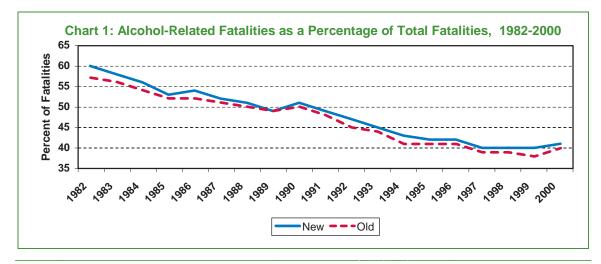
Estimates of Alcohol Involvement in Fatal Crashes

U.S. Department of Transportation National Highway Traffic Safety Administration

New Alcohol Methodology

Introduction

NCSA


The National Highway Traffic Safety Administration (NHTSA) has adopted a new method to estimate missing blood alcohol concentration (BAC) test result data. This new method, *multiple imputation*, will be used by NHTSA's National Center for Statistics and Analysis (NCSA) to improve the scope of alcohol involvement statistics generated by the Fatality Analysis Reporting System (FARS).

The old estimation method used by NHTSA calculated the chance that a driver, pedestrian or a pedalcyclist with unknown or missing alcohol results had a BAC in each of the three categories: 0, 0.01 to 0.09, or 0.10 and greater. Beginning with the 2001 data, NCSA will use multiple imputation to estimate missing BAC values in FARS. Multiple imputation offers NHTSA significant advantages over the old method in analyzing and reporting estimates of alcohol involvement. Instead of estimating alcohol involvement by the three aforementioned categories, the new method will estimate BAC along the entire range of plausible values (0 to 0.94 g/dl). **Estimating missing BAC this way will enable NHTSA to report the extent of alcohol involvement at any BAC level.**

This fact sheet is intended to inform NHTSA's partners of this methodology change, and to compare estimates of alcohol involvement using the old and new methods, as well as to address anticipated questions.

Alcohol Involvement: Comparing Estimates from the New and Old Methods

Chart 1 shows the estimated extent of alcohol-related fatalities from 1982-2000 based on the new and old methods of BAC estimation.

The overall trend of alcohol involvement is similar for the estimates from both methods. At the national level, differences between the estimates tend to be two percentage points or less. For smaller sub-populations such as states, age groups, etc., estimates from the two methods will differ. This variation can be attributed to the inherent differences in the way the two processes work and because the new method employs a more rigorous procedure of defining the relationship between BAC and the factors that predict BAC. Additionally, the sensitivity of the estimates depends on how much data is missing. The difference between the estimates produced by the two methods tends to be greater in states that have very low BAC reporting levels.

National Estimates:

Table 1 shows the estimated rates of alcohol involvement among drivers involved in fatal crashes as estimated using the two methods from 1982-2000. The numbers in Table 1 reflect the percentage of all drivers (killed or survived) who had a BAC of 0.01 or greater. Table 2 shows the percentage of all fatally injured pedestrians and pedalcyclists who had a BAC of 0.01 or greater.

Table 1: Alcohol Involvement Among Drivers in Fatal Crashes by their Survival Status: A Comparison of Estimates Using the New and Old Methods, 1982-2000*

Year	Killed		Surv	Survived		Total	
	New	Old	New	Old	New	Old	
1982	55	53	29	28	41	39	
1983	54	51	28	27	39	38	
1984	51	49	27	25	38	36	
1 9 85	49	48	23	23	35	34	
1986	50	48	25	23	36	34	
1987	48	47	23	23	34	33	
1988	47	47	22	22	33	33	
1989	46	46	20	21	31	32	
1990	46	46	23	21	33	32	
1991	45	44	21	21	31	31	
1992	43	42	19	19	30	29	
1993	41	40	18	18	28	27	
1994	38	37	18	16	27	25	
1995	39	38	16	16	26	25	
1996	38	37	16	16	26	25	
1997	36	35	15	15	24	24	
1998	36	35	15	15	24	23	
1999	36	35	14	14	24	23	
2000	37	36	16	15	26	24	

