
SOFTWARE TESTING, VERIFICATION AND RELIABILITY
Softw. Test. Verif. Reliab. 2008; 18:125–148
Published online 29 November 2007 inWiley InterScience (www.interscience.wiley.com). DOI: 10.1002/stvr.381

IPOG/IPOG-D: efficient test
generation for multi-way
combinatorial testing

Yu Lei1,∗,†, Raghu Kacker2, D. Richard Kuhn2,
Vadim Okun2 and James Lawrence3

1Department of Computer Science and Engineering, The University of Texas
at Arlington, Arlington, TX 76019-0015, U.S.A.
2Information Technology Laboratory, National Institute of Standards and
Technology, Gaithersburg, MD 20899-8910, U.S.A.
3Department of Mathematics, George Mason University, Fairfax,
VA 22030, U.S.A.

SUMMARY

This paper presents two strategies for multi-way testing (i.e. t-way testing with t>2). The first strategy
generalizes an existing strategy, called in-parameter-order, from pairwise testing to multi-way testing. This
strategy requires all multi-way combinations to be explicitly enumerated. When the number of multi-way
combinations is large, however, explicit enumeration can be prohibitive in terms of both the space for
storing these combinations and the time needed to enumerate them. To alleviate this problem, the second
strategy combines the first strategy with a recursive construction procedure to reduce the number of
multi-way combinations that have to be enumerated. Both strategies are deterministic, i.e. they always
produce the same test set for the same system configuration. This paper reports a multi-way testing tool
called FireEye, and provides an analytic and experimental evaluation of the two strategies. Copyright ©
2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Combinatorial testing creates tests by selecting values for input parameters and by combining
these values [1]. For a system with k parameters, each of which has v values, the number of
possible combinations of values of these parameters is vk . Owing to resource constraints, it is
nearly always impractical to exhaustively test all possible combinations. Thus, a strategy is needed
to select a subset of combinations to be tested. One such strategy, called t-way testing, requires
every combination of values of any t parameters to be covered by at least one test, where t is
referred to as the strength of coverage and usually takes a small value. Each combination of values
of a set of parameters is considered to represent one possible interaction among these parameters.
The rationale behind t-way testing is that not every parameter contributes to every fault, and many
faults can be exposed by interactions involving only a few parameters. The notion of t-way testing
can substantially reduce the number of tests. For example, a system of 20 parameters that have 10
values each requires 1020 tests for exhaustive testing, but as few as 180 tests for 2-way (or pairwise)
testing [2]. Empirical studies have shown that t-way testing can effectively detect faults in various
types of applications [3–6].
To illustrate the concept of t-way testing, consider an elementary software system consisting of

three Boolean parameters. Denote the two values of a Boolean parameter by 0 and 1. Figure 1
shows a pairwise test set for this system. In this test set, each row represents a test, and each
column represents a parameter (in the sense that each entry in a column is a value of the parameter
represented by the column). An examination of this test set reveals that each of the three pairs of
columns, i.e. columns 1 and 2, columns 1 and 3, and columns 2 and 3, contains all four pairs of
values of two Boolean parameters, i.e. {00,01,10,11}. Thus, this set of four tests is a 2-way test set
for the three parameters. If all failures of the system are triggered by faulty interactions between at
most two parameters, this test set would allow all the failures to be exposed. Note that an exhaustive
test set for this system would consist of 23=8 tests.
Existing work on t-way testing has mainly focused on pairwise testing, which aims to detect

faults that are caused by interactions between any two parameters. However, faults can also be
caused by interactions among more than two parameters [3,4]. In order to effectively detect those
faults, it is necessary to use a higher strength of coverage. This paper presents two strategies for
multi-way testing (i.e. t-way testing with t>2). The first strategy, called in-parameter-order-general
(IPOG), is a generalization of an existing testing strategy, called in-parameter-order (IPO), from
pairwise testing to multi-way testing. Strategy IPOG needs to explicitly enumerate all possible
combinations of parameter values that need to be covered. (In the remainder of this paper, a
combination of parameter valueswill be simply referred to as a combination if the context precludes
any ambiguity.) While explicit enumeration is considered manageable for pairwise testing, where
the number of pairwise combinations is modest even for reasonably large system configurations, it is

0 0 0 
0 1 1 
1 0 1 
1 1 0 

Figure 1. An example of a pairwise test set.
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an important concern for multi-way testing. This is because the number of t-way combinations (i.e.
combinations involving t parameters) grows exponentially as the strength of coverage t increases.
For example, consider a system with 20 parameters, where each parameter has 5 values. There are
4750 2-way combinations (or pairs), 142 500 3-way combinations, 3 028 125 4-way combinations,
and 48 450 000 5-way combinations. To alleviate this problem, the second strategy, which will be
referred to as IPOG-D, combines the IPOG strategy with an approach, called doubling construction
(or D-construction), to reduce the number of t-way combinations that have to be enumerated.
The D-construction approach is a recursive construction procedure that allows a larger test set
to be constructed using smaller ones, and it does not involve any enumeration of combinations.
Both strategies are deterministic, i.e. they always produce the same test set for the same system
configuration. This paper reports a multi-way testing tool, called FireEye, and discusses how to
efficiently implement strategies IPOG and IPOG-D. An analytical and experimental evaluation of
the two strategies is also provided, including a comparison with several existing tools that support
multi-way testing.
The remainder of the paper is organized as follows. Section 2 briefly reviews existing work on

t-way testing. Section 3 describes the IPOG strategy and presents an IPOG-based test generation
algorithm. Section 4 describes the IPOG-D strategy and presents an IPOG-D-based test generation
algorithm. An analytic comparison of the IPOG-D strategy with the IPOG strategy is also provided
in Section 4. Section 5 describes the FireEye tool and discusses how to efficiently implement the
two strategies. Section 6 reports some experimental results. Section 7 provides concluding remarks
and a plan for further work.

2. RELATED WORK

Existing approaches to t-way testing can be classified as either computational or algebraic [2,7].
Computational approaches involve explicitly enumerating all of the possible combinations, whereas
algebraic approaches construct test sets based on some pre-defined rules without enumerating any
combinations. Sections 2.1 and 2.2 briefly review the two types of approaches.

2.1. Computational approaches

Cohen et al. first proposed a strategy, called AETG (automatic efficient test generator), which builds
a test set ‘one-test-at-a-time’ until all the combinations are covered [8,9]. A greedy algorithm is
used to construct the tests such that each subsequent test covers as many uncovered combinations
as possible. Several variants of this strategy have been reported that use slightly different heuristics
in the greedy construction process [5,10]. The AETG strategy and its variants [5,10] are later
generalized into a general framework [11]. A pairwise testing strategy, called IPO, builds a pairwise
test set for the first two parameters, extends the test set to cover the first three parameters, and
continues to extend the test set until it builds a pairwise test set for all the parameters [12,13].
Covering one parameter at a time allows IPO to achieve a lower order of complexity than AETG
[13]. More recently, techniques such as hill climbing and simulated annealing have been applied
to t-way testing [2]. These techniques start from a pre-existing test set and then apply a series
of transformations to the test set until a test set is reached that covers all the combinations that
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need to be covered. This is in contrast with AETG and IPO, which allow a test set to be built
from scratch. Note that AETG and IPO can also start from a pre-existing test set, but they only
extend the pre-existing test set. That is, they add new tests and/or extend existing tests with new
values, without changing the values in the pre-existing test set. Techniques like hill climbing and
simulated annealing can produce smaller test sets than AETG and IPO, but they typically take longer
to complete. Note that the results for simulated annealing have only been reported up to 3-way
testing [2].
The main advantage of computational approaches is that they can be applied to an arbitrary

system configuration. That is, there is no restriction on the number of parameters and the number
of values each parameter can take in a system configuration. Moreover, it is relatively easy to
adapt computational approaches for test prioritization [14] and constraint handling [15]. However,
computational approaches involve explicitly enumerating all possible combinations to be covered.
When the number of combinations is large, explicit enumeration can be prohibitive in terms of
both the space for storing these combinations and the time needed to enumerate them. In addition,
computational approaches are typically greedy, i.e. they construct tests in a locally optimized
manner, which does not necessarily lead to a globally optimized test set. Thus, the size of test sets
generated may not be minimal.

