAS or KTS validation results in conjunction with FIPS 140-2 (or 
140-3) validation for IPSec, TLS and other protocols used to establish a secure 
cryptographic channel. 
 
I hope the final release of this document would provide a transition plan for key 
management use cases as described in draft SP 800-57 Part 3: Application-Specific Key 
Management Guidance.  In the case of transport layer security (TLS), section 4.2.2 
Recommended Cipher Suites for Federal Government Use contains tables of cipher suites 
combinations.  These tables are more descriptive than section 4.2.2 of SP 800-113 
mentioning “ephemeral Diffie-Hellman key establishment used by TLS version 1.0 and 
later do not meet requirements of NIST SP 800-56A”.  This section also mentions NIST’s 
exception for SSL until at the end of 2010 and subject to further analysis.  Will the final 
release of this paper state confirm the exception for SSL will terminate at the end of 2010 
or the exception will be extended further some number of years? 
 
Respectfully, 
George Hsieh 
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From: Vijay Bharadwaj [mailto:Vijay.Bharadwaj@microsoft.com]  
Sent: Monday, August 03, 2009 5:41 PM 
 
Thank you for preparing this document, and for the opportunity to provide feedback. It 
answers a number of questions about how the 112-bit transition will work in practice. 
However, we do have a few comments and questions: 
 

• At a high level, there are at least two audiences that are affected by the 112-bit 
transition – the vendors who go to CMVP to get their products validated, and the 
various government agencies that must comply with the FIPS guidelines as part of 
their FISMA obligations. This document has a fair bit of information for the 
former, but it lacks any guidance regarding next steps for the latter. What should 
agencies be thinking about when procuring new products between now and 2011? 
What should they be doing about existing products which may be affected by the 
2011 transition, and how will this affect their FISMA compliance? Will FDCC be 
updated to account for the transition? 

o It may be that NIST considers such information to be more appropriate for 
a separate document or publication. Any information clarifying NIST’s 
thinking in this regard would be appreciated. 

• Related to the above point, the document should do more to address the issue of 
access to existing data that was protected using algorithms that are now retired. 
Specifically, while Section 3.2 does say that verifying signatures with 80-bit 
strength is okay in FIPS mode, Section 2 does not say whether 2-key 3DES 
decryption be allowed in FIPS mode, and Section 9 does not say if SHA-1 will be 
permitted for verification purposes in FIPS mode. We believe this is necessary, 
since expecting all existing data to be re-protected with new algorithms in 2011 
would be impractical. 

• The document touches on all the classes of FIPS-approved algorithms, but leaves 
out the message authentication algorithms such as HMAC. Even if no algorithms 
of this class are affected by the transition, it may be useful to add a note to that 
effect for clarity. 

• The paper talks about security strengths and how it determines what protection 
needs to be used for a given piece of data. However, it does not offer any 
guidance as to how and when security strength of algorithms is reassessed and 
what people should do when that happens. This is particularly relevant today, as 
new attacks are found against AES-256, which would seem to reduce its security 
strength. 

• Section 3.2 makes a distinction between different uses of digital signature 
algorithms, and Section 9 makes a similar distinction for hash functions. How 
should we apply these guidelines to generic crypto modules (such as software 
modules) which are typically not aware of the use for which they are being 
called? 

o Will the CMVP require applications for future certificates to identify the 
specific uses for which they use signature algorithms? If not, how does the 
CMVP plan to identify how each cryptographic module uses these 
algorithms? 
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• Section 3.2 seems to imply that existing certifications for RSA and DSA key 
lengths less than 2048 bits, as well as ECC key lengths less than 224 bits, will be 
invalidated starting in 2011 for all uses other than entity authentication. However, 
this is not spelled out explicitly. More details on which certifications will be 
affected, in terms of hashes and key sizes, would be welcome. 

• Some of the later sections, such as Section 6 and Section 7, do not appear to be 
related to the crypto transition at all. Instead, they seem to be talking about 
various crypto-related work items that NIST may take on in future. It may be 
useful to add some explanation of why these are related to the crypto transition, or 
to move them to a different document altogether. 

• The various sections are not consistent in their level of explanation about how 
existing certifications will be impacted by the transition. Section 2 and Section 3.1 
are very specific, Section 3.2 and Section 9 are less so. It may make the document 
easier to read if an explanation of the proposed process (i.e. stop new 
certifications, remove existing ones) was moved to its own section and it was 
clarified that this applies to all the affected classes of algorithms. 

 
Regards, 
 
-- 
Vijay Bharadwaj 
Senior Program Manager, Windows Security 
Microsoft Corporation 
One Microsoft Way 
Redmond WA 98052 
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From: Iorga, Michaela [mailto:michaela.iorga@nist.gov]  
Sent: Monday, August 03, 2009 6:26 PM 
 

DISCUSSION PAPER:  
The Transitioning of Cryptographic Algorithms and Key Sizes  

 

1 Background and Purpose  
At the beginning of the century, NIST began the task of providing cryptographic key 
management guidance. This included lessons learned over many years of dealing with key 
management issues, and attempts to encourage the definition and implementation of 
appropriate key management procedures, to use algorithms that adequately protect sensitive 
information, and to plan ahead for possible changes in the use of cryptography because of 
algorithm breaks or the availability of more powerful computing techniques. This guidance is 
provided in NIST Special Publication (SP) 800-57.  
 
Some of the guidance provided in SP 800-57 includes the definition of security strengths, the 
association of the approved algorithms with these security strengths, and a projection of the 
time frames during which the algorithms could be expected to provide adequate security. The 
guidance often relies on the length of the cryptographic keys as an integral part of these 
determinations.  
 
The security strength is measured in bits and is, basically, a measure of the difficulty of 
discovering the key. The understood security strength for each algorithm is listed in SP 800-
57. For example, RSA using a key length of 1024 bits (i.e., 1024-bit RSA) has a security 
strength of 80 bits, as does two-key Triple DES, while 2048-bit RSA and three-key Triple 
DES have a security strength of 112 bits. See Table 2 in Part 1 of SP 800-57 for further 
security strength information.  
 
The selection of an algorithm that provides the adequate security strenghtdepends on the 
sensitivity of the data being protected, and needs to be determined by the owner of that data. 
For the Federal government, a minimum security strength of 80 bits is currently required. 
However, a minimum security strength of 112 bits is planned in 2011 as indicated in Table 4 
of SP 800-57, Part 1. We’ve learned that this is not so easily done. The reality is that we need 
to examine each class of algorithm and sometimes make some adjustments.  
 
One of the means for enforcing the algorithm and security strength requirements is NIST’s 
Cryptographic Module Validation Program (CMVP), which is responsible for validations 
cryptographic modules for conformance to FIPS 140-2. To be validated, each module 
requires at least one cryptographic algorithm that has been approved for Federal government 
use. Approved security functions (i.e., approved cryptographic algorithms) are listed in 
Annex A of FIPS 140-2. n some cases, an algorithm or protocol that has not been approved in 
a FIPS or NIST Recommendation is “allowed”; an algorithm is indicated as allowed by 
means of the FIPS 140-2 Implementation Guidance document. The CMVP has defined two 
classes of modes for cryptographic modules: the FIPS mode and the non-FIPS modes for 
cryptographic module operation; in general, the FIPS mode uses only approved or allowed 
algorithms.  
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This paper is intended to bring some of the transition issues associated with the use of 
cryptography to the attention of the Federal government and the public, and to obtain 
feedback about the proposed approaches. Please provide comments to 
CryptoTransitions@nist.gov by August 3, 2009. 
The general approach for transitioning from one algorithm or key size to another is addressed 
in SP 800-57, Part 1. The remainder of this paper addresses transition issues from the point of 
view of the CMVP. 
 
2 Encryption  
Encryption is used to protect the confidentiality of sensitive information. Several algorithms 
are currently approved for the encryption of sensitive information by the Federal government:  
• Triple DES -specified in SP 800-67. Triple DES generally uses three distinct keys, and it 

is referred to as three-key Triple DES. When only  two distinct keys are used, the 
algorithm is referred to as two-key Triple DES. The security strength of the two-key 
Triple DES has been assessed at 80 bits1, whereas the security strength of the three-key 
Triple DES has been assessed at 112 bits.  

• SKIPJACK - specified in FIPS 185. The security strength of this cryptographic algorithm 
has been assessed at 80 bits.  

• AES - specified in FIPS 197. This cryptographic algorithm has three approved key sizes: 
128, 192 and 256 bits. The security strength of AEShas been assessed at 128 bits for 
AES-128, 192 bits for AES 192, and 256 bits for AES-256.  

 
NIST is proposing the following transition schedule (see Table 1).  
 
Table 1: Encryption Transitions  
 

Encryption Algorithm  New Validations  Already Validated 
Implementations  

Two-key Triple DES  Through 2010  Disallow after 2010  
Three-key Triple DES  OK  OK  
SKIPJACK  Through 2010  Disallow after 2010  
AES-128  OK  OK  
AES-192  OK  OK  
AES-256  OK  OK  
 
As of December 31, 2010, two-key Triple DES and SKIPJACK will no longer be validated 
for conformance to the lates FIPS 140 and accepted for use by the Federal government to 
protect sensitive data (see SP 800-57, Part 1). All CMVP certificates that have been 
previously issued will be modified to remove these algorithms from the approved list for the 
FIPS mode. Note that if no other approved algorithms are included in a cryptographic 
module, the certificate for that module will no longer be valid. 
 
3 Digital Signatures  
 
3.1 Transition from FIPS 186-2 to FIPS 186-3  
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Federal Information Processing Standard (FIPS) 186-3 specifies three algorithms for the 
generation and verification of digital signatures: DSA, ECDSA and RSA. FIPS 186-3 also 
includes methods for generating key pairs and domain parameters, as required. FIPS 186-3 
incorporates the following changes:  
 
• General:  

o Specifies the use of all hash functions provided in FIPS 180-3, rather than just 
SHA-1,  

o Provides requirements for obtaining assurances of domain parameter validity 
(DSA and ECDSA only), public key validity, and private key possession,  

o References SP 800-57 for guidance on key management, including the key sizes 
and security strengths to be used,  

o Provides guidance on domain parameter and key pair management,  
o References SP 800-90 for random number generation, rather than including 

RNGs in the Standard, either explicitly or by reference to ANSI Standards,  
o Provides more guidance on the use of RNGs to generate key pairs,  
o Provides revised primality test guidance.  

