
1. Introduction

For the purposes of this paper, a v-valued n × k cov-
ering array of strength t with integer parameters n, k, t,
and v, where v, t ≥ 2, k ≥ t, and n > 0 is a matrix C of
size n × k with entries from {0, 1, ..., v – 1} which has
the property that each submatrix of size n × t has among
its rows all of the v t possible tuples (x1, ..., xt) of inte-

gers where 0 ≤ xi < v for each index i ∈ {1, ..., t}. For
the rest of this paper the four parameters will be implic-
it and we will just refer to such arrays as covering
arrays. As the value of v is constant over the columns
of the array, this is a homogeneous alphabet covering
array. This concept can be generalized to heteroge-
neous alphabets so that each column, j, has a different
vj , but this paper will not discuss such cases as while all
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ideas presented apply, the empirical results have not
been well explored.

A set Λ of t indices j1, ..., jt , where 1 ≤ j1 < ··· < jt ≤ k,
together with a function ν on Λ such that ν ( j) ∈ {0, ...,
v – 1} for each j ∈ Λ will be called a t-tuple, with Λ
referred to as the column tuple and ν the value tuple. A
row (x1,. ..., xk ) is said to cover a t-tuple (Λ, ν ) provid-
ed that xj = ν ( j) for each j ∈ Λ. Thus C is a covering
array if and only if each t-tuple is covered by at least
one row in C.

Software testing is often done with test inputs sam-
pled from a large input space. Taking each row in the
covering array as a test from a sample space of size vk

allows covering arrays to identify which test inputs
should be used to check software validity. This is desir-
able because covering arrays well-represent the full
sample space by covering all t-tuples. Theoretical
results [3] tell us that covering arrays need not require
more than approximately tv t log(vk) tests, which is
drastically less than the full-testing that covering arrays
approximate. Thus, covering arrays are used as an effi-
cient way for picking tests for software [5,7,9]. For a
survey of covering arrays in the binary (v = 2) case, see
[6].

Several algorithms for constructing covering arrays
suitable for software testing have been developed.
Some use the “In-Parameter-Order,” or IPO, strategy
[7,9]. Here, some refinements of this strategy are pro-
posed and studied. There are two competing goals for
algorithms that construct covering arrays: to minimize
the time required to produce the array, and to minimize
the number of rows, n, in the array. In this paper we
present changes to IPO which empirically reduce both
the execution time and the resulting covering array
size.

The original IPO strategy was implemented for
2-way coverage, that is, for t = 2. However, the principle
behind the algorithm of treating the columns (parame-
ters) one by one applies for all t, and the IPO strategy
is being used as a starting point for the efficient produc-
tion of covering arrays for values of t up to 6. This more
general endeavor is designated IPOG (“In-Parameter-
Order-Generalized”), which is a centerpiece of the
Automated Combinatorial Testing for Software project
at the National Institute of Standards and Technology
(NIST). See [8,10] for current information on IPOG.
The new strategy incorporates some modifications to
IPOG which are intended as an aid in constructing cov-
ering arrays for this project. Some results of a prelimi-
nary evaluation of these ideas are presented. The tables
of covering arrays [11] are products of the use of these
ideas.

2. The IPO Framework

We briefly describe the operation of IPO. Unlike
many other algorithms that build covering arrays one
row at a time, the IPO strategy builds covering arrays
one column at a time. Specifically, it uses the idea that
covering arrays of k – 1 parameters can be used to effi-
ciently build a covering array of k parameters.
Applying this induction with the trivial base case k = t
allows for generating any covering array desired.

To construct the covering array, first make a matrix
for the first t parameters which contains each of the
possible v t distinct rows having entries from {0, ..., v – 1}.
This matrix will be of size v t × t. Then, for each addi-
tional parameter, perform the following two steps.

• Horizontal growth: Add an additional column
(corresponding to the new parameter) and fill in its
values.

• Vertical growth: For each column tuple, if some
value tuple fails to appear, add a new row to cover
this t-tuple.