2.2. Algebraic approaches

In algebraic approaches, test sets are derived from covering arrays that are constructed by pre-
defined rules without requiring any explicit enumeration of combinations. There are two main types
of algebraic approach for constructing covering arrays. In the first type of approach, a covering
array is constructed directly by computing a mathematical function for the value of each cell based
on its row and column indices. These approaches are generally extensions of the mathematical
methods for constructing orthogonal arrays [16,17]. The second type of approach is based on the
idea of recursive construction, which allows larger covering arrays to be constructed from smaller
covering arrays [18,19]. For example, the D-construction approach uses a pair of 2-way and 3-way
covering arrays of k columns to construct a 3-way covering array of 2k columns [20]. The details
of the D-construction approach will be discussed in Section 4.
Since algebraic approaches do not enumerate any combinations, they are immune to any combi-

natorial effect. The computations involved in algebraic construction are usually lightweight. Thus,
algebraic approaches can be extremely fast. Unfortunately, algebraic approaches often impose
serious restrictions on the system configurations to which they can be applied. For example, many
approaches for constructing orthogonal arrays require that the domain size be a prime number or
a power of a prime number. This significantly limits the applicability of algebraic approaches for
software testing. Finally, test prioritization [14] and constraint handling [15] can be more difficult
for algebraic approaches.

3. THE IPOG STRATEGY

This section presents the IPOG strategy, which generalizes the IPO strategy from pairwise testing
to multi-way testing. The reason why the IPO strategy is chosen is two-fold. First, as practical
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applications may have arbitrary configurations, it is important for a strategy to place no restrictions
on the system configuration. This consideration favors computational approaches over algebraic
approaches. Second, due to the combinatorial effect, multi-way testing often needs to deal with
a large number of combinations. Thus, multi-way testing places a stringent demand on the time
and space requirements. This consideration favors the IPO strategy over other strategies such as
AETG and techniques like hill climbing and simulated annealing. Note that the IPO strategy is
deterministic, i.e. it always produces the same test set for the same system configuration.
The framework of the IPOG strategy can be described as follows: For a system with t or more

parameters, the IPOG strategy first builds a t-way test set for the first t parameters, it then extends
the test set to a t-way test set for the first t+1 parameters, and then continues to extend the test set
until it builds a t-way test set for all the parameters. The extension of an existing t-way test set for
an additional parameter consists of two steps: (a) horizontal growth, which extends each existing
test by adding one value for the new parameter; and (b) vertical growth, which adds new tests, if
necessary, to the test set produced by horizontal growth.
Figure 2 shows a test generation algorithm called IPOG-Test that implements this strategy. The

algorithm takes two arguments: (1) an integer t specifying the strength of coverage and (2) a
parameter set ps containing the input parameters and their values. The output of this algorithm is
a t-way test set for the parameters in set ps. The number of parameters in set ps is assumed to be

Algorithm IPOG-Test  (int t, ParameterSet ps)
{
1.  initialize test set ts to be an empty set 
2.  sort the parameters in set ps in a non-increasing order of their domain sizes, and denote 
them as P1, P2, …, and Pk

3.  add into test set ts a test for each combination of values of the first t parameters 
4. for (int i = t + 1; i ≤ k; i ++){
5.     let π be the set of all t-way combinations of values involving parameter Pi

            and any group of (t -1) parameters among the first i – 1 parameters 
6.     // horizontal extension for parameter Pi

7. for (each test τ = (v1, v2, …, vi-1) in test set ts) { 
8.         choose a value vi of Pi and replace τ with τ’ = (v1, v2, …, vi-1, vi) so that τ’ covers the  
                 most number of combinations of values in π
9.         remove from π the combinations of values covered by τ’
10.   } // end for at line 7 
11.   // vertical extension for parameter Pi

12. for (each combination σ in set π){
13.      if (there exists a test τ in test set ts such that it can be changed to cover σ) { 
14.          change test τ to cover σ
15.      }  else { 
16.          add a new test to cover σ
17.      } // end if at line 13 
18.   } // end for at line 12 
19. }// end for at line 4 
20. return ts; 
}

Figure 2. Algorithm IPOG-Test.
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P1 P2 P3
0   0   0
0   0   1
0   1   0
0   1   1
1   0   0
1   0   1
1   1   0
1   1   1

P1P2 P3 P4

0   0  0  0  
0   0  1  1 
0   1  0  2 
0   1  1  0 
1   0  0  1  
1   0  1  2  
1   1  0  0 
1   1  1  1 

P1 P2 P3 P4
0   0  0  0
0   0  1  1 
0   1  0  2 
0   1  1  0 
1   0  0  1
1   0  1  2
1   1  0  0 
1   1  1  1 
1   0  *  0
1   0  1  0
0   1  0  1
0   0  1  2
1   1  0  2
*   0  0  2
*   1  1  2 

(a) (b)

(c)

Figure 3. An illustration of algorithm IPOG-Test for a system with three Boolean
parameters and one 3-valued parameter.

greater than or equal to t . Figure 3 shows an application of algorithm IPOG-Test to an example
system for 3-way testing. This example system consists of four parameters, P1, P2, P3, and P4,
where P1, P2, P3 have two values, 0 and 1, and P4 has three values, 0, 1, and 2. In the following,
this application will be used as a running example to explain how algorithm IPOG-Test works.
Algorithm IPOG-Test begins by initializing test set ts to be empty (line 1) and sorting the input

parameters in a non-increasing order of their domain sizes (line 2). Note that test set ts will be used
to hold the resulting test set. Next, the algorithm builds a t-way test set for the first t parameters.
This is trivially done by adding to set ts a test for every combination of the first t parameters (line 3).
In Figure 3, the 3-way test set built for the first three parameters is shown in part (a), which contains
all the eight possible combinations of the first three parameters, i.e. P1, P2, and P3. Note that in
Figure 3, the four parameters are not sorted for the purpose of demonstration, as otherwise vertical
growth would not be needed in the test generation process.
If the number k of parameters is greater than the strength t of coverage, the remaining parameters

are covered, one at each iteration, by the outermost for loop (line 4). Let Pi be the parameter that
the current iteration is trying to cover. Covering parameter Pi means that test set ts is extended
to become a t-way test set for parameters {P1, P2, . . . , Pi }. Algorithm IPOG-Test first computes
the set � of combinations that must be covered in order to cover parameter Pi (line 5). Note
that test set ts is already a t-way test set for parameters {P1, P2, . . . , Pi−1}. In order to build a
t-way test set for {P1, P2, . . . , Pi }, it is sufficient to cover all the t-way combinations involving Pi
and any group of (t−1) parameters among P1, . . . , and Pi−1, which are the parameters that have
already been covered. For example, in Figure 3, in order to cover P4, it is sufficient to cover all the
3-way combinations of the parameter groups (P1, P2, P4), (P1, P3, P4), and (P2, P3, P4). Each of
the combinations in these parameter groups will not be listed, as these combinations can be easily
enumerated. Instead, it is pointed out that each of these groups has 12 combinations. Thus, there
are in total 36 combinations in set � in Figure 3.
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The combinations in set � are covered in the following two steps:

• Horizontal growth: This step adds a value for parameter Pi to each of the existing tests already
in test set ts (lines 7–10). These values are chosen in a greedy manner, i.e. at each step, the value
chosen is a value that covers the largest number of combinations in set � (line 8). Note that a tie
needs to be broken consistently to ensure that the resulting test set is deterministic. After a value
is added, the set of combinations covered due to this addition is removed from set � (line 9).
For example, in Figure 3, the fourth test is extended by adding the value 0 for P4, which
covers three combinations in set � : {(P1.0, P2.1, P4.0), (P1.0, P3.1, P4.0), (P2.1, P3.1, P4.0)}.
Here, the notation Pi .v indicates that v is a value of parameter Pi . Note that if the fourth test
was extended by adding the value 1 for P4, it would only cover two combinations in set � :
{(P1.0, P2.1, P4.1), (P2.1, P3.1, P4.1)}. The reason is that the combination (P1.0, P3.1, P4.1)
was covered by the second test and thus was removed from set � when the second test was
extended.