 
• DSA:  

o Specifies larger key sizes,  
o Replaces the domain parameter generation routine with new methods,  
o Includes explicit methods for the validation of domain parameters,  

 
• RSA:  

o Approves the use of both ANSI X9.31 and PKCS #1, and provides guidance for 
their use,  

o Provides multiple explicit methods for the generation of key pairs,  
o Limits the key sizes and provides criteria for the generation of key pairs to be 

used for Federal government use.  
 
• ECDSA:  

o Allows the generation of alternative curves, using methods specified in ANSI 
X9.62, while it still includes the Recommended Elliptic Curves  

 
Since FIPS 186-3 only recently became official, a period of time must be defined for 
transitioning between FIPS 186-2 and 186-3. Some of the new tests required for testing 
against FIPS 186-3 are now available, while others are under development, and will be made 
available as soon as possible.  
 
Implementations claiming conformance to FIPS 186-3 may now be submitted for validation 
by the CMVP/CAVP testing laboratories. However, those features for which tests have not 
been completed will be validated by vendor affirmation until the tests are available.  
New implementations designed to conform to FIPS 186-2 may be tested by the laboratories 
until December 31, 2010, after which only implementations claiming conformance to FIPS 
186-3 will be accepted for testing and validation.  
 
Certificates for implementations that have been validated against FIPS 186-2 will continue to 
be valid, subject to the requirements for appropriate security strengths, as discussed in 
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Section 3.2. For example, implementations that provide security strengths of 112 bits or more 
will continue to be valid and operable in the FIPS mode, but those that provide only 80 bits 
of security will not2. Note that the invalidation of certificates will affect all DSA (currently) 
validated implementations, and those implementations of RSA and ECDSA that only use 
SHA-1 for digital signature generation for non-repudiation purposes.  
 
In order to reach a larger audience, a Federal Register Notice will be published that requests 
comments about other issues that need to be considered during the transition from FIPS 186-
2 to FIPS 186-3. Readers of this paper are encouraged to identify any issues that they foresee 
in order to prepare the Federal Register Notice with a realistic transition strategy.  
 
3.2 Security Strengths for Digital Signature Keys  
Digital signatures are used for several different purposes, such as:  
• Data authentication (i.e., providing assurance about the authenticity of the signed data),  
• Entity authentication (i.e., authenticating the identity of an entity (e.g., an entity that 

participates in a communication protocol),  
• Determining that software or firmware has not been modified (see the integrity test on 

software and firmware in Section 4.6.1 in FIPS 140-2 ).  
 
When SP 800-57, Part 1 was written, the difference between these purposes was not fully 
addressed. While discussing the various uses of digital signatures in the government’s 
identity cards and the timeframes in which currently existing implementations could be 
updated to be compliant with the NIST-recommended security strengths, and in the design 
and validation of FIPS 140-2-compliant cryptographic modules, the different use cases of 
digital signatures have been identified. The guidance provided in SP 800-57, Part 1 will be 
revised to recognize these differences.  
 
NIST is proposing the following for the CMVP to address the aforementioned nuances for 
using digital signatures (see Table 2).  

 Table 2: Digital Signatures Transitions  

Purpose  Digital 
Signature 
Process  

New 
Validations*  

Already Validated 
Implementations*  

Signature 
generation  

≥ 80 bits OK 
through 2010  
≥ 112 bits OK 

after 2010  

< 112 bits disallowed after 2010  
≥ 112 bits OK  

Data 
Authentication  

Signature 
verification  

≥ 80 bits is OK Validated implementations 
continue to be OK  

Entity 
Authentication  

Both signature 
generation and 

verification  

≥ 80 bits OK 
through 2013  
≥ 112 bits OK 

after 2013  

< 112 bits disallowed after 2013  
≥ 112 bits OK  

Signature 
generation  

≥ 80 bits through 
2010  

≥ 112 bits after 
2010  

Validated implementations 
continue to be OK  

Software and 
firmware integrity  

test  

Signature 
verification  

≥ 80 bits is OK  
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* Given in bits of security (i.e., security strength)  
 
Digital signatures that are intended to provide data authentication:  
• Signature generation: New implementations must generate digital signatures with a 

security strength that is equal to or greater than 80 bits through December 31, 2010; 
thereafter, the digital signatures must be generated with a security strength that is equal to 
or greater than 112 bits. Beginning in 2011, the generation of digital signatures with less 
than 112 bit of security strength will no longer be considered valid for the FIPS mode on 
a FIPS 140-2 validation certificate.  

 
• Signature verification: New implementations may verify a signature that provides a 

security strength that is equal to or greater than 80 bits. Already validated 
implementations may continue to verify signatures at security strengths that are equal to 
or greater than 80 bits in the FIPS mode for the foreseeable future.  

 
Digital signatures that are intended to provide only entity authentication: Until December 31, 
2013, the minimum security strength required is 80 bits for the generation or verification of 
digital signatures for entity authentication. Beginning in 2014, only those digital signatures 
that provide at least 112 bits of security can be used in the FIPS mode. Note that signature 
verification for entity authentication is performed immediately after signature generation; 
therefore. there is no requirement to retain a signature for later verification.  
Digital signatures that are intended to determine the integrity of software and firmware:  
  
• Signature generation: New implementations must generate digital signatures with a 

security strength that is equal to or greater than 80 bits through December 31, 2010; 
thereafter, the digital signatures must be generated with a security strength that is equal to 
or greater than 112 bits. Already validated implementations that generate digital 
signatures with a security strength of 80 bits may continue to be used by a cryptographic 
module operating in the FIPS mode for the foreseeable future. 

 
• Signature verification: New implementations that verify digital signatures may verify a 

signature that provides a security strength that is equal to or greater than 80 bits. Already 
validated implementations that verify digital signatures with a security strength of 80 bits 
or more may continue to be used in the FIPS mode for the foreseeable future.  
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.  
 
 
4 Random Number Generation  
Random numbers are used for various purposes, such as the generation of keys, nonces and 
challenges. Several random number generators (RNGs) have been approved for use by the 
Federal government. Until relatively recently, FIPS 186-2 was used as an approval vehicle 
for three of these RNGs: a generator based on the use of the SHA-1 hash algorithm, a 
generator based on a symmetric block cipher algorithm3, and a generator that was specified in 
a standard developed by the American National Standards (ANS) Institute (i.e., in ANS 
X9.31, and previously in ANS X9.17). In 2007, a new set of RNGs were approved in SP 800-
90 that provide higher levels of security than the older RNGs. NIST proposes the following 
transition schedule (see Table 3).  
 
Table 3: Random Number Generation Transitions  
 

Description  New Validations  Already Validated 
Implementations  

SP 800-90 (HASH, HMAC, CTR, 
DUAL_EC)  

OK  OK  

SHA-1 (FIPS 186-2)*  OK through 2010  Disallow after 2015  
Sym. Alg. (FIPS 186-2)*  OK through 2010  Disallow after 2015  
X9.31 = X9.17*  OK through 2010  Disallow after 2015  
 
3 DES was specified as the symmetric algorithm for the RNG in FIPS 186-2. Since DES has been 
withdrawn, two and three-key Triple DES and AES can be used in place of DES as the core engine of the 
RNG (see http://csrc.nist.gov/groups/STM/cavp/documents/rng/931rngext.pdf).  
* Design or guidance does not support 112-bit security strength  
Cryptographic modules that implement the RNGs specified in SP 800-90 can be validated 
and used for the foreseeable future in cryptographic modules operating in the FIPS mode.  
Cryptographic modules that implement the three older RNGs will only continue to be 
accepted for validation until December 31, 2010. Cryptographic modules that have been 
submitted for validation prior to this date and validated as conforming to these RNGs can be 
used in the FIPS mode of operation until December 31, 2015.  
 
5 Key Agreement Using Diffie-Hellman and Menezes-Qu-Vanstone  
Key agreement techniques are used to establish keys between two entities that intend to 
communicate (e.g., the keys may be used later for encryption or message authentication, or 
for the generation of additional keys). Two families of key agreement schemes have been 
approved in SP 800-56A Revision 1: Diffie-Hellman (DH) and Menezes-Qu-Vanstone 
(MQV). Each has been defined over two different mathematical structures: finite fields (FF) 
and elliptic curves (EC). 
6  
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Key agreement includes at least two steps: the use of an appropriate DH or MQV “primitive” 
to generate a shared secret, and the use of a key derivation function (KDF) to generate one or 
more keys from the shared secret. SP 800-56A Revision 1, contains approved DH and MQV 
primitives, and approved KDFs.  
Many commonly-used protocols that perform key agreement use DH or MQV. Until recently, 
no conformance testing was performed on implementations of these protocols in 
cryptographic modules. Testing for validation purpose is now available for implementations 
that claim conformance to SP 800-56A Revision 1 (i.e., conformance to one of the DH or 
MQV primitives used to generate a shared secret and a KDF specified in SP 800-56A 
Revision 1). Other protocols that implement DH and MQV are allowed, but testing for 
conformance is not supported by NIST/CAVP. In the future, NIST will require that the labs 
test implementations of the DH or MQV primitives during cryptographic algorithm 
validation testing managed by NIST/CAVP. However, the KDFs that do not comply with the 
KDFs specified in SP 800-56A Revision 1 will not be tested.  
 
Protocols are used for a very long time. When new versions of a protocol are designed and 
implemented, a vendor may need to include a capability to interoperate with the older 
protocols. Because of this, the older protocols (and the KDFs in particular) will continue to 
be allowed. However, any new version of these protocols using DH and MQV key agreement 
must be designed to conform to SP 800-56A Revision 1.  
NIST is proposing the following set of transition rules (see Table 4):  
 
Table 4: Key Agreement (DH and MQV) Transitions  
 

Scheme  New Validations  Already Validated 
Implementations  

SP 800-56A Revision 1 primitives  OK1  OK  
Non-tested DH and MQV 
primitives  

OK through 2010  Test by 2014  

KDFs:  
SP 800-56A Revision 1 OK2  OK  
IKEv2  OK  OK  
X9.42  OK  OK  
X9.63  OK  OK  
IKEv1  OK  OK  
SSH  OK  OK  
TLS (1.0, 1.1, 1.2)  OK  OK  
 
1 Currently, a primitive is tested only when the KDF complies with SP 800-56A. Plan to test 
all DH and MQV implementations of the primitives in the future.  
2 Now tested.  
 