There are many ways to implement the procedures
for horizontal and vertical growth. Horizontal growth
procedures must address which values are assigned to
each entry in the new column. The greedy idea of
choosing values that maximize the number of covered
t-tuples has been shown to produce fairly small cover-
ing arrays in an efficient manner, but there is still the
question of which order to fill in the entries in the new
column. Two options are presented in [7], one uses the
row order and another tries all possible orders. This
paper will explore a third option which greedily picks
the row order.

Vertical growth algorithms must decide how to add
rows onto a covering array in a way that covers the t-
tuples not covered by horizontal growth. One method,
as described in [7], is to add rows that are specified
with only as much detail as desired, such as to cover a
specific t-tuple, while leaving the rest of the row filled
with “don’t care” values. That is, the symbol θ may
appear as an entry in the matrix in addition to the inte-
gers 0, ..., v – 1, indicating that the value of that entry
from {0, ..., v – 1} has not yet been determined. Using
θ allows the algorithm to defer this determination until
more information is present. The θ values are replaced
with integers either during the same stage of vertical
growth or perhaps during another stage of vertical
growth after more parameters have been added to the
array.

In case t = 2, there is a natural method of implement-
ing the vertical growth procedure, as described in [7].
For each value x from {0, ..., v – 1} such that there
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exists a pair of columns (one necessarily the last) not
containing all of the v value tuples having x in the last
column, add a row to the matrix which has x in the last
column and each earlier column has a value such that
the 2-tuple composed of this value with x has not been
covered, or if there is no such value, has θ. Denoting
f (x) the maximum number of such other values in any
other column, we see that at most Σx f (x) ≤ v2 new rows
will be added at this stage. Furthermore, it is clear that
in any vertical growth algorithm extending the already
present rows, at least Σx f (x) rows are required. In this
sense the procedure is optimal. The procedure, but not
the sense of optimality, has been extended in the IPOG
algorithm for arbitrary t: by induction of coverage over
the columns, we only need to examine t-tuples with
k ∈ Λ, so for each value of ν we determine whether
that t-tuple (Λ, ν ) is covered in the array. There would
be v t (t–1

k–1) such t-tuples. Any uncovered t-tuple would be
added to the array by placing it directly in the array by
replacing entries with a θ or by appending a row filled
with θ to the array and then inserting the t-tuple. This
paper primarily focuses on changes to the horizontal
growth algorithm, but some minor changes to the verti-
cal growth algorithm are also discussed.

3. The Main Algorithm

3.1 An Explanation of the Algorithm

The original IPO algorithm is composed of the hori-
zontal growth stage and the vertical growth stage, and
ideally we know good algorithms for both stages.
However, horizontal growth constitutes most of the
runtime and intuitively can be seen to be the critical
factor in determining how small the resulting covering
array is, as it determines how many t-tuples, and thus
rows, vertical growth must place. When t = 2, as we
saw above, Σx f (x) was the number of rows added by
vertical growth, but it was determined by the horizon-
tal, not vertical, growth stage. Thus, this paper seeks to
explore the more important of the two stages in IPO by
showing how broadening the search space of horizontal
growth can increase the optimality of the results and
decrease runtime.

The horizontal growth stage takes a covering array of
k – 1 columns and extends it to an array of k columns
by adding one column to the old array, thereby “extend-
ing” each row with some value. Any remaining uncov-
ered t-tuples will be covered in the vertical growth
stage. The choice of which rows will be extended with

which values is the critical step in how any algorithm
following this framework operates. The original IPO
algorithm examines the rows in order and greedily
selects the value to extend each row with. This paper
outlines an algorithm that allows for greedy selection
over both the row and value with which we extend the
array. The metric for the greedy selection is unchanged:
we want to pick an extension of the array that covers as
many previously uncovered t-tuples as possible.