• Vertical growth: This step covers the remaining uncovered combinations, one at a time, either
by changing an existing test (line 14) or by adding a new test (line 16). Before the details of this
step are explained, it is necessary to introduce the notion of a don’t care value. A don’t care
value is a value that can be replaced by any value without affecting the coverage of a test set.
As shown later, don’t care values can be introduced when a new test is added into the test set.
Let � be a t-way combination that involves parameters Pk1, Pk2, . . . , and Pkt . An existing test �
can be changed to cover � if and only if the value of Pki ,1≤ i≤ t , in � is either the same as in �
or a don’t care value. In other words, when changing a test to cover a combination, only don’t
care values can be changed. If no existing test can be changed to cover �, a new test needs to
be added in which the value of Pki ,1≤ i≤ t , is assigned the same value as in �, and the other
parameters are assigned don’t care values. For example, in Figure 3, after horizontal growth,
the combination (P1.1, P2.0, P4.0) has not been covered yet. No existing test can be found
such that it can be changed to cover this combination. Thus, a new test (P1.1, P2.0, P3.∗, P4.0)
is created to cover this combination, where ‘∗’ denotes a don’t care value. This is the ninth
test (i.e. the test that is crossed) in part (c). Also note that combination (P2.0, P3.1, P4.0) was
not covered either after horizontal growth. This combination can be covered by changing the
value of P3 from ‘∗’ to 1 in the ninth test. In Figure 3, the ninth test is crossed out, indicating
that it is replaced by the next test.

Now consider the complexity of algorithm IPOG-Test. The space complexity is dominated by the
storage of � (line 5) for covering each new parameter. Let k be the number of parameters and
d the largest domain size. Since the current parameter is involved in every combination, there

are at most
(
k−1
t−1

)
combinations of parameters in set �. Note that

(
k−1
t−1

)
≤(k−1)×(k−2)×·· ·×

(k− t−1), which is in O(kt−1). Also note that each combination of parameters has at most dt

combinations of values. Thus, the space requirement for � is O(dt ×kt−1). Note that if all the
parameters have the same domain size, the space complexity is actually dominated by the storage
of � for covering the last parameter. The time complexity is dominated by horizontal extension. In
Section 5, a data structure is described for storing all the combinations. With this data structure,
it takes O(1) time to determine whether or not a given t-way combination is already covered,
and it takes O(kt−1) time to determine the total number of t-way combinations covered where
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a new parameter is included. Thus, it takes O(d×kt−1) to determine which value of the new
parameter covers the most t-way combinations. As shown in [9] and supported by the experiments
in Section 6, the number of tests generated by algorithm IPOG-Test is in O(dt ×logk). Thus, the
time complexity of horizontal extension, as well as that of the entire algorithm, is O(dt+1×kt−1×
logk).

4. THE IPOG-D STRATEGY

The IPOG strategy involves explicitly enumerating all possible t-way combinations. Owing to the
combinatorial effect, the number of combinations is often very large for multi-way testing. Thus,
the cost of enumerating all possible multi-way combinations can be prohibitive in terms of both
the space for storing these combinations and the time needed to enumerate them. This section
presents a new strategy, called IPOG-D, for multi-way testing. This new strategy combines the
IPOG strategy with a recursive construction approach, called D-construction, reducing the number
of combinations that need to be enumerated. Section 4.1 describes the D-construction approach.
Section 4.2 presents an IPOG-D-based test generation algorithm. Section 4.3 provides an analytic
comparison between strategies IPOG and IPOG-D.

4.1. The D-construction approach

The D-construction approach is a recursive procedure that can be used to double the number of
parameters in a 3-way test set [20]. It is assumed that all parameters have the same domain size,
i.e. they take the same number of values. Figure 4 shows an algorithm called DoublingConstruct
that implements the D-construction approach. This algorithm takes as input a 3-way test set ts1 and
a pairwise test set ts2 for the same k parameters, and constructs as output a 3-way test set ts for
2k parameters (of the same domain size). Figure 5 shows an example that demonstrates the use of
this algorithm. In Figure 5, ts1 is a 3-way test set and ts2 is a pairwise test set for three Boolean
parameters. The resulting test set ts is a 3-way test set for six Boolean parameters. Again, the two
values of a Boolean parameter are denoted by 0 and 1.
To understand this algorithm, it helps to view a test set as a two-dimensional array in which each

row represents a test and each column represents a parameter. The terms ‘row’ and ‘test’ will be
used interchangeably and likewise for terms ‘column’ and ‘parameter’. There are two main steps
in the construction process. The first step duplicates each column in ts1 (lines 4–11). This is done
by copying, row by row, the columns in ts1 to the odd (line 7) and even (line 8) columns of the
resulting test set ts. For example, in Figure 5, the third row (0 1 0) in test set ts1 becomes the
third row (00 11 00) in test set ts. Let A be a column in test set ts1, and B and C be the odd
and even columns in test set ts that are copied from A, respectively. Column A will be referred to
as the parent column of B and C, and columns B and C as the twin columns of each other. For
example, in Figure 5, column 1 in test set ts1 is the parent column of columns 1 and 2, in test set
ts, where columns 1 and 2 are twin columns of each other. The values of twin columns will be
written together without any space between them. Also, the resulting test set created by this step
will be referred to as the expanded copy of test set ts1. In Figure 5, the expanded copy of test set
ts1 is enclosed by the parentheses in the upper part of test set ts.
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Algorithm DoublingConstruct (TestSet ts1, TestSet ts2){
1.   let ts be an empty test set 
2.   let k be the number of columns in ts1 (and ts2) 
3.   // duplicate each column in ts1 
4. for (each test τ in ts1) { 
5.       let τ’ be a test of size 2k 
6.       for (int i = 1; i <= k; i ++) { 
7.           τ’[2i-1] = τ[i]; 
8.           τ’[2i] = τ[i];    
9.       } // end for at line 6 
10.     add τ’ into ts; 
11. } // end for at line 4  
12. // add d – 1 copies of ts2 
13. let d be the domain size 
14. for (int i = 1; i <= d - 1; i ++) { 
15.     for (each test τ in ts2) { 
16.        let τ’ be a test of size 2k 
17.        for (int j = 1; j <=  k; j ++) { 
18.             τ’[2j-1] = τ[j];  
19.             τ’[2j] = (τ[j] + i) mod d; 
20.        } // end for at line 17 
21.        add τ’ into ts 
22.     } // end for at line 15 
23. } // end for at line 14 
24. return ts; 
}

Figure 4. Algorithm DoublingConstruct.

0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

0 0 0 
0 1 1 
1 0 1 
1 1 0 

ts1 ts2 

0 0  0 0  0 0 
0 0  0 0  1 1 
0 0  1 1  0 0 
0 0  1 1  1 1 
1 1  0 0  0 0 
1 1  0 0  1 1 
1 1  1 1  0 0 
1 1  1 1  1 1 

ts

0 1  0 1  0 1 
0 1  1 0  1 0 
1 0  0 1  1 0 
1 0  1 0  0 1 

Figure 5. An illustration of algorithm DoublingConstruct.