Table 2: Alcohol Involvement Among Fatally Injured Pedestrians and Pedalcyclists: A Comparison of Estimates Using the New and Old Methods, 1982-2000*

Year	Pedes	trians	Pedalcyclists			
	New	Old	New	Old		
1982	42	41	22	20		
1983	42	40	18	20		
1984	40	39	18	18		
1985	40	39	15	18		
1986	39	39	17	18		
1987	38	38	19	21		
1988	37	37	18	19		
1989	39	39	18	19		
1990	38	38	20	21		
1991	38	38	24	24		
1992	39	38	20	22		
1993	38	37	22	23		
1994	36	36	20	21		
1995	37	37	23	24		
1996	38	38	22	23		
1997	35	34	22	23		
1998	38	37	24	24		
1999	38	37	26	26		
2000	38	37	25	26		
*Based o	n 1982-10	999 Final	FARS File	e and		

*Based on 1982-1999 Final FARS Files and 2000 Annual Report File

2000 Annual Report File

The NHTSA Technical Reports cited at the end of this document offer a more technical view into the new method and have detailed tabulations of alcohol involvement in various categories (age, sex, time of day, etc.). The reports compare the estimates from both methods for each category.

State-level Alcohol Estimates:

Table 3 compares the estimates of alcohol-related fatalities by state from 1998-2000. Table 4 compares the extent of alcohol involvement among drivers involved in fatal crashes by state from 1998-2000. As shown in Tables 3 and 4, although there is a minor shift in the extent of alcohol involvement from 1998-2000 in most states, the year-to-year changes appear to be similar using both estimation methods. For example, if the extent of alcohol involvement increases each year in a given state from 1998-2000 using the old method, then this will likely be true using the new method as well.

Percentage with BAC 0.01 g/dl or Greater							
State	1998	1999	2000	State	1998	1999	2000
	New Old	New Old	New Old		New Old	New Old	New Old
Alabama	41 38	41 38	43 40	Montana	44 44	49 47	49 46
Alaska	44 45	51 52	54 52	Nebraska	38 38	43 42	38 37
Arizona	45 43	41 40	45 44	Nevada	49 49	44 45	43 45
Arkansas	35 <mark>3</mark> 1	35 <mark>3</mark> 1	34 3 1	New Hampshire	49 48	47 49	37 39
California	39 38	39 38	39 37	New Jersey	36 35	39 40	44 44
Colorado	39 37	37 35	40 38	New Mexico	46 45	45 45	49 48
Connecticut	44 43	45 45	47 46	New York	30 26	30 27	32 29
Delaware	40 39	42 40	50 49	North Carolina	36 35	38 36	39 <mark>36</mark>
DC	57 51	57 53	38 39	North Dakota	50 47	49 47	49 48
Florida	37 33	39 36	43 40	Ohio	37 33	37 35	41 38
Georgia	34 33	35 34	38 37	Oklahoma	35 33	35 33	36 34
Hawaii	49 49	45 44	43 41	Oregon	43 43	42 41	41 42
Idaho	38 34	37 36	43 41	Pennsylvania	43 42	40 38	43 41
Illinois	44 43	44 44	44 43	Rhode Island	49 48	41 41	52 <u>5</u> 1
Indiana	41 39	<u>38</u> 36	34 3 1	South Carolina	37 31	37 <u>3</u> 1	41 40
Iowa	36 37	34 33	30 28	South Dakota	41 41	44 43	48 47
Kansas	34 32	36 34	35 33	Tennessee	42 41	40 38	43 39
Kentucky	36 33	37 35	34 3 1	Texas	49 50	48 50	49 50
Louisiana	48 47	47 46	49 48	Utah	18 14	25 2 1	28 24
Maine	28 28	33 32	31 30	Vermont	38 37	39 38	41 39
Maryland	37 34	36 34	40 38	Virginia	38 37	38 36	38 37
Massachusetts	45 48	47 49	49 50	Washington	47 46	43 42	45 44
Michigan	40 39	41 40	38 <mark>37</mark>	West Virginia	42 41	38 37	45 43
Minnesota	44 43	33 32	41 41	Wisconsin	43 42	42 41	44 43
Mississippi	38 37	40 39	41 40	Wyoming	46 44	38 37	32 30
Missouri	44 45	40 40	44 44	U.S. Total	40 39	40 38	41 40