This generalization offers the possibility of produc-
ing smaller covering arrays by virtue of the larger
search space for the greedy choice. At first glance it
seems unlikely that this approach can achieve a practi-
cal runtime. A naive implementation that simply broad-
ens the search space without major algorithmic alter-
ations would incur a large performance cost because
each time an extension is performed, all row/value
pairs would be checked for the additional coverage they
offer. (t–1

k–1) t-tuples may have their coverage affected by
the extension and under a naive approach, all must be
checked. This implementation would thus have a run-
time of Θ(vr2(t–1

k–1)) as opposed to the better runtime of
the original strategy, which is Θ(vr(t–1

k–1)).
Fortunately, the naive implementation performs

more work than necessary and can be improved. In the
expanded search space, any algorithm must examine
row/value pairs for their possible additional coverage
multiple times, but a naive approach simply performs
the calculation again. By using dynamic programming
to store and update this information appropriately this
larger search space can be explored much faster.

Consider a non-extended row. Extending it with
some value will cover (t–1

k–1) t-tuples, some of which may
have already been covered and others which would be
newly covered. We can express this relationship with

(1)

with tc denoting the “covered” t-tuples that have previ-
ously been covered by already extended rows and tn

denoting the number of new t-tuples the row/value pair
would cover if we choose that extension. As we want to
maximize additional coverage, tn is the metric used to
gauge which row/value pairs to extend the array with.
The value of tn will not increase as we extend more
rows in the array. The naive implementation directly
maintains tn . However, if we use (1) with dynamic pro-
gramming and maintain tc directly (and thus tn indirect-
ly) we get the same greedy metric but, as will be
shown, in a more efficient manner.
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To maintain tc we have two arrays, Tc [r, v] and
Cov[Λ, ν ] . Tc is indexed by a row and a value and
stores tc for this row/value pair. This takes Θ(rv) space.
Cov[Λ, ν ] is a boolean array indexed by the column
tuple Λ and value tuple ν and entries indicate whether
the t-tuple (Λ, ν ) is covered. The IPO framework guar-
antees that the first k – 1 columns form a covering
array, so we only need to consider the t-tuples that have
the last column in their column tuple, Λ; therefore the
array Cov takes Θ(v t(t–1

k–1)) space. Initially, Tc is filled
with zeros and Cov is filled with false’s. When the
greedy selection occurs and a row is extended with a
certain value, both of the arrays must be updated.

We take a brief moment to discuss how the arrays are
indexed. Tc is straightforward, but Cov is more complex
as Λ and ν need an efficient scheme to be represented
as numbers for Cov to be a conventional array. To do
this, we note that combinations can be lexicographical-
ly ordered and the position of a combination Λ can be
used as its numerical hash for accessing the array; see
Knuth’s Theorem L [4]. As we have a homogeneous
alphabet covering array we treat ν as a number with
base v.

Consider when we just extended the row i ∈ {1, ..., n}
with the value a ∈ {0, ..., v – 1}, which we denote as
having performed the row extension (i, a). We then
need to update the coverage count Tc[ j, b] for all other
extensions ( j, b), as well as which t-tuples have been
covered as reflected by the Cov array.

Tc[ j, b] already has the “covered” t-tuple count for
( j, b) prior to extending the array with the pair (i, a).
We need to count among the (t–1

k–1) t-tuples the extension
( j, b) covers which ones are “newly” covered by (i, a)
and thus no longer contribute to the tn value for ( j, b).
A naive way to update Tc would be to check all (t–1

k–1) t-
tuples. However, this offers no time savings over the
naive implementation discussed earlier.

To achieve time savings, first notice that when we
extended the array with (i, a), the only extensions ( j, b)
that can have their tc value change are those for which
b = a. This is again from the inductive fact that the first
k – 1 columns form a covering array so we are only
considering t-tuples that have a Λ that includes the last
column. So if b ≠ a, then the extension ( j, b) cannot
have any of its (t–1

k–1) t-tuples covered by the extension
(i, a), so we need not update Tc[ j, b]. Thus, we only need
to consider row/value pairs ( j, a) when updating Tc .