Observe that the expanded copy of test set ts1 does not cover a 3-way combination if this
combination involves a pair of twin columns and the twin columns have different values.
For example, let (01 0) be a 3-way combination involving the first three columns in the expanded
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copy of test set ts1. This combination is not covered in the expanded copy, as the first two columns
are twin columns, and the first column has value 0, while the second column has value 1. Let d
be the domain size of the parameters. To cover those missing combinations, the second step adds
into the resulting test set (d−1) expanded copies of ts2 (lines 14–23). An expanded copy of ts2 is
constructed in a way that is similar to the expanded copy of ts1, except that the even columns are
created as a transformation, instead of an exact copy, of their parent columns (line 19). Suppose
that the i th copy of ts2 is being constructed. When an even column is copied from its parent
column, each value v is mapped to (v+i)modd . For example, in Figure 5, since all the parameters
are Boolean parameters, whose domain size is 2, one expanded copy of ts2 is added into test set ts
and is shown in the pair of curly braces in the lower part of test set ts. Note that the first row (0 0
0) in ts2 is transformed to the first row (01 01 01) in the expanded copy of ts2. Also note that the
combination (01 0) that was not covered in the expanded copy of test set ts1 is now covered due
to this expansion.
To see why test set ts is a 3-way test set for 2k parameters, let us pick up three arbitrary columns,

say, A, B, and C, from ts and check whether they contain all possible combinations involving the
three columns. Assume that column A appears before column B and column B appears before
column C. There are three cases to consider: (1) None of the three columns are twin columns of
each other; (2) Columns A and B are twin columns; and (3) Columns B and C are twin columns.
Note that since twin columns must be next to each, A and C cannot be twin columns. Since cases
(2) and (3) are symmetric, it is sufficient to consider cases (1) and (2).

• Case (1): Columns A, B, and C are copied from distinct columns in ts1. Since ts1 is a 3-way
test set, test set ts must contain all combinations involving columns A, B, and C.
For example, in Figure 5, columns 2, 3, and 6 in test set ts are copied from the three different
columns 1, 2, and 3 in test set ts1, respectively. It is easy to see that test set ts contains all
combinations involving columns 2, 3, and 6.

• Case (2): Let (a,b,c) be a 3-way combination involving columns A, B, and C. If a=b, the
combination must be contained in the expanded copy of test set ts1 (i.e. the upper part of
test set ts). Otherwise, let e=b−a if b>a, or e=b+d−a if b<a, where d is the domain
size. Then, the combination must be contained in the eth expanded copy of ts2. Note that e
will be referred to as the difference between the values in a pair of twin columns or simply
the difference between a pair of columns. For example, in Figure 5, the first two columns
of test set ts are twin columns. Let (a=1,b=1,c=0) be a combination involving the first
three columns. Since a=b, this combination is covered by the fifth row (as well as the sixth
row) in the expanded copy of test set ts1. As another example, let (a=1,b=0,c=0) be a
combination involving the first, second, and fifth columns. Since b<a, this combination is
covered by the last row in the first and the only expanded copy of ts2 (i.e. the eth expanded
copy where (e=0+2−1=1)).

Now the space and time complexity of algorithm DoublingConstruct is considered. Let |ts1| and
|ts2| be the sizes of ts1 and ts2, respectively, and let d be the domain size. Then, both the space
and time complexities of algorithm DoublingConstruct are O(|ts1|+d×|ts2|). It is stressed that
algorithm DoublingConstruct does not enumerate any combinations, and thus does not suffer from
the combinatorial effect.
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4.2. Algorithm IPOG-D-Test

Figure 6 shows a test generation algorithm called IPOG-D-Test that implements the IPOG-D
strategy. Algorithm IPOG-D-Test takes the same input as algorithm IPOG-Test, and also produces
a t-way test set for the parameters in set ps, except that t is assumed to be greater than or equal to 3.
The algorithm can be divided into two parts. The first part (lines 1–4) adapts and applies algorithm
DoublingConstruct to build an initial test set ts, which covers a subset of t-way combinations. The
second part (lines 5–12) adapts and applies the IPOG strategy to cover the remaining t-way combi-
nations, if they exist, making test set ts a complete t-way test set. Since D-construction does not
enumerate any t-way combination, the IPOG-D strategy reduces the total number of combinations
that need to be enumerated. In the following, the two parts are explained in detail.
Part I: The main idea of this part can be described as follows: It first builds a t-way test set ts1

and a (t−1)-way test set ts2 for half of the parameters in set ps. These two test sets are given to
the D-construction procedure to build a test set ts for all the parameters. Recall that D-construction
assumes that all parameters have the same domain size. One approach to handling parameters with
different domain sizes is to add don’t care values to parameters with smaller domain sizes so that all
the parameters have the same domain size. In the algorithm, a finer approach is taken. Observe that
since each column is duplicated separately, what is really assumed in the D-construction procedure
is that each pair of twin columns must have the same domain size. To reduce the number of
don’t care values that have to be added, it is desirable to minimize the difference in domain size
between each pair of twin columns. This is accomplished as follows. First, it places the parameters

Algorithm IPOG-D-Test (int t, ParameterSet ps)
{
1.  sort the parameters in ps in a non-increasing order of their domain sizes, and  denote 
them as P1, P2, …, and Pk.

2. divide the parameters into two groups: }
2

1|{ 121 ⎥⎥
⎤

⎢⎢
⎡≤≤= −
k

iPG i and 

}
2

1|{ 22 ⎥⎦
⎥

⎢⎣
⎢≤≤= k

iPG i .

3.  construct a t-way test set ts1 and a )1( −t -way test set ts2 for the parameters in G1.

4. let ts = DoublingConstruct (ts1, ts2);
5. if (t > 3) { 
6.      let covered be a set of parameters initialized to be G1.
7.      for (each parameter P in G2) { 
8.         let π be the set of missing tuples involving P and t-1 parameters in covered; 
9.         extend test ts to cover the combinations in π
10.       add P into covered; 
11.    } 
12.  }  
13.  return ts;
}

Figure 6. Algorithm IPOG-D-Test.
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in a non-increasing order of their domain sizes (line 1). Next, it divides the parameters into two
groups: G1 and G2 (line 2). Group G1 contains all the parameters with odd indices, and group
G2 contains all the parameters with even indices. (The indices are assumed to start from 1.) The
parameters in G1 are used to build test sets ts1 and ts2, while the parameters in G2 are covered
as a result of the doubling process. Therefore, twin columns in the resulting test set ts are next
to each other after sorting, which minimizes the difference in domain size between a pair of twin
columns.
Note that in line 3 test sets ts1 and ts2 can be constructed recursively using the IPOG-D strategy

if the number of parameters in G1 is large. Otherwise, they can be constructed directly using the
IPOG strategy. Also note that when algorithm DoublingConstruct is called to double the columns
in test sets ts1 and ts2, three modifications need to be made. First, whenever it copies (line 8 in
Figure 4) or transforms (line 19 in Figure 4) a value v to an even column, it is necessary to check
whether value v is a valid value in the even column. Value v is assigned if it passes this check;
otherwise, a ‘∗’ (i.e. don’t care) value is assigned. Second, since there is no uniform domain size,
it takes the largest domain size in line 13 of Figure 4. Note that, after sorting, the largest domain
size is that of the first parameter. Finally, if the total number of parameters in set ps is odd, the
number of parameters in G1 will be one more than that in G2. In this case, the last odd column
simply does not need to be copied.
It is pointed out that D-construction was originally developed to construct 3-way test sets. For

t-way testing where t>3, it may not cover all the t-way combinations. This means that test set
ts resulting from the above procedure may not be a complete t-way test set. Test set ts is made
complete in the second part, which is described next.
Part II: In this part, algorithm IPOG-Test is applied, with necessary adaptations, to make test set

ts complete for t-way testing, where t>3 (lines 5–12). (If t=3, algorithm IPOG-D-Test is degraded
to D-construction.) Set covered is used to represent the set of parameters that have already been
covered. Since test set ts1 is a t-way test set for the parameters in G1, and test set ts is constructed
by doubling the columns in ts1, ts is also a t-way test set for the parameters in G1. Thus, set
covered is initialized to be G1 (line 6). Each iteration of the for loop covers one of the remaining
parameters, i.e. those in G2. The for loop will not be explained line by line, as it is largely the
same as the outermost for loop (Figure 2, line 4) in algorithm IPOG-Test. Instead, the following
two major differences between the two loops are pointed out:

• The computation of set � (Figure 6, line 8) needs to exclude those combinations that are
already covered by the first part. The details of how to compute set � are discussed later in
this section and in Section 5.1.