Implementations that fully comply with SP 800-56A Revision 1 (i.e., both the DH or MQV 
primitive and the KDFs) will be conformance tested and validated for use by cryptographic 
modules in the FIPS mode of operation for the foreseeable future.  
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Other implementations of the DH and MQV primitives (i.e., non-SP 800-56A Revision 1 
implementations) that have already been validated must have the primitive(s) tested by  
7  
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December 31, 2013 for the cryptographic module to use them in a key agreement scheme in 
the FIPS mode of operation after 2013.  
 
Implementations of IKEv2, IKEv1, and the current versions of X9.42, X9.63, SSH, and TLS 
are allowed to be used by a cryptographic module in the FIPS mode of operation for the 
foreseeable future. Their DH and MQV primitives will be tested for conformance to the 
primitives in SP 800-56A Revision 1. 
  
6 Key Agreement and Key Transport Using RSA  
SP 800-56B specifies the use of RSA for both key agreement and key transport processes. 
Like key agreement, key transport is a form of key establishment; however, the method for 
establishing keys is somewhat different. Refer to SP 800-57, Part 1 and SP 800-56B for 
definitions. SP 800-56B is currently in draft form, but is expected to be published as 
complete in the near future. The transition issues associated with the validation of SP 800-
56B implementations have not yet been addressed.  
The requirements for protocols containing key transport schemes are addressed in the FIPS 
140-2 Implementation Guidance, which states that the key transport schemes in SSL v3.1, 
TLS, PEAP, EAP-FAST and EAP-TLS may be used by a cryptographic module operating in 
the FIPS mode. Note that these schemes are not actually tested for conformance during 
cryptographic module validation. The key transport schemes use by these protocols listed 
above are based on the RSA algorithm. The continued acceptability of the key transport 
schemes in these protocols will be reassessed when SP 800-56B is completed.  
 
7 Deriving Additional Keys from a Single Key  
SP 800-108 specifies key derivation functions that use a key (i.e., a key derivation key) to 
generate additional keys. The key derivation key could be: 

• a key that was manually distributed (e.g., by a courier),.  
• generated using an approved RNG, or 
• obtained using a key agreement or key transport scheme (see Sections 5 and 6). 

 
This specification allows a large variety of KDFs. At the present time, conformance tests 
against this specification have not been developed. In addition, FIPS 140-2 Implementation 
Guidance does not include a provision to allow key derivation using the SP 800-108 KDFs. 
Therefore, a new section of the FIPS 140-2 Implementation Guidance will be developed to 
allow key derivation using the KDFs specified in SP 800-108.  
 
8 Key Wrapping  
Key wrapping is the encryption of a symmetric key by another symmetric key for integrity 
protection (called a key wrapping key). Symmetric keys are used with algorithms such as 
Triple-DES and AES. See SP 800-57 for further information. At the present time, neither a 
FIPS nor a NIST Recommendation have been developed for key wrapping, although a 
specification for key wrapping using AES is available at 
http://csrc.nist.gov/groups/ST/toolkit/documents/kms/AES_key_wrap.pdf.  
The FIPS 140-2 Implementation Guidance (IG) addresses key wrapping as defined above. 
The IG states that AES or Triple DES may be used to wrap keys using the above referenced 
specification. If Triple DES is used, then it shall be used in exactly the same way that is 
defined for AES, and both Two-key and the Three-key Triple DES can be used for key 
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wrapping. Note that since Two-key Triple DES will be disallowed after December 31, 2010 
(see Section 2 above), it will also not be allowed for key wrapping after that date 
8  
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.  
9 Hash Functions  
Five approved hash functions are specified in FIPS 180-3. The security strength for a hash 
function, which depends on its design and use, is provided in SP 800-57, Part 1. Discussions 
about the different use cases are provided in SP 800-107.  
NIST is proposing the following transition rules for hash functions (see Table 4):  
Table 4: Hash Function Transitions  
 

Hash Function  New Validations  Already Validated 
Implementations  

SHA-1 OK for all hash function applications through 
December 31, 2010  

Digital signatures: see Table 2  
Hash-only: Disallow after 

2010  
OK for all other applications  

SHA-224 

SHA-256 
SHA-384 
SHA-512 

OK for all hash function applications  OK for all hash function 
applications  

 
The five hash functions listed above can be submitted for validation to NIST/CAVP and can 
be used for all applications through December 31, 2010. In the case of implementations that 
have already been validated by CAVP:  
• When SHA-1 is used by a cryptographic module in the generation of digital signatures, 

see Table 2 for the continued use of the implementation.  
• When SHA-1 is used by a cryptographic module for hash-only applications, the use of 

already-validated implementations is disallowed after 2010 in the FIPS mode of 
operation of the cryptographic module.  

• For all other SHA-1 applications and for all applications using the other hash functions, 
the implementations that have previously been validated by NIST/CAVP may continue to 
be used in the FIPS mode of operation of the cryptographic module.  
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From: Joan Lozano [mailto:jlozano@infogard.com]  
Sent: Monday, August 03, 2009 7:50 PM 
 

InfoGard Comments 
White Paper: The Transitioning of Cryptographic Algorithms and Key 

Sizes 
(Posted July 2, 2009) 

# Question/Comment 
1  How will the information from this whitepaper be incorporated into or reconciled 

with FIPS 140-2 Implementation guidance, SP 800-57 or related NIST documents? 
 
2 Please clarify whether the terms "new validations" and "already validated 

implementations" refer to algorithm validations through CAVP or module validations 
through CMVP. Page 2, paragraph 1 says "this paper addresses transition issues from 
the point of view of CMVP." But page 2, final paragraph says that "no new 
validations will be performed on these algorithms" which indicates the validations in 
the tables are for CAVP. 

 
3 Please provide further clarification for the use of the term "already validated 

implementations" in Tables 1-4. Does "already validated implementations" cover the 
case where a vendor wishes to revalidate an existing implementation as described in 
Implementation Guidance G.8? For example, if a cryptographic module has a non-
tested DH primitive (see Table 4), can that module continue to get revalidated with 
software upgrades conforming to IG G.8 until 2014 without the DH primitive test? Or 
will any revalidation trigger the DH test requirement, even if there are no security 
relevant changes? 

 
4  A module with an existing validation makes security relevant changes as described in 

IG G.8, could those changes trigger a "new validation" which would in turn trigger 
the requirements under "new validation" in Tables 1-4. For example in an embedded 
software/hardware module, if a vendor wanted to upgrade a cryptographic library but 
use the same algorithms, or if a vendor wanted to upgrade a cryptographic library 
using the same algorithms as before but added an SP800-90 compliant RNG to 
replace an older RNG, could that trigger a "new validation" that would then bring in 
the additional requirements show in Tables 1-4 under "new validations? 

 
5 Please clarify whether NIST plans to provide a standalone DH and MQV test 

program under CAVP. CAVP currently covers a Key Agreement test for DH/MQV 
with KDF. Will the CAVP provide a standalone DH test that allows the vendor to test 
DH with an existing non-tested KDF (e.g., IKEv1)?  

 
6 Please clarify Table 4 with respect to the KDFs being OK for new and already 

validated implementations. For example, if 2-key Triple DES were used in one of the 
listed KDFs (perhaps it is not), does this mean the KDF is still “OK”? Does Table 4’s 
“OK” to KDFs override the transition status of the underlying algorithms?  
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7 Page 8, near the top states: “Implementations of IKEv2 and IKEv1 … are allowed in 
the FIPS mode for the foreseeable future.” Table 4 is consistent with this, since the 
IKEv1 KDF is shown as OK for New Validations and Already Implemented 
Validations. However, IG 7.1 (pg. 71/72) lists IKEv1 KDF (Item C under Bullet 3) as 
having a 12/31/2010 time limit. How should readers interpret these two documents 
regarding IKEv1 KDF? What policy or recommendation change occurs in 
12/31/2010, if any? Will the IG change? 

 
8 Since SHA-1 will be allowed after December 31, 2010, but not for every scenario, 

how will the CAVP handle new SHA-1 certificates? How will the CAVP control or 
limit the new SHA-1 certificates? 

 
9 There is no mention of the transition for Message Authentication algorithms (e.g., 

HMAC with SHA-1 or CMAC with 2-key TDES). These algorithms are discussed in 
SP 800-57, but for clarity, please add a section for them in the transition document. 

 
10 In Section 4 Table 3, please add a row for the ANSI x9.62 RNG. The table would 

then show all RNGs that are currently listed in Annex C. 
 
11 There is a contradiction regarding RNG transition. SP 800-57 Table 3 states that 

RNGs using SHA1 are OK for 2011, Table 3 of this paper states that old RNGs using 
SHA-1 will be discontinued in 2011, and Table 4 of this paper states "OK for all other 
applications" for SHA-1 (this includes RNGs). If SP 800-57 is incorrect in this case, 
please reiterate in Table 4 of this paper that some RNGs using SHA-1 won't be 
allowed in 2011. 

 
12 The paper states, "…No new validations will be performed on these algorithms after 

that date, and CMVP certificates that were previously issued will be modified to 
remove these algorithms from the approved list for the FIPS mode. Note that if no 
other approved algorithms are included in a cryptographic module, the certificate for 
that module will no longer be valid." Is it correct to infer that CAVP validation 
testing ends on December 31, 2010? Is there a transition period prior to December 31, 
2010 that CAVP validation of these algorithms will no longer be available? Is it 
correct to infer that CMVP acceptance of reports submitted with these algorithms 
listed as Approved ends on December 31, 2010? Is there a transition period prior to 
December 31, 2010 where reports will no longer be accepted? When will CMVP 
accept validation reports with TDES (KO =2) and Skipjack as Approved Algorithms 
with a caveat (e.g., "For support of legacy systems until December 31, 2010")? 
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From: Frankel, Sheila E. [mailto:sheila.frankel@nist.gov]  
Sent: Friday, August 07, 2009 12:59 PM 
 
1. Section 3.2: Definitions of data authentication and entity authentication: not a good 

idea to use the word that's being defined (authenticating) within the 
definition/description. 