Second, instead of examining all (t–1
k–1) t-tuples, we

can restrict ourselves to a smaller set. If a t-tuple (Λ, ν )
was freshly covered by (i, a) and would also be covered
by the possible row extension ( j, a) then this means

that for each l ∈ Λ, ν (l) is the entry in both positions
(i, l) and ( j, l) in the array. Therefore, the freshly cov-
ered t-tuples in row j are the t-tuples with a Λ that is a
subset of the columns where row i and row j have iden-
tical entries.

This observation gives us the procedure we desire.
Begin by examining the columns where the newly-
extended row i and a row j have identical entries. Any
freshly covered t-tuple in row j must have its column
tuple entirely within these “shared columns.” If there
are s shared columns, then we only need explore (t–1

s )
values for Λ, as the last column must be in Λ. Notice
that ν is completely specified by Λ and the two rows
we are comparing. For each t-tuple “shared” between
the two rows, we check Cov[Λ, ν ] to see whether the t-
tuple was covered previously. If so, this t-tuple doesn’t
affect Tc[ j, a]. Otherwise, Tc[ j, a] is increased by one.
These steps keep Tc updated.

After updating Tc for each non-extended row/value
pair, Cov is updated by marking all (t–1

k–1) t-tuples cov-
ered by the extension (i, a) as “covered” if they were
not so already.

With the update step for Tc and Cov explained, the
whole algorithm can be discussed. First, all non-
extended rows are searched, calculating the tn values
for each row/value pair from the Tc array. A row/value
pair is chosen greedily, with ties broken randomly, and
that extension is performed. The update step then
occurs and the process is repeated until either there are
no rows to extend or no additional coverage would
result from further extensions.

There are several nuances that still need to be dis-
cussed. Of principle concern is the search for the max-
imum tn value. Searching through all non-extended
rows for the maximum tn value is wasteful. Recall that
extending one row with a value a can only affect other
row/value pairs that would also extend a row with the
value a. Thus, the tn values only change on roughly  of
the iterations. Further, the tn values do not increase, so
an intelligent data structure, such as a priority queue,
could be used to exploit such properties in a highly effi-
cient manner. However the large number of row/value
pairs and the fact that we only extend with one pair for
each row makes it seem wasteful in both time and space
to maintain this data structure. Instead, a list of
row/value pairs with the maximum tn value is main-
tained. Since the tn values do not increase the list can
never get bigger until it completely runs out. Thus,
instead of searching all row/value pairs, we simply pick
a random candidate off the list and then prune the list of
those row/value pairs which had their tn value decrease
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due to result of the update to Tc . When the list runs out,
we search all of the row/value pairs to find those that
attain the maximum tn value. Experimental evidence
suggests that for values of v of at least 10, the list runs
out infrequently. For small values of v the lists’ size of
O (rv) seems small enough to be manageable. Thus a
better data structure seems unwarranted overall.

Another nuance is the presence of the “don’t care”
values. These entries are unspecified so far because no
additional coverage for the subarray of k – 1 parameters
could be gained by specifying its value. They clearly
have potential for additional coverage for the k param-
eters. To incorporate this potential into the tn values,
one possible method would be to treat the don’t-care
values in a way that assumes they maximize their
potential. This seems difficult to implement in an effi-
cient manner, and in particular, does not seem to fit in
well with (1), the equation driving this entire approach.
Instead, the choice was made that the potential of don’t-
care values will be ignored during horizontal growth
and if possible, don’t-care values will be replaced dur-
ing vertical growth. To achieve this, we restate the rela-
tion as tn + tc = ( g

t–1), where g is the number of “good”,
or specified, columns in the row (excluding the last col-
umn).

The vertical growth algorithm is virtually identical to
the original idea in IPOG. However, since some rows
may be non-extended in horizontal growth some slight
modifications have been made. When a t-tuple needs to
be covered in vertical growth, all rows are searched for
a suitable position and the first match is taken. Don’t-
care values are filled in accordingly. To save time, the
search is started in the first row where there are don’t-
care values because some part of the row must be
unspecified for a t-tuple to be placed there.