• In algorithm IPOG-D-Test, an existing test is extended during horizontal growth only if the
current parameter being covered does not have a valid value or its value is don’t care in the
test. This is different from algorithm IPOG-Test, where every existing test is extended during
horizontal growth. The reason for this difference is that some of the existing tests added in the
first part already have a valid value for the current parameter being covered, and thus do not
need to be extended.

Now, the computation of the set � of combinations (line 8, Figure 6) is discussed. Let � be a t-way
combination that involves the current parameter P being covered and a group of (t−1) parameters
in set covered. Let columns be the set of columns corresponding to these parameters. Consider the
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following cases:

• Case 0: Set columns contains no twin columns;
• Case 1: Set columns contains one pair of twin columns;
• . . .;
• Case �t/2�: Set columns contains �t/2� pairs of twin columns.

For case (0), � must be covered in test set ts by the D-construction procedure, as discussed in
Section 4.1. For the remaining cases, � is covered in test set ts if the difference between any pair
of twin columns in � is uniform. (Note that the difference between a pair of twin columns in a
combination is defined in case 2, Section 4.1. Assume that a combination has w pairs of twin
columns. Let di be the difference between the two values in the i th pair. These differences are
uniform if d1=d2=·· ·=dw.) Also note that case (1) is a special case, in that there is only one pair of
twin columns in case (1). Thus, any combination in case (1) must be covered by the D-construction
procedure. Therefore, set � can be computed by (a) deriving all the combinations of parameters
that satisfy the conditions in cases 2 to �t/2� and (b) for each combination of parameters, deriving
all possible combinations of values in which the difference between the values of any pair of twin
columns is not uniform.
Note that the space and time complexity of algorithm IPOG-D-Test is dominated by Part II, and

thus is the same as that of algorithm IPOG-Test.

4.3. An analytic comparison

This section sheds some light on the number of combinations of which algorithm IPOG-D-Test
avoids explicit enumeration, compared with algorithm IPOG-Test. Consider a system consisting of
k parameters, where each parameter has d values. Let t be the strength of coverage. To simplify
the presentation, assume that k is an even number and k≥2t . The number of combinations of
parameters in case (0) is

C0=
∏t−1

j=0 (k−2 j)

t !
The number of combinations of parameters in case (i), where 1≤ i≤�t/2� is

Ci =
⎛
⎝
k

2

i

⎞
⎠×

∏t−2i−1
j=0 (k−2(i+ j))

(t−2i)!

Therefore, the number of combinations of values covered by the D-construction procedure (i.e.
those in which the difference between the values of any pair of twin columns is uniform) is

ID =dt ×C0+
�t/2�∑
i=1

(dt−i+1×Ci )
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Assume that ts1 and ts2 are constructed using the IPOG strategy, i.e. not using the IPOG-D strategy
recursively‡. The number of combinations that need to be enumerated for constructing ts1 and ts2 is

Its1=dt ×
⎛
⎝
k

2

t

⎞
⎠ and Its2=dt−1×

⎛
⎝

k

2

t−1

⎞
⎠

Thus, the number of combinations of which algorithm IPOG-D-Test avoids explicit enumeration
is IR = ID− Its1− Its2. For example, let k=20, t=5,d=5. Then, ID =25200000+21000000+
450000, Its1=787500, and Its2=131250. Thus, IR =45731250. This means that algorithm IPOG-
D-Test can successfully avoid explicit enumeration of more than 45 million combinations for this
system. Note that the number of all possible 5-way combinations for this system is 48 450 000.
Thus, algorithm IPOG-D-Test avoids explicit enumeration of 94% of the combinations for this
system.
It is stressed that the subset of t-way combinations covered by D-construction can be nicely char-

acterized, i.e. it is known exactly what t-way combinations are guaranteed to be covered, without
enumerating them. If explicit enumeration were required to find out which t-way combinations
would be covered by D-construction, which is needed to determine the starting point of the subse-
quent application of the IPOG strategy, the IPOG-D strategy would yield no reduction on the total
number of combinations to be enumerated.

5. FIREEYE: A MULTI-WAY TESTING TOOL

A multi-way testing tool, called FireEye, has been built, which implements strategies IPOG and
IPOG-D. FireEye is written in Java and has the following major components: (1) Combinatorics-
Helper, which is a utility class responsible for all the computations related to combinatorics; (2)
CombinationManager, which manages the combinations in a way such that they can be stored and
checked efficiently; (3) TestEngine, which implements algorithms IPOG-Test and IPOG-D-Test;
and (4) TestGenerator, which drives the entire test generation process. FireEye can be downloaded
at http://ranger.uta.edu/∼ylei/fireeye/.
Owing to the combinatorial effect, multi-way testing often needs to deal with a large number of

combinations. To enable an efficient implementation of strategies IPOG and IPOG-D, these combi-
nations must be managed carefully. Section 5.1 discusses how t-way combinations are computed in
FireEye. Section 5.2 describes the data structure used by FireEye for storing these combinations.

5.1. Computing t-way combinations

First, the computation of set � in line 5 of Figure 2 is discussed. Consider the following general
problem: How to compute all n-way combinations of values ofm parameters, where n≤m? Concep-
tually, this problem needs to be solved in two steps. First, it is necessary to generate all possible
combinations of n parameters out of m parameters. Second, for each combination of n parameters,

‡Note that explicit enumeration of more combinations would be avoided if the IPOG-D strategy were used recursively.
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it is necessary to enumerate all possible combinations of values of these n parameters. Note that a
combination of parameters will be referred to as a parameter combination, and a combination of
values as a value combination.
One approach to generating combinations of n elements is to use a nested loop of n levels, each

iterating through the possible values of each element. This approach can be applied to generate
parameter combinations, with care given to avoid generating the same combination of parameters
in different orders, and to enumerate all value combinations of a given parameter combination.
This approach, however, suffers from the problem that such a nested loop must be hard coded. As
described below, FireEye uses a generic approach that allows parameter and value combinations to
be generated without hard coding any loops.
First consider how to generate parameter combinations. Central to the generic approach is the

use of parameter vectors. A parameter vector has m dimensions, one for each parameter. Consider
each parameter vector to represent a parameter combination as follows: Each dimension takes
on a binary value, 0 or 1, which indicates whether the corresponding parameter is excluded or
included, respectively, in the parameter combination. For example, assume that there are five para-
meters {P1, P2, P3, P4, P5}. Then, a parameter vector 10101 represents a parameter combination
{P1, P3, P5}. Thus, the problem of generating all the n-way parameter combinations out of m
parameters is transformed to the problem of generating all the parameter vectors of m dimensions
in which the number of 1’s is exactly n.
One naı̈ve approach to solving the above problem is to enumerate all possible parameter vectors of