 
Also: what is the difference between #1 (data authentication) and #3 (determining that 
... has not been modified). Doesn't authenticating data provide integrity protection? 
Isn't #3 a special case of #1? if they are different, please clarify. 
 
Since the whole doc hinges on these terms (and different crypto communities use 
these terms in slightly different ways), more specific definitions would be good, 
possibly with examples of use. 
 
data authentication: should mention that it's also called integrity protection 
 
Later in the doc, data authentication is referred to once as "message authentication" - 
confusing. 

 
2. HMAC is only mentioned under RNGs. 
 

Since there has been a lot of confusion about the use of SHA-1 vs. HMAC-SHA-1, it 
would be good to mention the use of MACs (as opposed to hash algs) for integrity-
protection, and mention that HMAC-SHA-1 is OK. 
 
The hash function table (Table 4) says that SHA-1 is allowed for all other apps in 
already validated implementationss - I assume that that includes HMAC-SHA-1. But 
nowhere in the table does it state that new validations are OK for HMAC-SHA-1 after 
2010. 

 
3. FIPS mode - might want to mention that this is distinct from encryption algorithm 

"modes of operation" 
 
4. Is 2-key triple DES used today in any known products/protocols? If not, should 

mention that fact. 
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1 Introduction

In February of 2005, the United States’ National Security Agency (NSA), arguing that “The

sustained and rapid advance of information technology in the 21st century dictates the adop-

tion of a flexible and adaptable cryptographic strategy for protecting national security infor-

mation”, announced its Suite B of Cryptographic Protocols (cf. [31]). Along similar lines, the
United States’ National Institute of Standards and Technology (NIST) provides guidance to

use algorithms that adequately protect sensitive information, and to plan ahead for possible

changes in the use of cryptography in Special Publication 800-57, Part 1 (cf. [29]; see also
[30] and [27]). These initiatives are targeted broadly enough that the majority of vendors and
major enterprises – worldwide, not just in the USA – will be more or less forced to follow
them.

Roughly speaking, “Suite B” adopts 128-bit and higher security levels, leaving behind the
current widely-employed 80-bit security level. It also prescribes a precise set of technologies
to be used. NIST’s “SP 800-57 (1)” allows more flexibility in the technology used and settles
for 112-bit security at the lowest level from the year 2011 on. Although any migration – to
other technologies, to a new security level, or to both – will be a logistical nightmare and
has the potential for substantial security breaches unrelated to the cryptographic security
levels, there can be little question that, ultimately, migration to a higher security level than



80 bits is mandatory. The migration should, however, be orchestrated with utmost care and
too hurried adoption of the new standards should be avoided; even for the NSA itself it
will take many years to comply (cf. [16]) and NIST, in [30], comments that We’ve learned

that this is not so easily done. Thus, though both “Suite B” and “SP 800-57 (1)” are in
principle welcome initiatives whose implementation by the year 2010 can be recommended,
an important question is how much time companies and other complying practitioners can
reasonably allow themselves before fully adopting either of the new standards, in a manner
that is as cost effective and security conscious as possible.

Both initiatives affect all three pillars of modern cryptography: block ciphers, cryptographic
hash functions, and public key cryptography. For block ciphers “Suite B” requires the Ad-
vanced Encryption Standard (AES), which was designed to provide 128-bit security or more.
Although there are doubts about the adversarial model in which the intended security level of
AES is reached, there is consensus that single DES (the classical Data Encryption Standard)
can no longer be recommended even for low risk applications. “SP 800-57 (1)” also allows
limited usage of three key triple DES. This write-up does not further deal with the subject of
block ciphers or migration to AES. It does not deal with cryptographic hash functions either.
But it may be good to remind the reader that the situation with respect to cryptographic hash
functions is disconcerting. In the first place, there are concerns about the security provided
by the current standard, the 160-bit hash function SHA-1 which is designed to provide 80-bit
security. Convincing arguments have been presented that the security level of SHA-1 is quite
a bit lower than that: right now it is not clear if the bottom is in sight yet. If chosen-prefix
collisions as presented in [37] for MD5 could be made to work for SHA-1, attacks may be
feasible that could have an undesirably negative impact on the security of the Internet as
a whole. SHA-256, as required by “Suite B”, may be regarded as an improvement over the
common use of SHA-1. However, given the design similarities between SHA-1 and SHA-256
and the currently unforeseeable outcome of the NIST hash competition, the situation with
respect to cryptographic hashing is unclear.

Here we concentrate on the third pillar mentioned above, the migration away from 80-bit se-
curity for public key cryptography. NSA restricts the use of public key cryptography in “Suite
B” to elliptic curve cryptography (ECC). Compliance will be a challenge for applications that
do not use ECC yet, because implementing ECC is non-trivial for a variety of reasons – be-
cause it involves mathematical structures that are much harder to understand and implement
than those involved in RSA (cf. [34]), but also because various higher level system decisions
need to be made, the consequences of which not even the cognoscenti seem to agree upon
(cf. [20]). Finally, once one understands all mathematics and has decided which type of elliptic
curves to use, it is still a challenge to figure out the best computational approach given one’s
platforms.

Where “Suite B” adopts 256-bit ECC as the lowest strength asymmetric system, NIST’s “SP
800-57 (1)” allows 224-bit ECC and, more remarkably, continued use of RSA, but with 2048-
bit moduli. Estimates vary as to what level of security is offered by 2048-bit RSA moduli. For
the intended 112-bit security level, 2048-bit RSA may be regarded as satisfactory, depending
on one’s view on the security provided by 1024-bit RSA (cf. below). The security level of any
of the newly standardized systems is, however, not the subject of this paper – indeed, we will
not even try to define what precisely is meant by ‘security level’ (but see the remark at the
end of this paper). Instead, we address a short term but nevertheless important question that
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many practitioners will face the next few years, namely until when the current standards,
1024-bit RSA and 160-bit ECC, can responsibly be used: do businesses indeed have to adopt
the new standards by the end of 2010, or can they allow for a smoother transition? For RSA
this question, which includes the important practical concern by when digital certificates
based on 1024-bit RSA should be phased out, is addressed in Section 2, for ECC in Section 3.
For ECC we limit ourselves to curves over prime fields, since that is the focus of NSA’s
recommendations as well: throughout this paper, ECC refers to ECC over a prime field.

With a question of this sort we must say something about the adversarial model. Throughout
this write-up we restrict our attention to work that has been or may be performed in the
open research community. We are not privy to activities that take or may take place behind
closed doors, such as at government laboratories, and therefore cannot include them in our
considerations. When we say that a system can “responsibly be used”, we mean that it must be
considered unlikely that an academic, open community effort will be able to mount a successful
attack. Obviously, this is by no means a formal definition and leaves many issues unaddressed
(such as timing and funding level). Nevertheless, despite this vagueness, we strongly believe
that a paper of this sort is useful for the cryptographic user community. We present the
relevant current cryptanalytic state of the art and, combined with past developments, give
our view on what can and what cannot be expected in the near future. More importantly,
though, we present these data so that the reader can develop an understanding of the effort
involved in breaking RSA or ECC for relevant parameter choices and draw his or her own
conclusions.

For the purposes of the present write-up, we may assume that precautions are taken to avoid
common pitfalls when implementing RSA or ECC (as surveyed for RSA in [6]). This implies
that we may concentrate on attacks that put a firm upper boundary on the security of any
implementation of RSA or ECC: attacks that are commonly referred to as brute-force attacks

that attempt to factor the public RSA modulus or to compute a discrete logarithm in an
elliptic curve group.

2 The security of 1024-bit RSA

Since the introduction of the RSA cryptosystem, the effectiveness of brute-force attacks has
improved considerably, with noticeable impact on the choice of RSA modulus sizes. The most
effective method that has been published, the Number Field Sieve (NFS, cf. [22]), is already
more than 20 years old. Its development, impact, and properties relevant for the assessment of
the security of 1024-bit RSA moduli are reviewed in this section. Since 1989, essentially noth-
ing has happened in integer factorization, except for a seemingly endless stream of relatively
small improvements. All these tweaks, particularly when combined, influence the effectiveness
of NFS, but none of them represents a major new idea or breakthrough: factoring-wise, re-
search is at a disconcerting or reassuring standstill. Notable exceptions are polynomial time
factoring on a quantum computer [36], so far without practical implications, and polynomial
time primality proving [1].

The original version of NFS, now referred to as the Special Number Field Sieve (SNFS), was
expressly invented to fully factor the ninth Fermat number, F9 = 229

+1, and succeeded doing
so in 1990 (cf. [23]). SNFS crucially relies on the peculiar, “special” shape of the numbers it
can handle, such as F9, and in particular cannot be used to factor RSA moduli. It took a few
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more years before SNFS was generalized to the somewhat slower method now known as NFS
that can handle RSA moduli. The first public announcement of the NFS-factorization of a
512-bit RSA modulus was in 1999 (cf. [9]).

The latest record of SNFS factorization was that of the “special” number 21039 − 1, found in
2007 (cf. [2]). An NFS-effort to factor a 768-bit RSA modulus is currently underway and is
expected to finish in 2010. It may turn out to be a new NFS record that would beat the cur-
rent factoring record of the 663-bit, 200-digit RSA modulus RSA-200 by more than 100 bits
(cf. [3]). It is expected that the 768-bit factorization, when finished, will have required about
10 to 15 times the resources required for 21039 −1. This estimate is based on current practical
findings, not on theoretical estimates or guesswork: both are unreliable when switching be-
tween SNFS and NFS. Extrapolating 768-bit NFS to 1024-bit NFS (as required for a 1024-bit
RSA modulus) can be done using the heuristic asymptotic runtime estimate for NFS. Doing
so in the usual “o(1)-less” fashion (cf. [25] and [21]), one finds that 1024-bit RSA moduli are
about 1200 times harder to crack than 768-bit ones, the first example of which is “about”
to be completed. We round this down to one thousand based on the argument that there
is a practical discontinuity in the NFS runtime for ‘small’ numbers that is not adequately
reflected in the asymptotic runtime estimate when the o(1) is omitted. Numbers of 768 bits
are relatively close to the lower end of the range where number fields of extension degree 6
are optimal, whereas 1024-bit numbers are fairly close to the middle of that same range. As a
consequence, the o(1)-less estimate for 768 bits is low compared to the actual runtime, where
for 1024 bits they can be expected to be much closer. Thus, it may be expected that the
1200 is too pessmistic and that one thousand is closer to reality. Furthermore, combining the
numbers, it is estimated that a 1024-bit RSA modulus requires resources that are at most 10
to 15 thousand times larger than for the already completed 21039 − 1 SNFS effort.