3.2 Pseudocode for the Algorithm

Algorithm 1 presents pseudocode for horizontal
growth. For simplicity, the pseudocode does not imple-
ment the list of candidate row/value pairs and does not
address the don’t-care values.

Algorithm 1 Horizontal Growth
Tc[i, a] ← 0, ∀i, a
Cov[Λ, ν ] ← false, ∀Λ, ν
while some row is non-extended do

Find non-extended row i and value a so that tn = (t–1
k–1) –

Tc[i, a] is maximum
if tn = 0 then

stop horizontal growth
end if
Extend row i with value a
for all non-extended rows j do

S ← set of columns where row i and j have identical
entries
for all column tuples Λ ⊂ S do

ν ← the value tuple in row i and column tuple Λ
if Cov[Λ, ν] = false then

Tc[ j, a] ← Tc[ j, a] + 1
end if

end for
end for
for all column tuples Λ do

ν ← the value tuple in row r and column tuple Λ
if Cov[Λ, ν] = false then

Cov[Λ, ν] ← true
end if

end for
end while

Algorithm 2 presents pseudocode for vertical
growth. With this pseudocode we can discuss further
implementation details. Examine TΛ. One could simply
use the array Cov from horizontal growth to determine
which t-tuples are uncovered. However this approach
only works for t = 2, as for general t when a t-tuple is
placed in the array it could also create new coverage
that was unintended. It is important to capture the unin-
tended coverage, so we cannot just use Cov. Instead we
calculate TΛ for each Λ and doing so fully captures all
coverage. A naive implementation to calculating TΛ

would require searching all rows and calculating the
value of ν specified by that row and the given value of
Λ, and removing the t-tuple (ν, Λ) from a list of t-tuples
to cover. However, we get this information faster by
traversing the column tuples Λ in a structured way.
Using recursion, we can traverse the column tuples in a
lexicographic order which infrequently changes many
of the columns in Λ. Thus, for a given row, the numer-
ical hash of ν that results also changes in a structured
way as the entries in the value tuple also infrequently
change. This clearly can be exploited to achieve time
savings but the details will not be presented.
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Algorithm 2 Vertical Growth
for all column tuples Λ : k ∈ Λ do

TΛ ← list of uncovered t-tuples with this Λ
for all ν : (Λ, ν) ∈ TΛ do

for all rows i with a don’t-care entry with a col-
umn in Λ do

if we can place (Λ, ν) then
place (Λ, ν)

end if
end for
if (Λ, ν) not placed yet then

add a new row with (Λ, ν) as the only entries
end if

end for
end for

3.3 Analysis

The space complexity of this algorithm was dis-
cussed above, with the requirements mainly driven by
the two arrays Tc and Cov, requiring Θ(rv) and Θ(v t(t–1

k–1))
space respectively. We now turn to the time analysis.

The performance of the algorithm in practice has
proven to be very competitive as will be discussed in
Sec. 5. Theoretically the properties of this algorithm are
less clear. The complexity of the algorithm suggests no
optimality guarantee is possible and unfortunately even
a rigorous time bound is elusive. While the algorithm is
not randomized (except for minor portions), the notion
of “average” is needed here since what the worst-case
input would be is a property of covering arrays that is
unknown. Thus, we explore the runtime using some
heuristic arguments.

Let’s first look at one stage of the horizontal growth
algorithm. For each non-extended row, we first must
search in O (rv) time for the extension (i, a) to perform.
The candidate list has not been thoroughly explored to
give a better guarantee. Then, for each non-extended
row, j, we must explore the (t–1

s ) t-tuples needed to
update Tc[ j, a]. Calculating the ν required to index
Cov seems like it might take Θ(t) time, but the lexico-
graphic ordering mentioned earlier allows this to be
done in amortized Θ(1) time so exploring the t-tuples
takes Θ((t–1