m dimensions, and then filter out those in which the number of 1’s is not exactly n. This enumeration
can be accomplished as follows. Consider each vector to represent a numeric value, where each
dimension represents a digit whose base is 2 and the significance of the digits decreases from left
to right. Starting from a vector of all 0’s, whose numeric value is 0, all the parameter vectors can
be enumerated by repeatedly adding 1 until a vector of all 1’s is reached. The addition of 1 to a
vector can be done by setting the least significant digit g whose value is 0 to 1 and changing all the
digits that are less significant than g to 0. For example, let 10011 be a parameter vector. Observe
that the third digit (from left) is the least significant digit whose value is 0. In order to add 1 to this
vector, the third digit is changed from 0 to 1, and the last two digits are set to 0. Doing so results
in a new vector 10100, whose numeric value is one greater than that of vector 10011.
Instead of enumerating all possible parameter vectors and then filtering out invalid ones, FireEye

implements a more efficient approach that only generates valid vectors, i.e. those in which the
number of 1’s is exactly n. The framework of this approach is similar to that of the naı̈ve approach,
except for the following two differences. First, it starts from a parameter vector in which the least
significant n digits are set to 1, instead of the vector of all 0’s. For example, let m=5 and n=3.
Then, it starts from 00111. Note that such a parameter vector is the smallest one, in terms of its
numeric value, that consists of three 1’s. Second, every time a new parameter vector is derived, it is
ensured that the number of 1’s in the current vector is preserved. There are two cases to consider,
depending on whether the last digit in the vector is 1 or 0.

• Case 1: If the last digit is 1, the least significant digit g that is 0 and is followed by 1 is found.
Then, g is changed from 0 to 1 and the digit following g from 1 to 0. For example, assume
that the current vector is 01011. Then, the third digit (from left) is the least significant digit
that is 0 and is followed by 1. Thus, the next parameter vector is generated by changing the
third digit from 0 to 1 and the fourth digit from 1 to 0, which produces 01101. Note that this
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new vector is the smallest one that is greater than the current vector, in terms of their numeric
values, and that preserves the same number of 1’s.

• Case 2: If the last digit is 0, the least significant digit g that is 0 and is followed by 1 is found,
which is similar to Case 1. At the same time, the number of 1’s, say c, that appear before g,
is counted. Then, g is changed from 0 to 1, and the digits that are less significant than g are
set to 0, except for the last n−c−1 digits, which are set to 1. For example, assume that the
current vector is 10110. Then, the second digit (from left) is the least significant digit that
is 0 and is followed by 1. Since the first digit is 1, c=1. Thus, the next parameter vector is
generated by changing the second digit from 0 to 1, and by setting the third and fourth digits
to 0, and the last digit to 1, which results in 11001. Note that this new vector is the smallest
one that is greater than the current vector, in terms of their numeric values, and that preserves
the same number of 1’s.

Next consider how to enumerate all possible value combinations for each parameter combination.
Similar to the way a parameter combination is considered, each value combination is considered to
represent a numeric value, where each dimension represents a digit whose base is the same as the
domain size of the corresponding parameter and the significance of the digits decreases from left to
right. Note that different digits may have different bases. Starting from a value combination of all
0’s, whose numeric value is 0, all the value combinations can be enumerated by repeatedly adding
1 until a value combination is reached in which the value of each digit is its base minus 1. The
addition of 1 to a value combination can be accomplished by incrementing the least significant digit
g whose value is less than its base minus 1 and setting all the digits that are less significant than g
to 0. For example, assume that there are three parameters P1, P2, and P3, each having three values.
Let 112 be a value combination of the three parameters. The second digit is the least significant
digit whose value is less than its base minus 1. Note that 1 can be added to this combination
by incrementing the second digit and by setting the last digit to 0, which results in a new value
combination 120.
Now consider how to compute set � in line 9 of Figure 6. The key challenge for this computation

is to exclude value combinations that have already been covered by the D-construction procedure.
Recall from Section 4.2 that each value combination � in � satisfies two constraints: (1) the
parameters involved in � must contain at least two pairs of twin parameters and (2) the difference
between the values of any pair of twin columns must be non-uniform. Note that a pair of twin
parameters, which is also referred to as a twin pair, consists of two parameters whose corresponding
columns in the test set are twin columns as defined in Section 4.1. The computation is also divided
into two steps. That is, the possible parameter combinations are first computed, and then the
possible value combinations for each of these parameter combinations. The above two constraints
are enforced in the two steps, respectively. The second constraint is enforced simply by generating
all possible valuation combinations of a parameter combination and then filtering out invalid ones.
The following describes an efficient scheme to enforce the first constraint in the first step.
Assume that there are k parameters P1, P2, . . . , and Pk . To simplify the presentation, assume

that k is even. These parameters are divided into two groups: G1={P1, P3, . . . , Pk−1} and G2=
{P2, P4, . . . , Pk}. Note that P2i−1 and P2i , where 1≤ i≤k/2, are twin parameters. Assume that the
current parameter being covered is P2 j , i.e. the j th parameter in G2. Set � are in two subsets �1
and �2 such that �=�1∪�2, where �1 contains parameter combinations involving both P2 j−1 and
P2 j , and �2 contains parameter combinations involving P2 j but not P2 j−1.
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First consider how to compute �1. Let � be a parameter combination in �1. Note that � must
contain between two and �t/2� twin pairs. Thus, in addition to twin pair (P2 j−1, P2 j ),� must
contain between one and �t/2�−1 additional twin pairs. There are in total j−1 possible twin pairs
among those parameters that are already covered: {(P1, P2), (P3, P4), . . . , (P2 j−3, P2 j−2)}. Using
the procedure described earlier, it first generates all combinations of between one and �t/2�−1
twin pairs out of these j−1 twin pairs. Each combination � of twin pairs can be used to generate
a subset of t-way parameter combinations in �1 as follows. Assume that � contains i twin pairs,
where 1≤ i≤�t/2�−1. First, it adds to � twin pair (P2 j−1, P2 j ). Now � contains 2i+2 parameters.
If t=2i+2,� is returned as the only t-way parameter combination generated from �. Otherwise,
it generates a set of t-way parameter combinations, each of which adds t−2i−2 parameters to �.
The additional parameters must not contain any twin pair, and are chosen from the parameters that
are already covered but have not appeared in �. These additional parameters will be referred to as
‘single’ parameters. Note that the parameters that are already covered include all the parameters in
the first group and the first j−1 parameters in the second group.
For example, let G1={P1, P3, P5, P7} and G2={P2, P4, P6, P8}. Let t=5. Assume that

P6 is the current parameter being covered, which is the third parameter in G2. There are in
total two twin pairs, i.e. {(P1, P2), (P3, P4)}, among the parameters that are already covered,
i.e. {P1, P2, P3, P5, P7, P2, P4}. Note that �t/2�−1=1. Thus, it generates two combinations
of twin pairs, i.e. �1=(P1, P2), and �2=(P3, P4), each of which contains only a single
twin pair. For �1=(P1, P2), it first adds to �1 twin pair (P5, P6), which results in �1=
(P1, P2, P5, P6). There are three parameters, namely, {P3, P4, P7}, that are already covered
but have not appeared in �1. Each of these three parameters can be added to �1 to generate
a 5-way combination. Thus, it generates three 5-way parameter combinations from �1, i.e.
{(P1, P2, P3, P5, P6), (P1, P2, P4, P5, P6), (P1, P2, P5, P6, P7)}. Similarly, for �2=(P3, P4), it
generates three 5-way parameter combinations, i.e. {(P1, P3, P4, P5, P6), (P2, P3, P4, P5, P6),
(P3, P4, P5, P6, P7)}.
The computation of �2 is similar to that of �1, except for the following two differences. First,

when it generates combinations of twin pairs, it generates all of these combinations that contain
between two and �t/2� twin pairs, instead of between one and �t/2�−1 pairs. Second, when it uses
a combination � of twin pairs to generate t-way parameter combinations, it first adds P2 j to �, and
then t−2i−1 ‘single’ parameters, instead of t−2i−2 ‘single’ parameters. Note that the reason
for both differences is that P2 j−1 is not involved in any parameter combination of �2. That is, the
current parameter P2 j is included as a single parameter. Again, consider the above example. As
shown earlier, there are in total two twin pairs, i.e. {(P1, P2), (P3, P4)}, among the parameters that
are already covered. Note that �t/2�=2. Thus, the only combination � of twin pairs to be generated
contains both of these pairs. Then, it adds to � the current parameter P6, which results in the only
5-way combination (P1, P2, P3, P4, P6) in �2.