It may be argued that it is a bit of a stretch to extrapolate NFS factoring estimates from 768
to 1024 bits. But it is supported by a similarly calculated and relatively speaking even larger
extrapolation from 512 to 768 bits: “o(1)-less” theoretical runtime extrapolation suggests that
768-bit RSA moduli are about 6 thousand times harder to crack than 512-bit ones, whereas
empirical evidence based on best efforts using current software and hardware, suggests an
average figure of 4 to 8 thousand.

Below, we estimate the resources currently required to tackle a 1024-bit RSA modulus, as-
suming rough familiarity with the major steps of an (S)NFS factorization. This is followed by
a discussion of the security of 1024-bit RSA moduli in the near and not too distant future.

Polynomial selection. The result of this step (needed just for NFS, not for SNFS) greatly
influences the time spent on the later steps, but the amount of computation spent here is
small compared to the others: so far about 3% to 5% of the overall computation. It is fully
parallelizable. There is still ample room for improvement in current methods (cf. [8]).

Sieving. Sieving allows full and virtually communication-free parallelization and can be run
at any number of locations on any number of independent processors. It is and has always
been the step that requires the bulk of the computation. For 21039−1 it required about two
hundred years of computing on a single 3GHz Pentium D core, for a 768-bit RSA modulus
we have established that ten times that effort suffices. For a 1024-bit RSA modulus the
sieving time extrapolates to 2 to 4 million core years.
For a 768-bit RSA modulus 2 gigabytes of RAM per core works nicely, half of it still works
too but is noticeably less efficient. For 1024 bits, 2 gigabytes of RAM per core would cut it
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too closely, but memories of 32 or 64 gigabytes per multi-core or multi-threaded processor
(or even per mainboard) would work. These estimates take into account current processor
and memory access speeds and are based on the fact that memory requirements grow
roughly with the square root of the sieving time.

Filtering. Transforming the sieving data into a matrix is one of the least challenging steps
of a factorization and does not need to be discussed here. For a 1024-bit RSA modulus
it will require a few hundred terabytes of disk space, which is relatively easy to manage
compared to the previous and next steps.

Matrix. The matrix requires time and memory growing as fast as it is for sieving. Although
for all factorization attempts to date the matrix time has been modest compared to the
sieving time, it has always been more cumbersome due to the distinctly smaller degree
to which this step allows parallelization. The first time the step was parallelized over
multiple locations was for the factorization of 21039 −1 reported in [2], namely on two sets
of clusters, one in Japan and one in Switzerland. Overall it took about 35 core years on a
3GHz Pentium D. For a 1024-bit RSA modulus between half a million and a million core
years should suffice. For each tightly coupled cluster participating a combined memory of
10 terabytes should be adequate.

Final square root. The runtime of this step has always been insignificant compared to all
other steps. There is no reason why it would be different for a 1024-bit RSA modulus.

We stress that the figures above are based not just on extrapolation of the data from [2], but
on analysis and extrapolation of data of an ongoing 768-bit RSA modulus factorization effort
for which the sieving has been completed. These figures thus represent the most accurate
estimates published so far for a ‘realistic’ 1024-bit RSA modulus factoring effort.

We consider what it means for the security of 1024-bit RSA – now, for the next five years,
and for the next decade. At this point in time a brute-force attack against 1024-bit RSA
would require about two years on a few million compute cores with many tens of gigabytes
of memory per processor or mainboard. Though substantial, this is not an inconceivably
large effort. We conclude that the computation is in principle already feasible: processors
with enough memory for the sieving do exist, and there are clusters that have the combined
memory required for the matrix (though most will not have enough nodes). The total budget
required is large, but smaller than what was spent on other dedicated scientific endeavors.

Nevertheless, as an “open community” effort a 1024-bit RSA factorization is currently out
of reach. For how long will this be the case? As usual when we try to predict the cryptan-
alytic future, we study past trends and use those as a basis for our predictions. Thus, as
factoring breakthroughs have not occurred for several decades, and polynomial time factoring
on an actual quantum computer (cf. [36]) still seems to be several decades away, both these
possibilities are discounted.

Next considering special purpose hardware, the most optimistic approach suggests that sieving
for a 1024-bit RSA modulus can be done in a year for about US $10,000,000, plus a one-time
development cost of about US $20,000,000, and with a comparable time and cost for the
matrix [35]. In our opinion, (common) skepticism met by such designs is beside the point.
Such figures should not be interpreted as upper bounds, i.e., “Be careful, 1024-bit RSA can
be broken in two years for about twenty million bucks (assuming free development),” but as
lower bounds, i.e., “No reason to worry too much: even under very favorable attack conditions,
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factoring a 1024-bit RSA modulus still requires enormous resources.” The estimates should
thus not be read as threatening but as confidence-inspiring.

The above point aside, even if one manages to build special purpose hardware, by that time
commodity hardware has already caught up, speed-wise or cost-wise – at least that has con-
sistently been the case in the past, and is predicted to be the case until at least 2030 (cf. [17]).
Eventually, this will change because special purpose hardware will be the only way to stay
on Moore’s curve, but that is in a future that is too distant for our purposes (cf. [17]).

Turning back to reality, the following events are relevant for our question when a 1024-bit
RSA modulus can be expected to fall:

1988: First factorization of a hard 100-digit integer (cf. [24]).
1999: First factorization of a 512-bit RSA modulus (cf. [9]).
2010: Expected first factorization of a 768-bit RSA modulus.
20??: Expected first factorization of a 1024-bit RSA modulus.

Based on NFS runtime comparisons the three consecutive “difficulty gaps” between the above
four factorizations are factors of about 2,000, 6,000, and 1,000. The last two numbers were
already given above and the 6,000 was shown to be a close match to empirical evidence. It
should be noted that the 100-digit factorization was not obtained using NFS but using its
asymptotically slower predecessor ‘Quadratic Sieve’. Thus, in reality, a larger hurdle than
just a factor 2,000 was overcome in the period 1988-1999, mostly due to the invention and
development of NFS starting in 1989. In any case, the first three entries above suggest that a
thousand-fold increase in factoring difficulty can traditionally be overcome in a decade. This
reasoning would naively lead to an expected first factorization by the open community of a
1024-bit RSA modulus approximately by the year 2020. But is it reasonable to expect that
the developments that took place between 1988 and now will continue in the decades to come?

To explain the factor of more than one thousand per decade – as opposed to just observing
it twice in a row in the past – a factor of one hundred every ten years can fairly consistently
be attributed to Moore’s law. The other factor is due to lots of gradual improvements in
the polynomial selection step and the sieving and matrix software, probably combined with
greater persistence and patience among the researchers involved. The type of compute power
required for large scale NFS efforts will keep following Moore’s law at least for the next two
or three decades (cf. [17]), and realistic progress on algorithmic fronts has been announced
as well (cf. [8]). Thus, there is enough reason to expect that over the next decade we will be
able to overcome yet another factor of one thousand in factoring difficulty.

This explanation of the observed progress bolsters the confidence in the above naive prediction
that in about 10 years the first open community 1024-bit RSA modulus factorization can be
expected – assuming by then volunteers can be found to take up the considerable challenge.
In the next paragraph, and to conclude this section, we consider the question whether we can
expect a 1024-bit RSA modulus factorization much sooner.

Assume that the 768-bit RSA modulus factoring attempt will be completed in the year 2010.
The factor of one hundred provided every decade by Moore’s law implies a factor of ten
every five years. Thus, to be able to factor a 1024-bit RSA modulus in 2015 (= 2010 + 5)
the combined algorithmic improvements would have to accumulate to a factor of about one
hundred well within the next five years. Such progress would be unprecedented unless a major
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breakthrough occurs. Given the unlikelihood of the latter, an open community effort that
would factor a 1024-bit RSA modulus cannot be expected by the year 2015. This conclusion is
compounded by the observation that the current 768-bit effort already stretches the resources
of open community factoring enthusiasts: it is virtually inconceivable that a thousand-fold
larger effort would be feasible in just five years. Obviously not a hard argument, but a more
intuitive one – steeped in decades of leading edge integer factorization experience.

3 The security of 160-bit ECC

The most effective brute-force method to compute a discrete logarithm in a prime order
elliptic curve group is Pollard’s rho method (cf. [33]). We assume that this group order and
the order of the underlying prime field have the same bitlength (as is for instance the case for
the curves in [28, Section D.1.2]). Pollard rho comes with a whole lot of embellishments, some
with major, others with relatively minor impact. Most importantly, the method allows full
parallelization on any number of very loosely coupled processing elements that require only
occasional communication with a central server (cf. [39]). Denoting the group order by q, each
Pollard rho process needs memory for a small constant number of (log2 q)-bit numbers. Thus
– and this in huge contrast to NFS-based brute force attacks against RSA – virtually any
processing element can, in one way or another, contribute to an ECC attack. Furthermore, if a
processing element allows multi- or hyperthreading or any other fancy type of parallelization
or pipelining, this can in principle be taken advantage of by running as many Pollard rho
processes in parallel as required to keep the device fully occupied.