s )). We then iterate through the (t–1
k–1) t-tuples

(i, a) covers in order to update Cov. This gives the time
guarantee of O (Σr

i=1(rv + (t–1
k–1) + Σr

j=i+1(t–1
s ))) = O (r2v +

r(t–1
k–1) + r2S–) = O (r(t–1

k–1) + r2S–) with S– the average (t–1
s )

value. A rough guess at the value of S– would take the
fact that s ≤ k – 1 to have S– ≤ (t–1

k–1). This would give
O (r(t–1

k–1) + r2(t–1
k–1)). But this is largely unsatisfactory as

the original IPO framework takes O (rv(t–1
k–1)) time. This

shows that the algorithm suffers from a large drawback
because of this r2 term, which begs the question of
whether a better bound for S– can be found.

A better analysis returns to the key step of the algo-
rithm where we update Tc for each non-extended row, j.
The number of t-tuples that are examined in this step is
(t–1

s ), but this is clearly dependent on the row that was
last extended, i, and the row being updated, j, as s is the
number of columns that have identical entries. With
this step dominating much of the runtime of the algo-
rithm it is critical to do a thorough analysis, and yet
because of the extreme uncertainty in this property of
covering arrays, it seems unlikely any rigorous argu-
ment can be made other than (t–1

s ) ≤ (t–1
k–2). k – 2 is used

because by the inductive step we know the first k – 1
columns are a covering array made by this algorithm,
hence no two rows are exactly the same. However,
small sizes of the resulting covering arrays suggests
that the rows must be highly dissimilar so we suspect
on average that (t–1

s ) (t–1
k–2).

To deal with this, it seems reasonable to consider
what would be the case if the first k – 1 columns were
not a covering array, but instead were a random array.
With this, we can take E[(t–1

s )] as an approximation of
the number of t-tuples that will be explored in this part
of the algorithm. While it should be clear that the algo-
rithm will examine many fewer t-tuples than this
because we are dealing with covering arrays, no rigor-
ous argument for this fact is made. Using indicator ran-
dom variables we get E[(t–1

s )] = (t–1
k–1), which is much

less than the worst case bound of (t–1
k–2) in most cases.

Using S– ≈ (t–1
k–1) we get the heuristic bound of

O (r(t–1
k–1) + (t–1

k–1)) = O ( (t–1
k–1)).

For one stage of the vertical growth algorithm there
is the clear worst case bound of O (rv t(t–1

k–1)) which relies
on the fact that we are only checking values of Λ that
contain the last column. Realistically, the v t factor is an
extremely weak upper bound as most t-tuples for any
specific column tuple will be covered by the horizontal
growth stage and thus no searching throughout the rows
is performed. However, this argument doesn’t seem to
lend itself to a better analysis.

To take a covering array of k – 1 parameters to k
parameters we must combine both stages of the algo-
rithm for a combined time bound of O ( (t–1

k–1) +
rv t(t–1

k–1)). To get a total time bound for the algorithm we
must generate the covering array from t columns up to
the final k. Taking r as the final number of rows
involved in the algorithm, this gives O ( ( t

k ) + rv t( t
k )).

We can take the heuristic argument one step further
with the assumption, as suggested by experimental evi-
dence in Fig. 3 and Fig. 6, that the resulting covering
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array size meets a logarithmic bound, in particular the
bound r ≤ v t log(v t( t

k )). The approximate time bound
becomes O (v t+1 log2(v t( t

k ))( t
k ) + v2t log(v t( t

k ))( t
k )). While

this bound does not itself suggest the algorithm is fast,
experimental evidence to be presented in Sec. 5.2 does.

4. Heuristics

4.1 Modifying Horizontal Growth

One concern with computational approaches to cov-
ering array construction is their time-intensive nature.
In this section we give a modification of the presented
horizontal growth algorithm that aims to heavily reduce
the time required while still producing decently sized
covering arrays for smaller values of v, such as those
less than ten.