5.2. Storing t-way combinations

This section describes the data structure used by FireEye for storing t-way combinations. On the
one hand, the storage needs to be as compact as possible. On the other hand, it should be able to
quickly check whether or not a given combination has already been covered. Note that such a check
is the most frequently performed operation in algorithms IPOG-Test and IPOG-D-Test.
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Figure 7. A two-level hierarchy for storing combinations.

As shown in Figure 7, the data structure is a hierarchy of two levels. At the first level is an array of
pointers, each of which represents one possible parameter combination and points to a bitmap at the
second level. Along with each pointer, the indices of the parameters involved in the corresponding
combination are saved. At the second level, each bitmap has one bit for each value combination.
The bit value 0 indicates that the corresponding value combination has not been covered yet, and the
value 1 indicates that the corresponding value combination has already been covered. Each value
combination is considered to represent a numeric value. The numeric value of a value combination
is used to index the bit that corresponds to the combination.
Observe that in both IPOG-Test and IPOG-D-Test, it needs to check what value combinations

are covered by an existing test if the test is extended by a given value. To do this, the array at
the first level can be iterated through. For each parameter combination, the corresponding value
combination, i.e. the value of each parameter in the test being extended, is first found. Next it checks
in the corresponding bit map whether or not the value combination is covered. Note that since the
index of a value combination in the bit map can be directly computed, this check takes O(1) time.
It is worth noting that the storage hierarchy can be further optimized for algorithm IPOG-Test.

The pointers can be indexed in such a way that, for a given parameter combination, it can directly
compute its index and thus locate the corresponding pointer quickly without having to save the
parameter combination. Consider the following example. Assume that there are four parameters,
P1, P2, P3, and P4. There are four combinations of three parameters out of these four parameters,
which are indexed in the following order: (P1, P2, P3), (P1, P2, P4), (P1, P3, P4), and (P2, P3, P4).
The index of a given parameter combination (Pi , Pj , Pk) can be computed using the formula
3×(i−1)+2×( j−i−1)+(k− j−1). For instance, the index of (P1, P3, P4) is 3×0+2×(3−
1−1)+(4−3−1)=2. Here, it is assumed that the index starts from 0. This indexing scheme can
be easily generalized to any number of parameters.

6. EXPERIMENTAL RESULTS

The experiments can be divided into two parts. The first part is aimed to compare algorithms IPOG-
Test and IPOG-D-Test with each other. In particular, it studies the growth in the size of the test
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sets generated by algorithms IPOG-Test and IPOG-D-Test in terms of the strength of coverage, the
number of parameters, and the domain size. An initial study of the effects of variations in domain
sizes is also included. The second part is aimed to compare FireEye with existing tools that support
multi-way testing, in terms of both the size of the resulting test set and the time needed to produce
the test set. All the experiments are conducted using a laptop running Windows XP with 1.6GHz
central processing unit and having 1GB memory.
The first part first applied FireEye to three series of system configurations. In the first series,

the number of parameters is fixed to be 15, the domain size of each parameter is fixed to be 4,
and the strength of coverage is varied from 3 to 6. In the second series, the strength of coverage
is fixed to be 5, the domain size of each parameter is fixed to be 4, and the number of parameters
is varied from 11 to 20. In the third series, the strength of coverage is fixed to be 5, the number
of parameters is fixed to be 15, and the domain size is varied from 2 to 7. Note that, in order
to ensure a fair comparison in terms of execution time, data structures, such as the one used for
managing the combinations, are shared as much as possible between the implementations of two
algorithms.
Tables I, II, and III show the experimental results for the three series of system configurations,

respectively. Column ‘Size Ratio’ contains the ratios of the sizes of test sets generated by algorithm
IPOG-D-Test over the sizes of test sets generated by algorithm IPOG-Test; column ‘Time Ratio’
contains the ratios of the execution times taken by algorithm IPOG-D-Test over those taken by

Table I. Results for 15 4-value parameters for 3-, 4-, 5-, and 6-way testing.

IPOG-Test IPOG-D-Test

t-Way Size Time Size Size ratio Time Time ratio

3 181 0.56 207 1.14 0.17 0.3
4 924 16.57 1165 1.26 0.8 0.05
5 4519 230.2 6793 1.50 12.31 0.05
6 20384 2152.1 32724 1.61 334.36 0.16

Table II. Results for 11–20 4-value parameters for 5-way testing.

IPOG-Test IPOG-D-Test

Number of parameters Size Time Size Size ratio Time Time ratio

11 3287 23.3 4761 1.45 2.81 0.12
12 3703 44.05 5049 1.36 4.75 0.11
13 4001 79.81 6132 1.53 6.49 0.08
14 4260 138.63 6356 1.49 9.81 0.07
15 4519 230.2 6793 1.5 12.31 0.05
16 4787 367.98 7011 1.48 17.39 0.05
17 5018 564.98 7613 1.52 22.5 0.04
18 5245 838.52 7815 1.49 29.74 0.04
19 5471 1205.69 8454 1.55 40.38 0.03
20 5685 1739.14 8606 1.51 50.70 0.03
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Table III. Results for 15 parameters with 2–7 values for 5-way testing.

IPOG-Test IPOG-D-Test

Number of values Size Time Size Size ratio Time Time ratio

2 134 4.08 188 1.4 0.4 0.09
3 1123 48.08 1552 1.38 2.39 0.05
4 4531 234.08 6739 1.49 12.31 0.05
5 15095 996.89 22197 1.47 55.06 0.06
6 37748 3273.42 56619 1.49 203.13 0.06
7 81814 9040.25 124186 1.52 694.74 0.08

algorithm IPOG-Test. The other columns in the three tables are self-explanatory. Note that the
execution times are shown in seconds. The following observations are made about the results in
these tables:

• It was shown that the size of a test set grows in O(dt logk), where t is the strength of
coverage, d is the domain size, and k is the number of parameters [9]. Curve fitting analysis
was performed on the sizes of the test sets in the three tables. The analysis showed that the
experimental results were consistent with the theoretical results. Note that the number of tests
in a t-way test set grows very quickly as the strength of coverage t increases.

• Both size and time ratios between algorithms IPOG-D-Test and IPOG-Test increase slightly as
the strength of coverage increases, as shown in Table I. Here, the time ratio for 3-way testing
in Table I is considered to be an anomaly, as it is so small and is thus likely distorted by
factors such as the startup time. The size ratio fluctuates slightly in the range of 1.36–1.55,
when the number of parameters (in Table II) or values (in Table III) is increased. However,
the time ratio seems to consistently decrease when the number of parameters is increased, and
to consistently increase when the number of values is increased. Again, the time ratio in the
first row of Table II is considered to be an anomaly. Note that the higher the size ratio, the
more the tests that algorithm IPOG-D-Test generates, and the lower the time ratio, the faster
algorithm IPOG-D-Test is, in comparison with algorithm IPOG-Test.