This very ‘lightweight’ parallelization changes the applicable threat model compared to our
estimates of the resources required to attack 1024-bit RSA. In particular we need to examine
whether the most recently published result on ECC brute-force attacks still adequately rep-
resents current possibilities: in 2002 it took “104 computers (mostly PCs) running 24 hours a
day for 549 days” to solve an elliptic curve discrete logarithm problem over a 109-bit prime
field (cf. [11]). The large team performing this calculation used Chris Monico’s Pollard rho
implementation, with highy optimized assembly code tuned to a wide variety of PC platforms.
Naively accommodating for 5 ‘Moore doublings’ over a period of 5 times 18 months, but in-
creasing the difficulty by 100M (which approximates

(
160
109

)2
· 2(160−109)/2, taking into account

that the number of group operations grows with the square root of the group size, combined
with the quadratically growing group operation cost itself) Monico’s result extrapolates to
about 50 billion years to attack 160-bit ECC on a current core. Obviously, this would be a
daunting task. Our question is if this estimate is valid given current multi-core processors,
and how the required computational effort can be realized in the most economical fashion.
For this purpose we consider, in the remainder of this section, a number of different platforms
that may be used to attack 160-bit ECC using Pollard’s rho method.

Pollard’s rho method was designed to calculate discrete logarithms in multiplicative groups
of prime fields. We already mentioned that it allows ideal parallelization. This is based on the
use of distinguished points as described in [39]. Furthermore, the negation map (cf. [14], [40]),
adding walks (cf. [38]) and tag-tracing (cf. [13]) make the calculation somewhat faster. As
described in [13] tag-tracing does not immediately apply to elliptic curve groups, but has
been shown in [7] to give a moderate speed-up there as well. According to [7], tag-tracing
does not seem to be compatible with usage of the negation map or, more in general, the use
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of equivalence classes (applicable mostly to curves over small characteristic extension fields,
and thus of no concern here). For elliptic curves over prime fields each of these improvements
does not affect the overall expected runtime by more than 40%, and is therefore hardly of
concern for our primary purpose to get an order of magnitude estimate.

With elliptic curves there is the issue how to represent group elements: affinely requiring
only a few multiplications plus an inversion (all in the prime field) per group operation,
or projectively to avoid the inversion at the cost of more multiplications. Recognition of
distinguished points, however, enforces a unique representation and thereby an inversion. In
circumstances such as the present one where many processes can be run simultaneously, their
inverses can be shared at the cost of, roughly, 3 additional multiplications per curve, using
the simultaneous inversion from [26]. As a result, when processing N processes in parallel and
using affine Weierstrass representation, point addition takes four multiplications, one squaring

and 1
N

th
inversion (all in the prime field) for the x-coordinate, plus one multiplication for the

y-coordinate.

For a variety of platforms, we consider best-effort implementations, either from the literature
or derived by ourselves, of Pollard’s rho method in elliptic curve groups, while making use of
full parallelization, adding walks, affine point representation with simultaneous inversion, and
possibly other improvements if compatible with the platform and other implementation as-
pects. The platforms in question, in rough order of user-friendliness, are the following: regular
desktops, Sony PlayStation 3 game consoles (PS3), graphics cards, FPGAs, and ASICs.

Desktop. The fastest actually working desktop implementation of Pollard rho on elliptic
curves that we are aware of is reported in [7]. It focuses on the 131-bit prime field ECC
challenge from [10], implemented as indicated above and processing 200 walks per core. For
generic 131-bit primes, an expected overall runtime of 105 years is reported on an AMD
Phenom 9500 quad-core 64-bit processor with a clock frequency of 2.2GHz, i.e., about 4 · 105

core years. A 25% speed-up can be obtained due to the particular size of the 131-bit prime
used. Both the regular and the speeded-up implementation use assembly code. It should be
noted that [7] uses tag-tracing as opposed to the negation map. Swapping these may lead to
an overall speedup of about 20%.

Extrapolation of the generic runtime to 160-bit primes, in the same manner as the runtime
reported by Chris Monico was extrapolated, yields

(
160
131

)2
· 2(160−131)/2 · 4 · 105 ≈ 1010 core

years. We stress that this runtime is realistic and that 2.5 billion current workstations should
be able to crack 160-bit ECC within a time-frame of 6 to 24 months (i.e., give or take a factor
of 2, depending on which embellishments are used or which unexpected snags will occur). This
is about 5 times faster than what naive extrapolation of Monico’s result made us believe, but
still not a task that is feasible anytime soon for an open community effort – indeed, even for
a well sponsored agency it would be a formidable task. Below we consider whether it can be
done ‘cheaper.’ The factor 5 may be attributed to the fact that our type of application heavily
relies on integer multiplication which is, relatively speaking, much faster on the current 64-bit
processors than on the 32-bit ones from back in 2002.

PS3. The Sony PlayStation 3 game console is powered by a Cell processor, a powerful unit
that is described in more detail below. The Cell’s processing power can be unlocked for general
applications, i.e., not just games, using Sony’s hypervisor, thereby making the PS3 a relative
inexpensive source of processing power. Actually using this processing power, however, in
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particular for the type of application that we are interested in here, is not straightforward: it
is hard to optimize multi-precision integer arithmetic on regular processors, it is not easier on
the peculiar Cell architecture. A first approach is to use IBM’s off-the-shelf MPM library for
long integer arithmetic (cf. [18]). Unfortunately the performance did not live up to what we
had expected given the Cell’s specifications, lagging behind by about an order of magnitude.

Thus, we set out to design our own implementation, geared toward optimal performance for
our application to Pollard rho for elliptic curve groups over relatively small prime fields. We
give a rough outline of the design of our arithmetic functions. For further details we refer the
interested reader to the Appendix.

Omitting many details, the Cell has a main processing unit (the PPE, a dual-threaded 64-bit
Power Processing Element) which can offload work to eight Synergistic Processing Elements
(SPEs). The for us relevant part of the SPE is the Synergistic Processing Unit (SPU). Each
SPU runs independently of the others at 3.2 GHz and works on its own 128 registers of 128
bits each and has its own 256 kilobyte Local Store for its instructions and data. The 128-bit
registers allow SIMD operation on sixteen 8-bit, eight 16-bit, or four 32-bit integers. Finally,
the SPU has two pipelines, an odd and an even one, which means that two instructions (one
odd, one even) can be dispatched per clock cycle per SPU. Although it is rich in boolean
operations, its integer multiplication facilities are somewhat limited, cf. Appendix. There is
no smart branch prediction on the SPU. It is therefore advisable, as customary in SIMD
anyhow, to avoid branching as much as possible.

Of the 8 SPEs one is disabled and one is reserved by Sony’s hypervisor. Thus, when running
Linux (under the hypervisor), 6 of the 8 SPEs are accessible. Because each SPU can be
regarded as a four-way SIMD 32-bit processor (with limited multiplication possibilities) and
runs at 3.2 GHz, it may under favorable circumstances be possible to squeeze performance
equivalent to 4 × 6 = 24 ‘regular’ (but 32-bit) cores out of a single PS3. As reported in [37],
sometimes even more is possible. We did not manage to achieve this for our elliptic curve
Pollard rho application, but we got quite close, as implied by the numbers below.

More precisely, we obtained the following results. We focussed our attention on curve number 6

from [12], which is a curve over a 112-bit prime field and which is, as of 2009, the ‘smallest’
elliptic curve standardized for cryptographic purposes. To minimize the inversion overhead, we
processed as many walks per SPU as permitted by the size of the Local Store. This turned out
to be 400 for the 112-bit prime field, thus we could use N = 400 for the simultaneous inversion.
The 400 walks are organized in 100 sequential (but synchronized at inversion time) batches of
4 walks that are processed simultaneously by performing the underlying field arithmetic in a
4-way SIMD fashion. It turned out that for the specific 112-bit prime certain computational
advantages could be obtained (cf. Appendix) that do not translate to generic primes of the
same size. For generic primes the arithmetic is at most 20% slower.

For the special 112-bit curve we found that the overall calculation can be expected to take
approximately 60 PS3 years4 . Since we use just 6 SPUs, better performance can be obtained
if we would use the PPU too, or if we would be able to access the 7th SPU. Extrapolating
while including a 20% generic slowdown (and also accounting for a lower value of N for the

larger prime), we find
(

160
112

)2
· 2(160−112)/2 · 1.2 · 60 ≈ 2.5 · 109 PS3 years to crack 160-bit ECC.

4 As reported on http://lacal.epfl.ch/page81774.html this calculcation was completed on July 8, 2009,
taking the predicted amount of time. A description of the full details of the computation is in preparation.
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Comparing to the number of desktops calculated earlier, we again find that a year on 2.5
billion devices suffices. For the current application 6 SPUs are computationally apparently
more or less equivalent to a quad-core 64-bit processor, i.e., a single SPU is equivalent to 66%
of a single 64-bit core. The latter is better at integer multiplication, which outweighs, for this
application, the advantage of the 4-way 32-bit SIMD SPU architecture. As mentioned above,
for other types of applications the advantage may be on the other side.

It is debatable which of the two options – desktops or PS3s – is more economical. The relevant
parts for a desktop can be purchased for about the same price as a PS3, but the latter is ready
to go and the former needs to be assembled, billions of times if one gets serious about an ECC
attack. The PS3 comes with a Blu-ray player that is not needed, but is attractively priced
just because of it, so getting the non-assembled relevant parts of a PS3 may actually turn
out to be more expensive (cf. relatively high cost of Cell-blades). We leave quantum-discounts
for an order of several billion devices of either type to the reader’s negotiation skills. Note
that the PS3 also comes with a rather powerful graphics card which is unfortunately, with
the present version of the hypervisor, not accessible to applications other than gaming. If it
were accessible, it could double the effectiveness of a PS3 (cf. below). As is, the balance may
already tip in favor of the PS3, compared to a desktop, if we would also involve the PS3’s
PPE, and in particular the PPE’s AltiVec SIMD instruction set, in the calculation. This is
under investigation.

We refer to the Appendix for some of the details of our implementation and in particular for
an interesting 4-way SIMD modular inversion method that is ideally suited to the SPU. An
interesting aspect of our implementation is that we allow occasional errors by omitting the
tests and branching that would have caught and fixed them. This implies that of the many
parallel streams that we are processing, occasionally one may produce an erroneous result.
Obviously, this would be recognized and the result thrown out – except that despite months of
computations on many machines it has not occurred yet. Overall, we gain a very considerable
speed-up using this approach.