To achieve this claim, we look at the step where
Tc[ j, a] is updated and recall how it is this step that
dominates much of the time in the algorithm. We had to
examine (t–1

s ) t-tuples to see if they were already cov-
ered, and if not, we performed the operation of setting
Tc[ j, a] ← Tc[ j, a] + 1. It is easy to see then that Tc[ j, a]
is incremented overall by no more than (t–1

s ) and does not
decrease. By using this information in an intelligent
way we can avoid searching through any t-tuples at all.

The idea is to take Tc[ j, a] ← Tc[ j, a] + f (n, s, t – 1)
with n as the number of already extended rows and f (n,
s, t – 1) as a function that guesses how much Tc[ j, a]
should increase without performing any searching at
all. A prime candidate for f (n, s, t – 1) would be return-
ing to the idea of a random array and using En[(t–1

s )],
however this did not yield competitive covering array
sizes. For reasons as yet unexplained, simply taking
f (n, s, t – 1) = (t–1

s ), that is assuming that all t-tuples
shared between row i and j were previously uncovered,
yields competitive covering array sizes with a drastic
reduction in time. Algorithm 3 gives the pseudocode
for this approach.

Algorithm 3 Heuristic Horizontal Growth
Tc[i, a] ← 0, ∀i, a
while some row is non-extended do

Find non-extended row i and value a so that tn =
(t–1

k–1) – Tc[i, a] is maximum
if tn = 0 then

stop horizontal growth
end if
Extend row i with value a
for all non-extended rows j do

S ← set of columns where row i and j have iden-
tical entries
Tc[ j, a] ← Tc[ j, a] + (t–1

|S| )
end for

end while

4.2 Analysis

Notice that because we no longer search through any
t-tuples, we no longer need the Cov array, so our space
complexity is drastically reduced to just Θ(rv).

While the space savings are good, the particular
point that makes this approach worthwhile is the speed
gains. In particular, this sets S– = 0 in the time analysis
for the original algorithm. This allows a rigorous worst-
case bound to be set forth of O (r2v + r(t–1

k–1)) for one
stage of horizontal growth. Combining this with the
vertical growth stage over all iterations of the algorithm
we get the bound O (r2vk + r( t

k ) + rv t( t
k )).

Approximations for r are less valid here because for
larger values of v, such as those larger than 10, the
heuristic introduces too much error into the process.
However, aside from those values, this method clearly
demonstrates a fast heuristic that, as shown in Sec. 5.3,
can also produce decently sized covering arrays.

5. Implementation and Empirical Results

5.1 Implementation

IPOG is currently implemented in a software pack-
age called FireEye [8], which was written in Java. The
algorithms outlined in this paper were also implement-
ed in Java as IPO′ and IPO″, with IPO″ the version with
the heuristic horizontal growth algorithm. These imple-
mentations are currently incorporated into FireEye as
IPOG-F and IPOG-F2, respectively. Both versions of
horizontal growth use randomization to break ties in the
greedy selection. While this seems undesirable because
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it lacks the repeatability of IPOG, which is determinis-
tic, only minor differences in time and covering array
size have been observed. However, this can still be
important in a few notable cases. For example, with
t = 5, v = 2, and k = 13, the smallest known size was
previously 104 [2] but by running IPO′ many times and
taking the minimum size, the new bound of 103 was
generated. A more typical result would be around 112.
This is not a drastic gain so, if needed, one could prob-
ably fix the seed for the pseudorandom number gener-
ator and still be very confident in behavior matching
what is described in this paper.

As noted earlier, this paper will only talk about
homogeneous alphabet covering arrays. The ideas scale
to heterogeneous alphabets and the two implementa-
tions IPO′ and IPO″ can deal with these situations.
However, the performance gains described in this paper
do not seem to extend to this more general setting as
while competitive results are seen, IPOG seems to do
better.

5.2 Comparison to FireEye

In this section graphs are presented to compare
FireEye running the IPOG algorithm and IPO′. All runs
were performed on a 2.6GHz AMD Opteron machine
with 4GB of RAM allocated to the programs. The fol-
lowing graphs compare FireEye and IPO′ only for the
case t = 3 and v = 3, but these results are representative
of the many runs observed for small values of t and v.