• When the number of parameters is large, algorithm IPOG-D-Test can be significantly faster
than algorithm IPOG-Test at the cost of a modest increase in the size of the resulting test sets.
For example, for 5-way testing for 20 4-value parameters (last row in Table II), algorithm
IPOG-D-Test takes about 3% of the execution time of algorithm IPOG-Test, at the cost of
generating about 51%more tests. This can be explained by the fact that themore the parameters,
the greater the combinatorial effect is, and thus the greater the benefit that the D-construction
approach brings to algorithm IPOG-D-Test. Note that since every extra test adds to the cost
of test execution, a decision needs to be made about whether to spend more time on test
generation or on test execution. This decision can be affected by factors such as the degree of
test automation, the execution time of each test, the availability of resources at the two stages,
and so on.

To study the effects of variations in domain sizes, FireEye was applied to five system configurations
with mixed domain sizes. These configurations were used to conduct experiments in a previous
study [11]. Table IV shows the results for the five configurations. Column ‘Configuration’ shows
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Table IV. Results for five system configurations with mixed domain sizes.

IPOG-Test IPOG-D-Test

Configuration Variation Size Time Size Size ratio Time Time ratio

3445 0.53 432 0.31 704 1.63 0.08 0.25
513822 0.77 297 0.44 527 1.77 0.08 0.18
82726252 1.20 4254 2.98 7571 1.78 0.70 0.23
665534 1.25 3034 26.14 4590 1.51 1.16 0.04
1019181716151413121 2.74 5439 3.36 11 563 2.13 1.27 0.38

the parameters and values of each configuration in the following format: dk11 dk22 . . . , indicating that
there are k1 parameters with d1 values, k2 parameters with d2 values, and so on. For example,
513822 in the last row indicates that there is one parameter with five values, eight parameters with
three values, and two parameters with two values. Column ‘Variation’ shows the standard deviation
of the domain sizes in each configuration. The other columns are the same as those in Tables I–III.
Observe that both size and time ratios are generally higher than those in Tables I–III. This suggests
that variations in domain sizes may have a negative effect on the performance of algorithm IPOG-
D-Test. A more thorough study of the effects of variations in domain sizes will be reported in a
separate paper.
In the second part, two existing tools are identified that support t-way testing and are either open

source or free for academic use§ : (1) Intelligent Test Case Handler (or ITCH), which is from IBM
Research [23]; and (2) Jenny, which is from www.burtleburtle.net [24]. ITCH implements a combi-
nation of several algebraic methods, and Jenny implements a greedy algorithm. The algorithmic
details of ITCH and Jenny are not known. Note that ITCH is written in Java, while Jenny is written
in C.
The three tools, namely, FireEye, ITCH, and Jenny, were first applied to a Traffic Collision

Avoidance System (TCAS) module. The TCAS module implements part of an aircraft collision
avoidance system specified by the Federal Aviation Administration, and has been used in other
studies of software testing [25,26]. The module has 12 parameters: seven parameters have two
values, two parameters have three values, one parameter has four values, and two parameters have
ten values. Table V shows the sizes of the test sets generated by each tool and the times taken to
generate these test sets from 3-way testing up to 6-way testing. The execution times are shown in
seconds. Note that the results for 5- and 6-way testing for ITCH are not available (NA). This is
because ITCH only supports up to 4-way testing. Also note that ITCH supports two test generation
algorithms, namely, CTS and Tofu. The CTS algorithm, which is the default option, was used to
collect the results; the Tofu algorithm takes much longer than the CTS algorithm. It is interesting
to note that ITCH generates more tests for 3-way testing than for 4-way testing. For all the cases
in Table V, algorithm IPOG-Test generated fewer tests faster than ITCH and Jenny, and algorithm

§Two other tools, namely, TConfig [21] and TVG [22], were also identified that support t-way testing and are free for academic
use. However, their performance is substantially worse than that of the other tools, and is thus not reported here.
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Table V. Results of FireEye, ITCH, and Jenny for the TCAS configuration.

IPOG-Test IPOG-D-Test ITCH Jenny

t-Way Size Time Size Time Size Time Size Time

3 400 0.55 480 0.13 2388 1020 413 0.71
4 1361 4.22 2522 0.34 1484 5400 1536 3.54
5 4220 25.39 5306 4.25 NA NA 4580 43.54
6 10 918 98.73 14 480 47.72 NA NA 11 625 470

Table VI. Results of FireEye and Jenny for 4-way testing of several configurations.

IPOG-Test IPOG-D-Test Jenny

Configurations Size Time Size Time Size Time

3445 432 0.31 704 0.08 457 1.05
513822 297 0.44 527 0.08 303 0.80
82726252 4254 2.98 7571 0.70 4580 40.31
665534 3034 26.14 4590 1.16 3033 162.78
1019181716151413121 5439 3.36 11 563 1.27 6198 43.55

IPOG-D-Test generated more tests, but was even faster. Note that since FireEye is written in Java,
and Jenny is written in C, it is hard to directly compare their execution times.
Table VI reports some additional results of applying FireEye and Jenny to the system configura-

tions shown in Table IV. Note that the results for FireEye were copied from Table IV. Also note
that the results for ITCH are not included because ITCH did not complete after 1 hour even for
configuration 3445. For all the cases, algorithm IPOG-Test generated fewer tests faster than Jenny,
except for configuration 665534, where algorithm IPOG-Test generated one more test but was
substantially faster than Jenny. As expected, algorithm IPOG-D-Test generated more tests, but was
much faster than both algorithm IPOG-Test and Jenny.

7. CONCLUSION AND FUTURE WORK

This paper presents two test generation strategies, namely, IPOG and IPOG-D, for multi-way testing.
Strategy IPOG is a generalization of an existing pairwise testing strategy to multi-way testing.
This strategy explicitly enumerates all possible combinations, which may not be practical when
the number of combinations is large and when resources are constrained. To address this problem,
strategy IPOG-D combines IPOG with a recursive construction procedure, namely, D-construction,
to reduce the number of combinations that have to be enumerated. An important view has been taken
that the minimization of the resulting test sets must be balanced with time and space requirements.
This is different from existing work that has largely focused on pairwise testing. For pairwise
testing, the number of combinations is modest even for reasonably large system configurations.
Thus, existing work is mainly concerned with minimizing the size of the resulting test sets, while
paying little attention on the time and space requirements.
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This paper considers t-way testing to be a very promising technique for generating test data for
several reasons. First, as a specification-based technique, it requires no knowledge about the imple-
mentation under test. Moreover, the specification required by t-way testing can be very lightweight,
as a basic system configuration only needs to identify the input parameters and the possible values
of each of those parameters. Second, t-way testing has the potential to be very effective for various
types of applications. Kuhn et al. studied actual faults in several industrial applications, showing
that all of the known faults in these applications are caused by up to 6-way interactions [4]. This
means that if 6-way testing is considered to those applications, all of those faults will be exposed
(assuming that category partitioning or other abstraction methods are applied judiciously to identify
the parameter values). Finally, the test data generation process for multi-way testing can be fully
automated as a push-button feature, which is a key to industrial acceptance.
There are a number of venues for future work. First, a thorough comparison with existing results

in the literature will be conducted. In particular, Colbourn maintains a catalog of best-known
covering arrays [27]. It is interesting to compare the results of FireEye with Colbourn’s catalog.
Second, algorithms IPOG-Test and IPOG-D-Test will be extended to support parameter relations
and constraints. Parameter relations are used to avoid exercising combinations between parameters
that do not interact with each other. Parameter constraints are used to exclude combinations that
are not permitted from the domain semantics [14,15]. Third, t-way testing often generates a large
number of tests, which makes it impractical to manually execute the tests and evaluate their results.
An integration of FireEye with other tools will be performed to automate the entire testing process,
including test generation, test execution, and test evaluation. Finally, empirical studies will be
conducted to evaluate the fault detection effectiveness of t-way testing, especially on industrial
applications such as the NASA application used in the experiments in Section 6. An integrated
solution that automates the entire testing process will make such empirical studies possible.
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