Graphics card. As far as we can tell at this point, graphics cards do not dramatically change
the above picture yet. In [4] it is reported that a GTX 295, containing two graphics processing
units, can perform about 42 million modular multiplications per second for 280-bit moduli.
Extrapolating the generic SPU modular multiplication times from the Appendix to this same
modulus size (cf. last paragraph of Section A.1), we find that a single SPU can do almost 8
million modular multiplications per second for 280-bit moduli, for a total of 47 million per
second per PS3. These figures are comparable, and we are not aware of a reason why that
would not be the case for 160-bit moduli. The price and power consumption of graphic cards,
however, both look less attractive than those of a PS3.

FPGA. For FPGAs we consult [15, Table V]: using a single XC3S1000 chip it would take
about 3.1 · 1011 years to crack 160-bit ECC. Furthermore, according to [15, Section 6.1], this
time can be reduced by a factor 120 to 2.6 · 109 years when 120 of such chips are purchased
for US$10,000. Note that 2.6 · 109 is close to the number of PS3 years required, as analysed
above. Also note that about 25 PS3s can be purchased for US$10,000. It follows that FPGAs
are not competitive. This hardly changes if we allow for a ‘Moore factor’ of about 2 in favor
of FPGAs (since [15] was published in 2007).
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ASIC. All performance figures presented so far are based on actual implementations or
realistic extrapolations thereof. For ASICs we have not been able to find performance figures
that are backed up by actual implementations. Nevertheless, from [15, Table VII] we conclude
that ASIC performance is estimated to be about 200 times more economical than FPGAs for
160-bit ECC. Combined with the above factor 25 in favor of PS3s over FPGAs, we find that
price-wise ASICs should outperform PS3s by about a factor 8. Thus, for about an eighth of
the cost of 2.5 billion PS3s, one should be able to crack 160-bit ECC in about a year. As
we did in the case of RSA, we argue (also based on [17]) that the time is not yet ripe for
special purpose hardware, and do not consider ASICs in our further analysis below. It should
be noted, though, that large scale special purpose hardware attacks against ECC look easier
to realize than the designs proposed in [35].

From the above we conclude that, computationally speaking, cracking 160-bit ECC is at
least three orders of magnitude harder than cracking 1024-bit RSA. For 1024-bit RSA we
argued that the open community may have a chance by the year 2020, but that before 2015
nothing can be expected. These estimates, however, took into account continuation of the
usual steady stream of algorithmic improvements, contributing a factor 10 over a decade. For
ECC the contribution of algorithmic improvements has been much smaller. Even if they occur
at the same rate as for RSA, we are still looking at the same difficulty gap of a factor one
thousand by the year 2020, i.e., the year that cracking 1024-bit RSA may be feasible for the
open community.

On the other hand, running a whole lot of Pollard rho processes is quite a bit less cumbersome
than running the NFS sieving and matrix steps. Indeed, Chris Monico for his 109-bit ECC
effort back in 2002 managed to attract a number of contributing computers that is about
an order of magnitude larger than the current large scale factoring effort for a 768-bit RSA
modulus. Given the large number of PS3s ‘out there,’ can the required number of compute
cycles not conveniently be harvested using some type of PS3-BOINC project (cf. [5])? Right
now most certainly not: 2.5 billion PS3s or equivalent devices (such as desktops) for a year is
way out of reach. In a decade, very optimistically incorporating 10-fold cryptanalytic advances,
still millions of devices would be required, and a successful open community attack on 160-bit
ECC even by the year 2020 must be considered very unlikely.

4 Conclusion

Moving from 80-bit security to one of the proposed higher security levels is a good idea. There
is, however, no reason to be concerned that usage of 1024-bit RSA until the year 2014 carries
a major risk. More specifically, there is no indication that certificates relying on 1024-bit RSA
will have to be revoked so long as they naturally expire by 2014. Similarly, there does not
seem to be any reason to be concerned about continued usage of 160-bit prime field ECC
during the next decade.

Recommendations of this sort can be made by anyone, in particular if they are, as the one
concerning 1024-bit RSA, not particularly surprising. The value of our work is, however, that
we are deeply involved in all the new theoretical and practical algorithmic research and grunt
work required to be confident to make them. Although we are simply driven by algorithmic
curiosity and interest in the underlying mathematical and computational problems, we are
also willing to stick out our necks to interpret and publish the likely practical implications of
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our activities, not in our own immediate interest but of potential use to the RSA and ECC
user communities. We remark that our 1024-bit RSA estimate supports the recommendation
proposed in [30]. We expect that our 160-bit prime field ECC estimate is more controversial
– and may even trigger an out of the ordinary effort to prove it wrong.

Remark on security levels. Defining “56-bit security” as the level of protection offered
by single DES (cf. [25] and [21]), we conclude from [32] that 56-bit security can on average
be broken on a single PS3 (using 6 SPUs) in about 1.75 year. Combining that figure with
the above PS3 effort to crack 160-bit ECC and observing that 230 < 2.5 · 109/1.75 < 231, we
find that 160-bit ECC provides between 86 and 87 bits of security. It would be reasonable
to conclude that 1024-bit RSA provides about 76-bit security. The figures for ECC in [25,
Table 1] are similar, but 1024-bit RSA looks a bit more secure than suggested there: apparently
improvements in NFS have not lived up to the expectations from [25]. Note that this 10-bit
gap allows one to use 160-bit ECC with a 10-bit cofactor (as in [28, Table 1] but as explicitly
excluded here) without getting security less than 1024-bit RSA.
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A Multi-precision integer arithmetic on the SPU

We present some of the details of our SPU multi-precision integer arithmetic implementation
on the PS3 SPU. This implementation is designed for the relatively short integers of at most
a few hundred bits as used for ECC over prime fields. For these sizes we can, given the SPU
architecture and because our Pollard rho application allows any level of parallelism, profit
from 4-way SIMD parallelism by processing four identical or similar long integer operations
simultaneously. For applications requiring larger integers (such as RSA) or where parallelism
cannot be used, entirely different implementations are required. Those have been developed
as well, but will not be described here.

A.1 Representation of relatively short long integers

Each SPU has 128 registers of 128 bits each. Each 128-bit SPU register v can be interpreted
as a vector of eight 16-bit values (v0,0, v0,1, v1,0, . . . , v3,1) or as a vector of four 32-bit val-
ues (v0, v1, v2, v3). When doing modular multiplication, n registers X[0],X[1], . . . ,X[n − 1]
are interpreted as four 16n-bit integers X0,h,X1,h,X2,h,X3,h for h ∈ {0, 1} with Xj,h =∑n−1

i=0 X[i]j,h216i with the understanding that if h = 0 then the X[i]j,1 are zero and if
h = 1 then the X[i]j,0 are zero. While doing modular subtraction or inversion, m regis-
ters X[0],X[1], . . . ,X[m − 1] are interpreted as four 32m-bit integers X0,X1,X2,X3 with
Xj =

∑m−1
i=0 X[i]j2

32i. It is understood that any four-tuple [A,B,C,D] of 16n-bit or 32n-bit
integers can be represented in this way using n 128-bit registers consisting of four short inte-
gers (with h = 0 or h = 1) or m 128-bit registers consisting of four long integers, respectively.
SIMD instructions are then applied to the four-tuple [A,B,C,D] by applying the relevant
SIMD instructions to the corresponding n or m registers.

The short representation is necessitated by the fact that the SPU has just a 16 × 16 → 32-
bit 4-way SIMD multiplier, the long one is to take advantage of fast 32-bit 4-way SIMD
operations (such as addition and subtraction). Because switching back and forth between the
two representations is relatively easy using shuffle operations (which rearrange bytes), and
because furthermore the shuffle operations can be dispatched almost for free since they are
odd pipeline instructions as opposed to the even pipeline arithmetic ones, this turned out to
be the most efficient approach.

Thus, the 128-bit register width implies that four long integers can be processed simultane-
ously in SIMD mode, but this fixed width does not impact the efficiency when dealing, for
different applications, with equal length moduli of another size: all one needs to do is use a
different value for n: for instance, n = 4 for a 128-bit modulus, and n = 5 for a 160-bit one.
When moving to larger moduli, various overheads will have a relatively smaller effect on the
cycle count, so that the usual quadratic cost extrapolation for schoolbook multiplication and
such will be on the pessimistic side.

A.2 Modular arithmetic

Let R = 2128 and p̃ = R − 3. Curve number 6 from [12] is defined over the prime field of
characteristic p, where p is the 112-bit prime p̃/(11 ·6949). We show that it is computationally
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advantageous to use a redundant representation modulo p̃ as opposed to p, while only reducing
results to a unique representation in {0, 1, . . . , p − 1} when so required (cf. Section A.4).

Let R(x) = x mod R + 3
⌊

x
R

⌋
for non-negative x, then x ≡ R(x) mod p̃. Furthermore, with

high likelihood R can be used to quickly reduce values modulo p̃. Because 0 ≤ R(x) < 4R
for any x with 0 ≤ x < R2, it follows that 0 ≤ R(R(x)) < R + 9. It is easily seen that R + 9
can be replaced by R + 6. Assuming that all values have more or less the same probability
to occur, the result will actually most likely be < p̃. Although counterexamples are simple to
construct and we have no formal proof, we can confidently state the following.

Proposition 1. For independent random 128-bit non-negative integers x and y there is over-

whelming probability that 0 ≤ R(R(x · y)) < p̃.

Thus, our modular multiplication works as follows. We have two four-tuples of 128-bit integers
[X0,X1,X2,X3] and [Y0, Y1, Y2, Y3], where each tuple is represented using four 128-bit registers
of 4 long (i.e., 32-bit) integers per register. Using shuffle operations the corresponding short
(i.e., 16-bit) representations are extracted, per tuple requiring eight 128-bit registers (of 4
short integers per register). Next, the 4-way SIMD multiply-and-add instructions are used
along with ordinary schoolbook multiplication to compute a four-tuple of 256-bit integers
[Z0, Z1, Z2, Z3], represented using eight 128-bit registers of 4 long integers per register, such
that Zi = Xi · Yi for i = 0, 1, 2, 3. Multiply-and-add works nicely, because addition of a short
value d to the product of shorts a and b while including a short carry c does not cause overflow:
if 0 ≤ a, b, c, d < 216, then d + (a · b) + c < 232. The product four-tuple [Z0, Z1, Z2, Z3] is then
reduced modulo p̃ by twice applying R in 4-way SIMD fashion (cf. Prop. 1), where in most
cases the second application of R requires only a single multiply-and-add.