Figure 1 shows the amount of time IPO′ takes to gen-
erate each covering array. This time is rather modest.

Figure 2 takes the IPO′ time as a normalizing factor for
the time spent running FireEye for the same situation
which gives a speedup ratio for IPO′. This ratio is
greater than 1 except when k = 4 and greater than two
for k ≥ 8. The ratio is significantly large for even mod-
est values of k and is clearly increasing with k. The
largest speedup ratio in this graph, 281, clearly shows
the advantages of IPO′.

Figure 3 shows the sizes of the resulting covering
arrays from IPO and IPO′. It is important to note that
IPO′ seems to maintain around a 5 % smaller covering
array when compared to FireEye. This 5 % is important
because it allows IPO′ to produce the smallest covering
arrays in the literature [2] for k ≥ 208. This fits with the
intuition that by searching a larger space, IPO′ can
achieve a more optimal result. These graphs show that
IPO′ has both a time and optimality advantage for t = 3
and v = 3. Similar results have been seen in all situa-
tions observed thus far.

IPOG, and its implementation FireEye, have already
shown to be competitive in both time and size compar-
isons with other algorithms so these results suggesting
that IPO′ performs better than FireEye speaks well to
its performance in general. We compare FireEye and
IPO′ to the DDA, the Deterministic Density Algorithm
[1]. For t = 2, v = 4 and k = 100, IPO′ gave a covering
array of size 53 in 0.6 seconds. FireEye gave a cover-
ing array of size 54 in 2.3 seconds. DDA is reported to
give an array of size 51 in 24.9 seconds. While IPO′
may not give the best array size, the time savings are
significant.
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Fig. 1. Execution time for t = 3, v = 3.

Fig. 2. Time comparisons for t = 3, v = 3.



5.3 Heuristic Performance

It has been shown that IPO′ is very efficient, but for
extremely large covering arrays such as when t = 6, it
still requires more time than might be feasible. The
heuristic from above was theoretically shown to be
much faster than the original idea. By implementing the
heuristic as IPO″, we have observed that it is competi-
tive in size for small values of v. We demonstrate that
fact in the case that t = 6 and v = 2. Figure 4 shows the

amount of time IPO″ takes as a function of k. In Fig. 5
we show the time IPO′ took normalized by execution
time IPO″. With these two graphs we see that the
heuristic offers major time savings. While the time sav-
ings are important, it is also key that this gain does not
drastically increase the size of the resulting covering
array. In Fig. 6, the array sizes are shown. This graph
shows how in this case the covering array resulting
from the heuristic is not significantly larger than the
array produced by the original idea. This suggests that
the guess of taking Tc[ j, a] ← Tc[ j, a] + (t–1

s ) is a good
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Fig. 3. Size comparisons for t = 3, v = 3.

Fig. 4. Execution time for t = 6, v = 2. Fig. 5. Time comparisons for t = 6, v = 2.



one and not too far from the actual value. It is worth
noting that for larger values of v, the error introduced
by our guess was too much to be practical and can be
large enough to make IPO″ run slower than IPO′. It
should be noted that for 38 ≤ k ≤ 80 the covering arrays
generated by IPO′ are the smallest known, as compared
to [2].

5.4 Covering Array Numbers

IPO′ has been run for many small values of v and t
for as large k as possible. In many situations, for large
k, IPO′ has created the smallest known covering array
sizes, some of which have been noted already. In Fig. 7,
the results for IPO′ are compared with the best known
numbers [2] in the case that t = 4 and v = 3. Notice how
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Fig. 6. Size comparisons for t = 6, v = 2.

Fig. 7. Covering array numbers for t = 4, v = 3.



for values 52 ≤ k ≤ 500 (and for some k < 52), IPO′
gives the best known covering array size seen in the lit-
erature and further how the covering array size seems
fairly linear in this log-plot, suggesting this algorithm
does very well asymptotically. This entire data-set took
three weeks to generate but reached k = 52 in 31 sec-
onds. All of these covering arrays were saved and are
available upon request.
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