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Summary 
 
This research note uses two Time Series 
techniques, Holt-Winters (HW) Algorithm and 
Autoregressive Moving Average Model 
(ARMA), to predict annual motor vehicle crash 
fatalities. Bases on the monthly Fatality Analysis 
Reporting System (FARS) data from 1975 to 
2001, the estimated fatalities are 42,675 and 
42,876 respectively in 2002. These estimates are 
very close to the true counts, as compared to the 
2002 fatalities of 42,815. Incorporating the 
actual 2002 fatalities in the data series, the 
forecast values in 2003, 41,349 and 41,876, 
show a decline from the fatalities of 2002. 
 
1. Introduction 
 
Each year, the National Center for Statistics and 
Analysis (NCSA) of the National Highway 
Traffic Safety Administration (NHTSA) 
estimates fatalities in highway vehicle crashes. 
In this research note, we use an alternative 
method, time series technique, to estimate the 
fatalities in 2002 using FARS data from 1975 to 
2001 [1, 2]. This forecast value is then compared 
with the actual observation from FARS 2002. 
The annual fatalities in 2003 are also forecasted 
when the actual observation in 2002 is included 
in the analysis. Two time-series forecasting 
techniques are used: Holt-Winters algorithm and 
ARMA (autoregressive moving average) 
models. The FARS database is a national census 
of police-reported motor vehicle crashes 
resulting in fatal injuries, conducted by NCSA.  
 

2. Methodologies 
 
A time series model for the observed data {x(t)} 
is a specification of a sequence of random 
variables {X(t)} of which  {x(t)} is postulated to 
be a realization. In this work, the stationary time 

series model is an appropriate model to be used 
to perform the analysis and forecast. Definitions 
and properties of stationary time series models 
can be found in Appendix 5.1.  
   

2.1. The Holt-Winters (HW) Algorithm       
 
The Holt-Winters algorithm is an effective 
forecasting technique that has less emphasis on 
the construction of a model for the time series 
data. Three smoothing parameters, α, β and ? (∈ 
[0, 1]) are needed in this process. They can be 
fixed or be chosen in a way to minimize the sum 
of squares of the one-step errors. See Appendix 
5.2 for description of this technique. 
 
2.2. ARMA Models  
 
The family of ARMA processes plays a key role 
in the modeling of time series. In this work, the 
monthly fatality data from FARS 1975-2002 are 
used. Since the seasonality exists in the data, we 
first use lag-d differencing operator to eliminate 
the seasonal component and then fit an ARMA 
model. Appendix 5.3 shows us the definition 
and some properties of ARMA (p, q) process. 
 
3. Results 
 
3.1. Forecasts by HW Algorithm 
 
Figure 1 shows the monthly fatalities over the 
period of 1975-2002. Figure 1 and sample 
autocorrelation function (ACF), sample partial 
auto-correlation function (PACF) in Figure 2 
indicate the existence of seasonality. The Holt-
Winters algorithm is implemented to predict 
2002 fatalities. The forecast value in 2003 is also 
obtained when actual observations in 2002 are 
included in the data series. The predicted 
fatalities are 42,585 and 41,349 for 2002 and 
2003 respectively. Three optimized smoothing
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Figure 1: Monthly Fatality Series during 1975-
2002 
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Table 1: Observed and Forecast Values of Annual 
Fatalities in 2002 and 2003 by Holt-Winters 
Algorithm and ARMA Models  
 

                                   Forecast 
                  Holt-Winters        ARMA 

    
 
 
 Yr. 

 
 
  Actual 
Fatalities 

 
   a 

 
  ß 

 
   ? 

 
 Value 

        Value 
   (95% C.L.) 

 
2002 

 
   42815 

 
 .25 

 
.00 

 
 .32 

 
 42585 

        42675 
(38346, 47004) 

   
2003 

  
 .25 

 
.00 

 
 .33 

  
 41349 

        41876 
(37501, 46251)   

 
parameters in the exponential smoothing 
recursive processes are also shown in Table 1. 
 