Our implementation takes care to fill both the even and the odd pipelines, thereby consid-
erably reducing the overall latency. The average number of clock cycles required per 4-way
SIMD multiplication modulo p̃ is about 215, i.e., 54 clock cycles per Pollard rho process.

Modular subtraction also uses the 4-way SIMD approach and can easily be made to work on
the long representations, i.e, just four 128-bit registers to represent a four-tuple of 128-bit
integers. Expensive branching is avoided by appropriate use of mask instructions. Overall,
a 4-way SIMD subtraction modulo p̃ takes 16 instructions in the odd and 20 in the even
pipeline, for a total of 20 clock cycles. This becomes 5 clock cycles per Pollard rho process.

A.3 Modular inversion

The calculation of the modular inverse of a positive integer x in the residue class of the
odd modulus p is done by the algorithm depicted in Alg. 1. The method used is the one as
described in [19], as it is very suitable for implementation on the 4-way SIMD architecture of
the SPU. It proceeds in two phases:
1) The computation of the almost Montgomery inverse x−1 · 2k mod p for some k.
2) A normalization phase where the factor 2k mod p is removed.
Because 4 variables are employed on which operations can be carried out in SIMD-mode, they
are grouped together as [A1, B1, A2, B2], as set forth in Section A.1. In the algorithm, X >> t
(X << t) means that variable X is shifted by t bits towards the least (most) significant bit
position (the SPU lets each of the elements of a four-tuple have its own shift amount). Note
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Algorithm 1 4-SIMD Extended Binary GCD

Input: r = 232, p : rn−1 < p < rn and gcd(p, 2) = 1
x : 0 < x < rn and gcd(x, p) = 1

Output: z ≡ 1
x

mod p

Algorithm:
[A1, B1, A2, B2] := [p, 0, x, 1] and [k1, k2] := [0, 0]
while (true)

/* Start of shift reduction. */
Find t1 such that 2t1 |A1

Find t2 such that 2t2 |A2

[k1, k2] := [k1 + t1, k2 + t2]
[A1, B1, A2, B2] := [A1 >> t1, B1 << t2, A2 >> t2, B2 << t1]

/* Start of subtraction reduction. */
if (A1 > A2) then

[A1, B1, A2, B2] := [A1 − A2, B1 − B2, A2, B2]
elseif (A2 > A1) then

[A1, B1, A2, B2] := [A1, B1, A2 − A1, B2 − B1]
else

Return z := B2 · (2−(k1+k2)) mod p

endif
endwhile

that, in the algorithm, operations A1 >> t1 and A2 >> t2 shift out only zero bits. The
arithmetic is unsigned.

Let g = gcd(x, p). Let y be a solution of xy ≡ g (mod p). The algorithm has invariants

kj ≥ 0, Aj > 0,

Aj(2
k1+k2y) ≡ Bjg (mod p) (for j = 1, 2),

gcd(A1, A2) = g,

A1B2 − A2B1 = p, (1)

2k1A1 ≤ p, 2k2A2 ≤ x,

B1 ≤ 0 < B2.

When the loop exits, a modular multiplication by a table look-up removes powers of 2 from
the output. We can bound the subscript k1 + k2 by

2k1+k2 ≤ (2k1A1)(2
k2A2) ≤ px.

We will have A1 = A2 = gcd(A1, A2) = g. If A2 > 1 then we report an error to the caller.
Otherwise g = 1. The output z = B2 · (2

−k1−k2) satisfies

z = zg ≡ B2 · (2
−k1−k2)g ≡ (A22

k1+k2y)2−k1−k2 ≡ A2y = y (mod p).

A shift reduction always starts with at least one of A1 and A2 being odd, by (1). We do not
know which of these might be even, but can examine both, in a SIMD fashion. If we pick t1
and t2 as large as possible during a shift reduction, then the new A1 and A2 will both be odd.
In that case the next subtraction and shift reductions will reduce A1 +A2 by at least a factor
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of 2. The trailing zero bit count of a positive integer A is the population count of A∧ (A− 1).
The SPU’s population count instruction acts only on 8-bit data, so our t1 and t2 may not be
maximal.

The values of A1 and A2 are bounded by p and x, respectively. The invariant p = A1B2 −
A2B1 ≥ B2 − B1 bounds B1 and B2. For n = 4 these fit in 128 bits.

Within the subtraction reduction, the four 128-bit differences A1−A2, B1−B2, A2−A1, and
B2 − B1 are evaluated in parallel. We exit the loop if neither A1 − A2 nor A2 − A1 needs a
borrow. Otherwise we update [A1, B1, A2, B2] appropriately. Subtracting 1 from each element
of the borrow vector gives masks of −1 or 0 depending on the sign of A1 −A2 or A2 −A1. A
shuffle of these masks builds a selector which determines which parts of [A1, B1, A2, B2] are
updated.

The final multiplication with 2−k is done by first looking up this value in a table and next
computing the modular multiplication as outlined in Prop. 1. Hence, the modular inversion
implementation takes as input an integer x and outputs z ≡ 1

x mod p with 0 ≤ x, z < p̃.

Computation of a single modular inverse takes fewer than 5000 clock cycles on average. With
N = 400 Pollard rho processes running in parallel, it boils down to about 12 clock cycles
per Pollard rho process (plus the time required for the additional modular multiplications
required per process in order to be able to use simultaneous inversion).

A.4 Incorporation into the Pollard rho iteration

Given elliptic curve group elements P and Q, we wish to calculate an integer m such that
Q = mP . Since we use 16-adding walks (cf. [38]) we fix 16 group elements Rj, 0 ≤ j < 16,
calculated as Rj = c̃jP + d̃jQ for random integers c̃j , d̃j and share those among all Pollard
rho processes that will be participating in the calculation, i.e., across all streams on the same
SPU, but also among all SPUs, and among all participating PS3s and any other devices.
Furthermore, we fix and share an easy-to-calculate function h from the elliptic curve group
more or less uniformly to {0, 1, 2, . . . , 15}.

For each Pollard rho process integers c0 and d0 are randomly selected, and the startpoint
X0 = c0P + d0Q is calculated. Using elliptic curve point addition (using doubling as well for
the calculation of the Rj and all X0’s, but never using doubling during the iteration, cf. below),
while sharing the inversion cost among N = 400 processes on the same SPU, the new point is
then calculated as Xi+1 = Xi +Rh(Xi) = ci+1P +di+1Q for i = 0, 1, 2, . . . until a distinguished
point is found (cf. [39]). At the cost of 16 counters of 32 bits each per process, updating the
values ci+1, di+1 can be postponed until a distinguished point is found. Both the calculation
of h and the check for the distinguished point property require unique representation of
the group element, whereas we use a redundant representation modulo p̃. This is relatively
easy to fix by calculating the unique partial Montgomery reduction x · 2−16 mod p of the
x-coordinate of the group element in question, since it will be unique in {0, 1, . . . , p − 1}.
Identical distinguished points with, most likely, different constants c and d may lead to the
desired solution to Q = mP .

As noted above, several things can go wrong: we may have dropped off the curve because we
should have used curve doubling (in the unlikely case that Xi = Rh(Xi), or in the unlikely
case of incorrect reduction modulo p̃, cf. Prop. 1), or a wrong point may by accident again
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Operation Average #cycles Quantity Average #cycles
per operation per iteration per iteration

Modular multiplication 54 6 322

Modular subtraction 5 6 30

Modular inversion 4941 1
400

12

Montgomery reduction 24 1 24

Miscellaneous 68 1 68

Total 456
Table 1. Average clock cycle count for the operations during a Pollard rho iteration on one SPU.

have landed on the curve, and have nonsensical ci, di values. Just as the correct iterations,
these wrong points will after a while end up as distinguished points. Thus, whenever a point is
distinguished, we check that it indeed lies on the curve and that the equation xi = ciP + diQ
holds for the alleged ci and di. Only correct distinguished points are collected. If we hit upon a
process that has gone off-track, all 400 concurrent processes on that SPU are terminated and
restarted, each with a fresh startpoint. This type of error-acceptance leads to enormous time-
savings and code-size reduction at negligible cost: we have not found even a single incorrect
distinguished point yet.

Enforcing uniqueness using the partial Montgomery reduction takes on average 24 clock cycles
per iteration per process. The other issues mentioned above (retrieving the correct Rj’s, shuf-
fling them into the right places, distinguished point checking, branching overhead) contribute
another 68 clock cycles, on average.

A.5 Timings

Table 1 combines the average clock cycle requirements per Pollard rho process. The total
expected number of iterations to solve a discrete logarithm problem in the elliptic curve

group over the 112-bit prime field is
√

π·q
2 ≈ 8.4 · 1016, where q is the prime group order

and where we do not use the negation map. Disregarding the possibility of tag-tracing, we
need 456 clock cycles per iteration per SPU. Since an SPU runs at 3.2GHz and 6 SPUs are
available per PS3, we expect about 60 PS3 years to complete the calculation. A moderate
speed-up can be expected if one of the two improvements is used.

With a 24-bit distinguishing property we expect 5 · 109 distinguished points. Storing each
distinguished point along with its c and d value requires 4 · 112 bits, i.e., 56 bytes, for a total
of about 56 · 5 · 109 bytes, i.e., 260 gigabytes.

Given the breakdown of the 54 cycle count for modular multiplication into (regular school-
book) multiplication and (fast, due to Prop. 1) reduction, we expect that for generic 112-bit
moduli only the 322 in Table 1 needs to be changed, namely to approximately 420. As a result
the overall cycle count would grow by about 20%.

More precise extrapolation of the iteration cycle count for a generic 112-bit modulus to a
generic 160-bit one than the rough “

(
160
112

)2
≈ 2” used in the PS3-part of Section 3, results in

N = 320 and an overall iteration cycle count less than 900. The 160-bit ECC PS3-estimate
from Section 3 is therefore on the high side (cf. also last paragraph of Section A.1).
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