Coffec Broak Ginaining - Fire Protection Series

Hazardous Materials: Aboveground Flammable and Combustible Liquid Tank Emergency Venting - Part 5: Calculating Wetted Area

No. FP-2013-5 January 29, 2013

Learning Objective: The student shall be able to calculate the wetted area of a variety of aboveground flammable and combustible liquid tank configurations.

Last week's Coffee Break Training FP-2013-4 explained the principle of wetted area for measuring emergency venting for atmospheric pressure flammable and combustible liquid storage tanks that rely solely on pressure-relieving devices for emergency venting. (NOTE: Aboveground tanks operating at a gauge pressure of more than 1 pound per square inch (6.9 kPa) employ different guidelines.) Once a tank's wetted area is established, the required emergency ventilation capacity can be determined from a table in National Fire Protection Association 30, Flammable and Combustible Liquids Code.

Here we reprint the table for adjusting surface area based on a tank's shape:

The wetted area of these horizontal storage tanks is based on a percentage of the tanks' surface area. (See Coffee Break Training 2006-18 for a discussion of steel tank supports.)

Aboveground Tank Type	Amount of Exposed Area for Calculation
Sphere or spheroid	55%
Horizontal tank	75%
Rectangular tank	100\%, excluding the top surface of the tank
Vertical tank	First 30 feet $(9 \mathrm{~m})$ above grade

The following formulas are used to determine the wetted area of the various tank configurations. The dimensions provided are only examples.

Sphere or Spheroid Tank Having a Radius of 18 feet (10.7 m)

Wetted area $=\left(4 \pi r^{2}\right) \times(0.55)$
Where, $\pi=3.14$, $r=$ tank radius, and $0.55=$ adjustment due to shape.
In U.S. Customary Units: $(4) \mathrm{x}(3.14) \mathrm{x}(18 \times 18) \mathrm{x}(0.55)=2,238.2 \mathrm{ft}^{2}$ wetted area
In SI Units: $(4) \times(3.14) \times(10.7 \times 10.7) \times(0.55)=790.9 \mathrm{~m}^{2}$ wetted area
Horizontal Tank Measuring 10 feet by 17 feet (3.04 by 5.18)

Wetted area $=\left[\left(\pi \mathrm{d}^{2} \div 2\right)+(\pi \mathrm{dL})\right](0.75)$
Where, $\pi=3.14$, $d=$ tank diameter, $L=$ tank length, and 0.75 = adjustment due to shape.
In U.S. Customary Units: $\left[\left((3.14) \times\left(10^{2}\right) \div 2\right)+(3.14) \times(10) \times(17)\right] \times 0.75=518 \mathrm{ft}^{2}$ wetted area
In SI Units: $\left[\left(\left(3.14 \times 3.04^{2}\right) \div 2\right)+(3.14) \times(3.04) \times(5.18)\right] \times 0.75=48.1 \mathrm{~m}^{2}$ wetted area
Wetted area $=[(\mathrm{LxW})+2(\mathrm{LxH})+2(\mathrm{WxH})]$
Horizontal Rectangular Tank
Where, $L=$ tank length, $W=$ tank width, and $H=$ tank height.
Measuring 14 by 12 by 6 feet
(4.2 by 3.6 by 1.8 m)

In U.S. Customary Units: $[(14 \times 12)+2(14 \times 6)+2(12 \times 6)]=480 \mathrm{ft}^{2}$ wetted area
In SI Units: $[(4.2 \times 3.6)+2(4.2 \times 1.8)+2(3.6 \times 1.8)]=44.6 \mathrm{~m}^{2}$ wetted area
Vertical tank calculations were provided in the previous Coffee Break Training. Subsequent Coffee Break Training items will explain ventilation requirements derived from the wetted area calculation.