Table 3: Fatalities in Alcohol-Related Crashes: A Comparison of Estimates Using the New and Old Methods, 1998-2000*

*Based on 1998-1999 Final FARS Files and 2000 Annual Report File

		P	Percentage with BAC 0.01 g/dl or Greater						
State	1998	1999	2000	State	1998	1999	2000		
Alabama	New Old 26 24	New Old 26 24	New Old 29 26	Montana	New Old 32 32	New Old 40 38	New Old 33 32		
Alaska	32 32	35 36	40 38	Nebraska	27 27	27 27	23 23		
Arizona	26 24	22 21	26 25	Nevada	30 30	27 27	30 31		
Arkansas	20 24	22 21	20 25	New Hampshire	29 28	34 35	29 30		
California	22 19	22 22	22 21	New Jersey	29 20	22 23	24 25		
Colorado	22 21	22 22	22 21	New Mexico	29 29	22 23	24 25		
Connecticut	29 29	29 29	32 30	New York	17 15	17 15	18 16		
Delaware	21 20	21 20	31 29	North Carolina	19 18	21 19	24 21		
DC	35 32	35 32	24 24	North Dakota	36 35	35 33	39 38		
Florida	19 17	20 19	24 24	Ohio	23 20	22 21	26 24		
Georgia	20 19	20 17	22 22	Oklahoma	23 20	22 21	22 21		
Hawaii	30 29	30 29	27 25	Oregon	27 27	25 24	24 24		
Idaho	24 22	26 25	30 28	Pennsylvania	28 26	25 24	27 25		
Illinois	26 25	26 26	27 26	Rhode Island	33 32	29 29	38 37		
Indiana	26 25	23 22	22 19	South Carolina	22 18	22 18	26 26		
Iowa	22 23	21 20	19 17	South Dakota	29 27	30 30	30 29		
Kansas	23 22	24 22	23 22	Tennessee	26 25	26 25	27 25		
Kentucky	22 20	24 23	23 20	Texas	31 32	30 32	31 33		
Louisiana	30 29	31 31	32 32	Utah	12 9	18 14	19 16		
Maine	20 19	21 21	20 19	Vermont	27 26	27 26	31 30		
Maryland	20 19	20 19	21 21	Virginia	24 23	24 23	24 22		
Massachusetts	29 31	31 33	31 32	Washington	29 28	28 27	29 28		
Michigan	24 23	24 23	22 21	West Virginia	27 26	24 23	31 29		
Minnesota	27 26	20 1 <mark>9</mark>	26 26	Wisconsin	27 27	28 28	28 27		
Mississippi	27 26	26 27	28 27	Wyoming	35 34	27 26	23 22		
Missouri	28 28	26 26	28 28	U.S. Total	24 23	24 23	26 24		

Table 4: Alcohol Involvement Among Drivers Involved in Fatal Crashes: A Comparison of Estimates Using the New and Old Methods, 1998-2000*

*Based on 1998-1999 Final FARS Files and 2000 Annual Report File

Frequently Asked Questions (FAQ)

This section answers some of the most frequently asked questions about the change to the new methodology. NHTSA reports that explain the technical details of the new methodology are listed in the Further Information section at the end of this fact sheet.

