Methodology for Measuring the Ability of Convex Mirrors to I mprove Rear Visibility

Dr. W. Riley Garrott
Elizabeth N. Mazzae
National Highway Traffic Safety
Administration

Outline of Presentation

- Introduction
- Objectives of Study
- Mirrors Evaluated
- Mirror FOV Measurement Methodology
- Mirror Minification Measurement Methodology
- FOV Estimation Methodology
- Summary

SA통․

I ntroduction

- Cameron Gulbransen Kids Transportation Safety Act of 2007 requires NHTSA to revise FMVSS No. 111
> Must expand rear visibility of vehicles to try to reduce backover crashes
> Multiple methods for expanding rear visibility listed in act: additional mirrors, cameras, sensors, etc.
> This study focused on additional mirrors as possible backover countermeasure

Objectives of Study

- What additional area behind vehicle does each mirror allow a driver to see?
> What is each mirror's Field-of-View (FOV)?
- What is the quality of images seen in the mirror?
> Measure minification and distortion at different locations in mirror's FOV
> Talk focuses on image minification in mirror
- What is each mirror's potential for providing an appropriate FOV for reducing backover crashes?

Mirrors Evaluated

www.nhtsa.gov

NHTSA

Three Types of Rear-Convex Mirrors

- Rear-mounted look-down mirror:
> One rear look-down mirror evaluated
- K Source C088 mounted on 2007 Honda Odyssey

www.nhtsa.gov
왙․

NHITSA

Three Types of Rear-Convex Mirrors

- Rear cross-view mirrors:
> Three rear cross-view mirrors evaluated
- ScopeOut passenger car mirror mounted on BMW 330i

- ScopeOut light truck mirror mounted on 2007 Honda Odyssey
- Toyota 4Runner OE rear cross-view mirror
www.nhtsa.gov

Three Types of Rear-Convex Mirrors

- Rear corner mirror:
> Using data measured during earlier NHTSA study
> Velvac RXV corner mirror evaluated
> Using extrapolation and interpolation to account for size differences

Mirror FOV Measurement Methodology

www.nhtsa.gov
NHTSA

Mirror FOV Measurement Method

- Visual target was a 28-inch-tall traffic cone with a 3-inch in diameter red, circular reflector sitting atop it
- The combined height of the cone and reflector was 29.4 inches
> According to CDC, simulates standing 1-year-old child

Mirror FOV Measurement Method

- Measurements performed using 50 ${ }^{\text {th }}$ percentile male driver
- Grid of 1 foot by 1 foot squares set up behind vehicle
> Extends 50 feet behind vehicle, 25 feet to each side of vehicle
- Test object moved from square-to-square
$>$ In FOV if could see all of reflector

Mirror Minification Measurement Methodology

www.nhtsa.gov

Mirror I mage Quality Assessment

- Used method developed by Satoh
> Quantitative measurements made of selected images
> Satoh related quantitative measurements to subjective ratings of image quality
- Satoh's method was basis for school bus cross-view mirror compliance test in S9 and S13 of FMVSS 111
- Two aspects of image quality:
> Distortion - How much apparent shape of objects changes when viewed in mirror
> Minification - How large objects appear when viewed in mirror
- Talk will focus on image minification

Measurement of Mirror Minification

- Used 1-year-old and 3-year old ATD's
- Pictures taken of ATD and "sizing object"
- Measurements made of apparent ATD size
- Apparent ATD size scaled using known size of "sizing object"
- Angle subtended at driver's eyes
 calculated using scaled apparent ATD size

Subjective Minification Ratings Versus Subtended Visual Angle

Level	Degree of Image Form	Degree of Image Size	Visual Angle θ (minutes)
5	Excellent	No Image small	
4	Good	Small, but no problem	50
3	Fair	Small, but possible to judge	20
2	Poor	Small and hinders judgment	10
1	Very Poor	Impossible to judge	5
0	Impossible	Impossible	3

Copied from the paper "Development of Periscope Mirror System" by Satoh, et al. www.nhtsa.gov

FOV Estimation Methodology

www.nhtsa.gov

NHTSA

General I dea for FOV Estimation

- Used Monte Carlo simulation
- Key assumptions:
> Pedestrian is oblivious to backing vehicle
- Thought to frequently be case when backover crashes occur because otherwise move out of backing vehicles path
- No true for fallen or non-mobile pedestrians
> Driver looks at rear-mounted convex mirror only one time, immediately prior to start of backing maneuver
- Currently lack data on driver usage of rear convex mirrors during backing to improve on this assumption

General I dea for FOV Estimation

- Simulated 110 by 70 foot grid of initial pedestrian locations
> Grid extends back 90 feet from rear bumper, 20 feet forward from rear bumper and 35 feet to each side of vehicle centerline
> Total of 7,700 one foot by one foot squares
- Probability of simulated backover crash calculated for each grid square
> Ran 1,000,000 Monte Carlo iterations for each square
> Due to left-right mirroring, have effectively 2,000,000 iterations per square

FOV Estimation Data Source

- Information about vehicle backing behavior from NHTSA's On-Road Study of Drivers' Use of Rearview Video Systems study used for risk estimation
> Naturalistic backing data collected for over 6,000 backing events by 37 drivers
> Vehicle distance backed and backing speed data used by Monte Carlo simulation

Description of Vehicle for Simulation

- Distance Backed - Determined by random draw from Weibull distribution
> Average Backing Distance - 33.8 ft
> Maximum Backing Distance (approximate) - 303.2 ft
- Backing Speed - Determined by random draw from Weibull distribution
> Minimum Backing Speed - 0.4 mph
> Average Backing Speed - 2.24 mph
> Maximum Backing Speed (approximate) - 7.76 mph
- Vehicle Width - Changeable simulation parameter www.nhtsa.gov

Description of Vehicle for Simulation

- Backing maneuvers frequently involve turning
- If distance backs more than 25 feet, high probability of turn. Assumed:
> 40 \% chance of turn to left
> 20 \% chance of straight back
> 40 \% chance of turn to right
- Turn begins after 25 feet of backing or 30 feet from end of back, whichever is more
- Vehicle turns up to 90° around 20 foot radius circle

Description of Pedestrian for Simulation

- Pedestrian Speed
> 33 \% of time pedestrian stationary
$>67 \%$ of time pedestrian moving is straight line at a speed determined by random draw from Weibull distribution
o Minimum Pedestrian Speed - 0.52 mph
o Average Maximum Speed - 2.964 mph
o Maximum Backing Speed (approximate) - 7.52 mph
> Above pedestrian speeds thought appropriate for 5- to 6-year-old child

Monte Carlo Simulation Normalization

- Backover crashes counted for each grid square
- Normalized crash counts by dividing by number of crashes counted for grid squares directly behind bumper in middle of vehicle
> Gives relative probability of crash for each grid square
> Since each grid square is subject to same imperfections, hope to substantially reduce effect of imperfections

Summary

- Talk has discussed methods for:
> Determining what can be seen in a rear convex mirror
> Determining quality of image (minification only) seen in a rear convex mirror
> Determining importance of being able to see various areas to left-rear, directly behind, and to right-rear of vehicle
- There is a need for data as to how drivers use rearmounted convex mirrors

Questions?

www.nhtsa.gov
NHTSA