3.2. Forecasts by ARMA Model 
 
The sample ACF and PACF for the 1975-2001 
monthly fatalities are shown in Figure 2, which 
clearly display a pattern of seasonality with 
period d=12. After applying the difference 
operator to X(t) (i.e. X(t)-X(t-d) = (1- Bd ) X(t) = 
Y(t), B is backward shift operator), we choose 
the MA(17) model (E.q. (1)) to this new 
differenced time series Y(t) (mean-corrected). 
The residual ACF and PACF and other tests 
(Ljung and Box test, the McLeod and Li test and 
the Turning Point test, etc.) show that this model 
adequately fits the time series Y(t) and the 
coefficients are significantly different from zero 
(see Appendix 5.3 for ARMA models), 
 
                Y(t)= Z(t) + ?  Ci Z(t-i)                   (1) 
                                    i 
 
with Z(t) ~ WN(0, 23106) and AICC=4077. The 
non-zero coefficients are C1 =.33, C2 =.27, C3 

=.39, C4 =.14, C5 =.25, C6 =.32, C7 =.28, C8 =.26, 

C9 =.30, C10 =.20, C11 =.27, C12 =-.58, C14 =.17, 
C16 =.29 and C17 =.21. 
 
Figure 2: Sample ACF and PACF for Monthly 
Fatality Series over 1975-2001   
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The forecast fatalities in 2002 can then be 
obtained in terms of this fitted model as  
 
        42675, 95% C.L. = (38346, 47004).       (2)          
 
where C.L. = Confidence Limit. We also get an 
adequately fitted MA (17) model (mean-
corrected) to the monthly fatalities when the 
actual observation in 2002 is included,  
 
                Y(t)= Z(t) + ?  Ci Z(t-i)                    (3) 
                                    i 
 
with Z(t) ~ WN(0, 23120) and AICC=4233. The 
non-zero coefficients are C1 =.38, C2 =.32, C3 

=.38, C4 =.17, C5 =.25, C6 =.29, C7 =.22, C8 =.23, 
C9 =.27, C10 =.19, C11 =.24, C12 =-.59, C13 =-.095, 
C14 =.11, C16 =.23 and C17 =.16. 
 
Then the forecast fatalities in 2003 is   
 
        41876, 95% C.L. = (37501, 46251).       (4)    
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4. Conclusions  
 
In this work, time series techniques are used to 
analyze the annual crash fatalities. The fatalities 
in 2002 are predicted and then compared with 
the actual observation. The forecast in 2003 is 
also implemented when the observations in 
2002 is included. The values predicted by 
ARMA models are a little bit higher than the 
ones obtained by Holt-Winters algorithm. In 
2002, both forecast values are pretty good when 
the relative forecast errors are examined.  Based 
on these two forecasts, the annual fatalities in 
2003 will decrease as compared to 2002.  
 
5. Appendix 
 
5.1. Stationary Time Series 
 
Loosely speaking, a time series model for the 
observed data {x(t)} is a specification of a 
sequence of random variables {X(t)} of which  
{x(t)} is postulated to be a realization. A time 
series {X(t), t =0, ±1, …} is said to be stationary 
if it has statistical properties similar to those of 
the “time-shifted” series {X(t+h), t=0, ±1, …} 
for each integer h. 
 
Two simple but very useful stationary models 
are IID (independently and identically 
distributed) noise and White noise. For IID 
noise, random variables X(t) are mean 0 and 
variance σ2 ( = E[X(t)2] ), specified as 
{X(t)}∼IID (0, σ2). If {X(t)} is a sequence of 
uncorrelated random variables, each with mean 
0 and variance σ2, then it is referred to as white 
noise, specified as {X(t)}∼WN (0, σ2). Every 
IID (0, σ2) sequence is WN (0, σ2) but not 
conversely.      
 