- 1. What is the proportion of the cases in FARS that do not have a known BAC?
 - A. On an average, approximately 60 percent of the Blood Alcohol Concentration (BAC) values for Drivers, Pedestrians and Pedalcyclists are missing in FARS each year as a result of alcohol tests not being administered or test results not being reported.
- 2. How do you address the problem of missing information?
 - A. Imputation is the practice of 'filling in' missing data with plausible values using proven, scientific methods. The ideal scenario for any database like FARS is to have a variable (e.g., BAC) known for all the records. However, important variables are often missing from crash data, and so estimated values are used instead of unknown or blank values, enabling valid conclusions to be made.

3. Why impute Missing BAC in FARS?

A. If estimates of alcohol involvement are based only on BAC values that are reported for some persons, invalid inferences will result because the characteristics of the persons with unknown BACs can be significantly different from those with reported BACs.

4. What is Multiple Imputation (MI)?

A. MI is a proven technique in which each missing value in a dataset is replaced by more than one simulated version using rigorous statistical techniques. These techniques establish the inter-relationships between the characteristics (variables) of cases with reported values. These relationships are then applied on the same set of variables in the cases where the missing values are to be imputed. Multiple values of the missing item are then generated.

5. Why use MI in FARS?

- A. For each missing BAC value in FARS, MI simulates actual values of BAC in the plausible range (0<=BAC<=0.94). This makes it possible to analyze the extent of alcohol involvement at any level of BAC (e.g., 0.07+, 0.08+, etc.). MI also allows for the computation of Standard Errors and Confidence Intervals, which enable NHTSA to report measures of statistical confidence about the generated estimates.</p>
- 6. Can the new estimates be used in regression analysis or other analysis? A. Yes, since the new estimates are actual values of BAC.
- 7. Why are there differences between the results from MI and the old method?
 - A. The imputation methodologies employ different statistical models to estimate missing BAC values. The old method computes the chance of involvement along definite categories (0, 0.01 to 0.09, and 0.10+) of BAC while MI imputes actual values of BAC (0 to 0.94). The MI estimates are generally between 0 to 2 percentage points higher than the estimates from the old methodology.

Conclusion

NHTSA will use the new procedure for estimating missing BAC values because of the significant analytical advantages it provides over the earlier method. Multiple imputation enables NHTSA to better support changing legislative needs such as the adoption of 0.08 as the illegal BAC level. The overall trend of alcohol involvement is similar for the estimates from both methods, though minor differences exist when estimating alcohol involvement in small sub-populations. The standard errors now available from using the new estimation method will enable NCSA to provide statistical measures of confidence about the imputed estimates.

Further Information

The following publications provide more detailed information and can be requested from NHTSA through the contact information given below:

 Rubin, D.B., Schafer, J.L., and Subramanian, R. (1998) *Multiple Imputation of Missing Blood Alcohol Concentration (BAC) values in FARS*, Report DOT-HS-808-816, National Highway Traffic Safety Administration, Department of Transportation.

(This report presents an in-depth technical view of the *multiple imputation* process and its implementation in the FARS system. Detailed specifications of the statistical models used to estimate missing BACs are provided. Examples are also given of how the new data can be analyzed and used in models.)

 Subramanian, R. (2002) Transitioning to Multiple Imputation: A New Method to Estimate Missing BAC in FARS, Report DOT-HS-809-403, National Highway Traffic Safety Administration, Department of Transportation. http://www-nrd.nhtsa.dot.gov/pdf/nrd-30/NCSA/Rpts/2002/809-403.pdf (This report has detailed tabulations of the extent of alcohol involvement from 1982 to 2000 using estimates generated with both the old and new methods. Alcohol Involvement is reported according to various categories of interest (age, sex, time of day, day of week, etc.)

Contact Information

National Center for Statistics and Analysis United States Department of Transportation National Highway Traffic Safety Administration 400 Seventh Street, S.W. Washington, DC 20590

Automated Information Request Line: 1-800-934-8517 In the Washington, D.C. area: 202-366-4198 Fax: 202-366-7078 E-mail: ncsaweb@nhtsa.dot.gov Internet Site: http://www-nrd.nhtsa.dot.gov/departments/nrd-30/ncsa/

