Moving Deformable Barrier Test Procedure for Evaluating Small Overlap/Oblique Crashes

> James Saunders, NHTSA Dan Parent, NHTSA Matthew Craig, NHTSA

> > SAE International

Presentation Outline

- Background
- Part 1: Vehicle Characteristics
 - Compare Oblique Vehicle-to-Vehicle to Oblique RMDB-to-Vehicle
 - Results of new vehicle design testing
 - Small Overlap / Oblique
 - Compare Small Overlap to Oblique
- Part 2: Dummy Characteristics

Background

- Bean et al, 2009: Poor structural engagement resulted in largest number fatalities, excluding exceedingly severe crashes
- Rudd et al, 2011: NASS/CIREN study showed Knee Thigh Hip AIS 3+ most frequent injuries followed by chest and lower leg
- Saunders et al, 2011: Demonstrated that the use of the current FMVSS 214 barrier was not suitable for this type of test procedure

RMDB Barrier Characteristics

All dimensions are in mm

This is a U.S. Government Work not subject to copyright protection in the U.S. It may be copied and distributed without permission and without limitation.

PAPER # 2012-01-0577

Oblique Vehicle-to-Vehicle comparison to RMDB-to-Vehicle

Bullet vehicle speed was determined to achieve a 35 mph DV, in full frontal, in the stationary vehicle

This is a U.S. Government Work not subject to copyright protection in the U.S. It may be copied and distributed without permission and without limitation.

PAPER # 2012-01-0577

Top View of VtV to RMDBtV comparison

PAPER # 2012-01-0577

Acceleration and Velocity PCb

Interior Intrusion and Exterior Crush

This is a U.S. Government Work not subject to copyright protection in the U.S. It may be copied and distributed without permission and without limitation.

PAPER # 2012-01-0577

New Model Testing

PAPER # 2012-01-0577

Constant-energy test procedure

- Moving deformable barrier impacts each vehicle at the same velocity
 - Compare results across the fleet
 - Procedure is more severe for smaller cars
 - Potential to drive convergence of vehicle front-end stiffness

Vehicle Selection

- Vehicles introduced or redesigned in 2010-2011
- Good structural rating from IIHS
- Different classes of vehicles ranging from the lightest to the heaviest
- Compare heavy vehicle with body-on-frame and uni-body design
- ▶ 8 SOI and 7 Oblique

Test Setup

PC2 SOI and Oblique Top View

PU1 SOI and Oblique Video

PC1 and SUV1 SOI Video

Velocity Traces

Small Overlap

Oblique

Intrusions

This is a U.S. Government Work not subject to copyright protection in the U.S. It may be copied and distributed without permission and without limitation.

PAPER # 2012-01-0577

AvgGs comparison between SOI and Oblique

PAPER # 2012-01-0577

Summary

- VtV to RMDBtV Comparison
 - Oblique test procedure using the RMDB as a surrogate for a vehicle was generally able to replicate VtV
- New Vehicle Study
 - DV decreased as mass of the vehicle increase
 - SOI condition did not always produce greater intrusion when compared to Oblique test procedure

Moving Deformable Barrier Test Procedure for Evaluating Small Overlap/Oblique Crashes

Part 2: Occupant Response

SAE 2012 World Congress Detroit, Michigan 4/25/2012

Presentation Overview

- Field exposure
- Description of test device (THOR)
- Vehicle-to-vehicle vs. RMDB
- Occupant response
 - SOI Kinematics
 - SOI Restraint interaction
 - SOI Injury Assessment
 - Oblique vs. SOI
- Summary

25/2012

22

Review of CIREN and NASS Cases (Rudd 2011)

- Requirements
 - Belted drivers with at least one AIS 3+ injury
 - Vehicle model year 1998 and newer
 - Front or left side damage
 - 320° < PDOF < 0°
 - No under-, over-ride

SOI

4/25/2012

- Engagement outside of left longitudinal
- Left Offset
 - Left longitudinal engaged
- AIS 3+: KTH > Chest > Head
 - Independent of mode

23

Occupant Response Assessment: THOR ATD

- THOR-NT with Mod Kit (Ridella, 2011)
 - Improvements to biofidelity, repeatability, durability, usability
- Designed to demonstrate improved biofidelic kinematics vs. Hybrid III
 - Flexible joints in thoracic and lumbar spine
 - Improved restraint interaction
- Increased measurement capability vs. Hybrid III
 - Thorax: 4-point, 3-dimensional chest deflection
 - Abdomen: 2-point, 3-dimensional lower abdomen deflection
 - Knee-thigh-hip: Acetabulum load cells
 - Lower Extremity: Upper, lower tibia loads; ankle rotations
- Limitation: Injury Assessment Reference Values (IARVs) not yet established
 - Provisional IARVs used for this study

4/25/2012

- THOR-specific IARVs to be developed 2012-2013
- Example: Rotational Brain Injury Criterion (BRIC)

This is a U.S. Government Work not subject to copyright protection in the U.S. It may be copied and distributed without permission and without limitation.