For a stationary time series {X(t)}, sample 
autocorrelation function (ACF) and sample 
partial auto-correlation function (PACF)  are 
used in choosing an appropriate model to the 
observed time series.     
  
5.2. Holt-Winters (HW) Algorithm 
   
The Holt-Winters algorithm is an effective 
forecasting technique that has less emphasis on 
the construction of a model for the time series. 

Giving time series {X(t)}, t=1,…,n from the 
following  classical decomposition model  
 
         X(t) = m(t) + s(t) + Y(t), t=1,…n,          (5) 
 
where m(t) is a trend component, s(t) is a 
seasonal component with known period d (i.e. 

s(t+d)=s(t) and ∑ =

d

j
js

1
)( =0 ) and Y(t) is a 

random noise component which is stationary 
with E(Y(t))=0. The estimated component m(t)  
and s(t) at times t=1, 2,⋅⋅⋅⋅⋅, n can be computed 
in terms of exponential smoothing recursions  
schemes. In the current study, three smoothing 
parameters, α, β (for trend component) and ? 
(for seasonal component) with α, β, ? ∈ [0, 1] 
are needed. Here, they are chosen in a way to 
minimize the sum of squares of the one-step 

errors ∑ +=

n

dj 2
(X(j)-P j-1 X(j))2, Pj is predictor 

operator. Details of the HW algorithm can be 
obtained in references [3-6]. This method allows 
the seasonal pattern to adapt over time. It is one 
of the best-known forecasting techniques in time 
series theories [7]. 
 
5.3. ARMA Models  
 
A stationary time series {X(t)} is called an 
ARMA(p, q) process if for every t  
 
X(t) =  φ1X(t-1) +…+φp X(t-p) +  
        + Z(t) + θ1Z(t-1) + …+ θq Z(t-q),            (6) 
 

where {Z(t)} ~ WN(0, σ2). {X(t)} is said to be 
an ARMA (p, q) model with mean µ if {X(t)-µ} 
is an ARMA (p, q) process defined by Eq.(6). A 
stationary solution {X(t)} of the Eq.(6) exists if 
and only if φ(z)=1- φ1z - … - φp z p ≠ 0 , ∀ |z| =1.  
 
For pure autoregressive (AR) models, the Yule -
Walker algorithm is used to implement the 
preliminary estimation of the models. For pure 
moving average (MA) models or mixed ARMA 
models, the Innovations algorithm is used to 
implement the preliminary estimation of the 
models. Final decisions with respect to order 
selection of the models are made on the basis of 
the Maximum Likelihood Estimator and the 
minimum AICC (bias-Corrected Information 
Criterion of Akaike) criterion.  
 
Once  a  well-fitted  model  for  a  time  series is  
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obtained, it can then be employed to predict X 
(n+h) (h>0) with known mean and auto-
covariance function in terms of the values 
{X(t)}, t=1,…,n. Refer to [3-6] for details. ITSM 
and SAS are used in the calculations.  
 
For non-stationary time series (e.g. trend or 
seasonality), ARIMA (auto-regressive integrated 
moving average) models are used. For ARIMA 
process, the classical decomposition model (i.e. 
Eq.(5)) or lag-d differencing techniques are 
employed to eliminate the trend or seasonality 
component and then a stationary time series is 

generated. In this work, we use a differencing 
scheme to eliminate the seasonal component of 
the time series and then adopt an approach of 
fitting a subset ARMA model to this differenced 
series as suggested in ACF. We did not use the 
structure (p,d,q)×(P,D,Q)s (here d is the order of 
difference to the time series and s the period of  
seasonality) and corresponding identification 
procedure for the seasonal ARIMA model 
(SARIMA) in this study [3-6]. In addition, there 
is no evidence against the stationarity of the time 
series in variance and hence no transformation 
was needed.  
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