Development and Validation Of Hardware in the Loop (HIL) Simulation for Studying Heavy Truck Stability Control Effectiveness

Alrik L. Svenson

Research Engineer Office of Applied Vehicle Safety Research National Highway Traffic Safety Administration Washington, D.C.

SAE Heavy Truck Handling, Dynamics & Control Symposium May 5-7, 2009

Acknowledgements

University of Michigan Transportation Research Institute (UMTRI):

John Woodrooffe, Daniel Blower, Timothy Gordon, Paul Green, Brad Liu, Peter Sweatman

Meritor WABCO:

Alan Korn, Joerg Moellenhoff

NHTSA Vehicle Research and Test Center (VRTC):

Paul Grygier, NHTSA

Kamel Salaani, Transportation Research Center, Inc. Gary Heydinger, The Ohio State University

Outline

- Introduction
- Stability Control Systems Tested
- Hardware in the Loop System (HiL)
- HiL Validation
- Crash Data Review
- Scenario Development
- Determining System Effectiveness
- Linking Effectiveness to Potential Safety Benefits
- Summary

Introduction

- Project studied the potential safety benefits from stability control systems for heavy truck tractor semitrailers
- Determination of safety benefits is challenging
 - Stability control only recently introduced to heavy truck fleet
 - Limited crash exposure of technology in the field
 - Not possible to do a "before/after" study
- Hardware in the Loop (HiL) used to determine the effectiveness of stability control for common pre-crash scenarios determined from crash data.

Benefits Estimation Overview

Stability Control Systems Tested

- Roll Stability Control (RSC)
 - Senses wheel speed and lateral acceleration
 - Applies drive axle and trailer brakes when rollover is imminent
- Electronic Stability Control (ESC)
 - Includes RSC functionality
 - Also senses yaw rate and steer angle
 - Applies individual drive/steer axle brakes and trailer brakes to assist a driver in avoiding directional instabilities as a result of an understeer or oversteer mitigation process

Hardware in the Loop System

- **HiL-** hybrid of hardware and software components
- Hardware
 - Pneumatic Brake System
 - System ECU control algorithm for ABS (Baseline), RSC, and ESC
- Software
 - Truck Dynamics generates truck motion, suspension, tires, powertrain, etc.
 - Driver Model throttle, manual braking, and steering
 - Environment road geometry and surface properties

System Setup

Brake System Hardware

•Transient responses of valves

•Brake actuator

- •Air pressure dynamics
- •<u>Avoids modeling complex</u> <u>mechanical systems</u>

•Actual control unit for ABS, ESC, and RSC (Meritor WABCO systems)

System Design

•Truck dynamics with TruckSim computer simulation and Simulink for driver model

- •System kinematics (speed, acceleration, yaw rate) sent to hardware wheel speeds were converted to actual hardware magnetic pick-ups
- •ECU responds by sending braking signals, throttle disengagement, or engine brake
- •Pressure measured from hardware, sent to TruckSim to determine brake torque from a 3-D look-up table (pressure-speed-torque)

Trucksim Model Based On Measured Heavy Tractor-trailer System

HiL Validation

- Simulation results compared to ramp steer maneuver (RSM) experimental data collected at NHTSA VRTC
- Maneuver speed was increased incrementally in HiL until rollover occurred
- HiL simulations are based on models with differences in tires, suspensions, and compliances used on the actual truck
 - Exact match between test data and simulation was not possible
 - Track data were useful for qualitatively checking the response of the HiL
 - Constant speed maintained by driver model vs. dropped throttle in experimental data.

Ramp Steer Maneuver

RSM Video

HiL Simulations

- Simulations are valid for predicting the onset of rollovers (typically > 6°)
- LTR (Load Transfer Ratio) is used for rollover potential

$$LTR = \frac{\left| \sum_{Left} F_{Ni} - \sum_{Right} F_{Ni} \right|}{\sum_{Left} F_{Ni} + \sum_{Right} F_{Ni}}$$

 0<=LTR<=1, a value of 1 is a complete rollover, 0.9 is typically an onset of rollover

RSC Simulation Results

ESC Simulation Results

RSC-Baseline Experimental Results: 2006 Freightliner

ESC-Baseline Experimental Results: 2006 Freightliner

Crash Data Review

- Large Truck Crash Causation Study (LTCCS)
- 963 Crash cases including 1128 vehicles
- 113 Rollover relevant
- Cases give detailed information about crash events
 - Scene diagram
 - Detailed narrative
 - Detailed coded crash events
 - Physical configuration of the vehicle (weights, lengths, axle count, cargo weight and type, etc.)
- Typical crash situations were selected for simulation

Example LTCCS Rollover Case

Road curved Dry surface Cargo: loaded

3-axle tractor pullingvan trailer31,000 lbs cargo61,800 gross weightSpeed: 40 mph (est.)

Scenario Development

- Road Geometries Based on LTCCS Rollover Crashes
- LTCCS Mean Curve Radii Evaluated
 - Curves with radii < 100 m i mean value 68 m</p>
 - Curves with radii > 100 m \implies mean value 227 m
- Rollover Scenarios
 - Four scenarios based on road geometries with curvatures
 - Lane change on a straight road
 - Driver changes lanes aggressively to avoid a slow or stopped vehicle
 - Constant speed maneuvers

Rollover Criteria: V

Constant Radius to Diminishing Curve

radius

Criteria: position after point C.

Rollover Criteria: V

Determining System Effectiveness

- Critical Speed V_c highest speed for which no rollover occurs
- V_c was determined for ABS, RSC, and ESC
- Effectiveness calculated as the area under the distribution curve of $\rm V_{\rm c}$

Calculating Effectiveness

Critical Speed V_c

Linking Effectiveness to Potential Safety Benefits

- Scenarios derived from pre-crash events
- Populations from national crash databases are associated for each scenario
- Effectiveness for a scenario is expressed in terms of a probability of a crash
 - Prevention ratio

Benefit Equation

B = Benefit in Terms of Reduced Number of Crashes

 $\mathbf{B} = [P_{wo}(C) - P_{w}(C)] \times \text{Exposure}$

 $P_{wo}(C) =$ Probability of Crash Without Technology

 $P_{w}(C) =$ Probability of Crash With Technology

Exposure = All Trucks in the Population

Benefit Equation For a Given Crash Scenario, S

Summary

- HiL system developed at UMTRI provided an objective means for determining RSC and ESC effectiveness
- Effectiveness measures were used to determine system benefits by linking crash data from national databases
- Methodology provided a means to determine safety benefits for a technology with limited exposure data

Upcoming Publications

- Paper in 21st International Technical Conference on the Enhanced Safety of Vehicles Conference (ESV) - International Congress Center Stuttgart, Germany, June 15–18, 2009.
- NHTSA Final Report on safety benefits of stability control available in late 2009.

For Further Information

Website: www.nhtsa.gov

Thank You