Rotational Brain Injury Criterion (BRIC)

$$BRIC = \frac{\omega_{\max}}{\omega_{cr}} + \frac{\alpha_{\max}}{\alpha_{cr}}$$

 ω = angular velocity at head CG α = angular acceleration at head CG max = maximum resultant value cr = critical value

- THOR-specific critical values determined (per Takhounts 2011)
 - Basis = 31 THOR small overlap/oblique tests

25/2012

- Result = injury risk curves
 - f(BRIC) = p(AIS 3+) and p(AIS 4+)

Critical Values	ω _{cr} (rad/s)	α _{cr} (rad/s²)
Hybrid III	46.41	39,775
THOR	63.5	19,501

SAE International

This is a U.S. Government Work not subject to copyright protection in the U.S. It may be copied and distributed without permission and without limitation.

SOI: Head Response

Test: Head Contact Locations							
		Side	Roof	Door			
Vehicle	Airbag	Curtain	Rail	Panel	IP		
PC1	Х						
PC2	Х		Х	Х	Х		
PC3	Х	Х	Х				
PC4	Х	Х					
PC5	Х						
PC6	Х	Х					
SUV1	Х	Х					
PU1	Х						
Field Injury Source (Rudd, 2011)	4%		28%		12%		

This is a U.S. Government Work not subject to copyright protection in the U.S. It may be copied and distributed without permission and without limitation.

SOI: Chest Deflections

- NASS/CIREN SOI: Chest injury sources
 - Belt: 38%
 - Door: 32%
 - Steering wheel: 16%
- SOI Tests: Chest deflection sources
 - Primarily belt interaction
 - No evidence of door contact
 - Door often deformed outward
 - Evidence of steering wheel interaction in smaller vehicles (e.g. PC2)

4/25/

27

SOI: Knee-Thigh-Hip

- 4 test exceeded acetabulum IARV
- 2 tests exceeded femur IARV
- 2 tests that exceeded acetabulum IARV did not exceed femur IARV
 - Rudd (2011) showed that over half of acetabulum injuries occurred in absence of femur injury

SOI: Lower Extremity

Max Ankle Rotation

Head response, SOI vs. Oblique

SOI (PC2)

Oblique (PC2)

This is a U.S. Government Work not subject to copyright protection in the U.S. It may be copied and distributed without permission and without limitation.

Oblique vs. SOI: Head, Chest

Oblique vs. SOI: Knee-Thigh-Hip

Peak Acetabulum Force

SOI Oblique SOI Oblique All All 3.0 3.0 2.5 2.5 ⊡ Max ⊡ Max IAV / IARV IAV / IARV 2.0 2.0 Mean+SD Mean+SD Mean Mean 1.5 1.5 Mean-SD □ Mean-SD ⊑ Min ⊑ Min 1.0 1.0 0.5 0.5 0.0 0.0

This is a U.S. Government Work not subject to copyright protection in the U.S. It may be copied and distributed without permission and without limitation.

Peak Femur Axial Force

Oblique vs. SOI: Lower Extremity

SOI Test vs. Real World

- NASS/CIREN data from case study of MY 1998 to 2009 with AIS3+ head, chest, and/or KTH
 - NASS/CIREN data represents older vehicle designs

4/25/2012

34

Oblique Test vs. Real World

- NASS/CIREN data from case study of MY 1998 to 2009 with AIS3+ head, chest, and/or KTH
 - NASS/CIREN data represents older vehicle designs

4/25/2012

35

Summary

25/2012

- RMDB test shows similar occupant kinematics to Vehicle-to-vehicle test
- SOI and Oblique test conditions show similar kinematics but different injury risk
 - Head, chest higher risk in Oblique
 - Knee-thigh-hip higher risk in SOI
 - Lower extremity similar risk in Oblique and SOI
- SOI and Oblique conditions demonstrate field injury risk
- SOI and Oblique test conditions demonstrated usability, durability, and utility of Mod Kit THOR ATD

36