Government / Industry Brake Research, Rulemaking and Technologies – CV102

1 10 horselfe

Safety Benefits of RSC and ESC for Tractor Semitrailers

Alrik L. Svenson National Highway Traffic Safety Administration Office of Applied Vehicle Safety Research Washington, D.C.

SAE Commercial Vehicle Engineering Congress & Exhibition Rosemont, IL October 6, 2009

Acknowledgements

<u>University of Michigan Transportation</u> <u>Research Institute (UMTRI):</u>

John Woodrooffe, Daniel Blower, Timothy Gordon, Paul Green, Brad Liu, Peter Sweatman

Meritor WABCO:

Alan Korn, Joerg Moellenhoff

Introduction

- Tractor semitrailer combination vehicles
 - Approximately 75% of large truck fatal crashes annually
 - Comprise 65% of Vehicle Miles Traveled (VMT)
 - Initial industry focus for heavy vehicle stability systems
- UMTRI studied the potential safety benefits from stability control systems for tractor semitrailers
- Determination of safety benefits is challenging
 - Stability control only recently introduced to heavy truck fleet
 - Limited crash exposure of technology in the field
 - Not possible to do a "before/after" study

Study Methodology

- Crash Problem Definition
 - Analysis of National Crash Databases and Fleet Data to Determine:
 - Global crash population
 - "Addressable" crash population
- Develop Representative Crash Scenarios
 - Large Truck Crash Causation Study (LTCCS)
- Determine Effectiveness of RSC and ESC
 - Hardware in the Loop (HIL)
 - Engineering judgment
 - Expert panel analysis
- Calculate Safety Benefits

Methodology Overview

Crash Data Analysis

- General Estimates System (GES)
 - Nationally-representative
 - Coded from police reports
 - All crash severities
- Trucks in Fatal Accidents (TIFA)
 - Census of truck fatal crash involvements
 - Supplements FARS
 - Configuration & crash detail
- Large Truck Crash Causation Study (LTCCS)
 - K, A, or B crash severity
 - Rich detail about pre-crash events and truck configuration

Crash Problem Definition for Tractor Semitrailers

	Crashes⁺	Injuries⁺	Property Damage Only (PDO)⁺	Fatalities*	
Total (per year)	178,001	58,714	351,722	3,329	
Addressable by Stability Control					
Rollover	6,874	4,873	3,655	197	
Loss of Control	4,350	1,673	4,023	58	

* Source: GES 2000-2004 * Source: TIFA 2000-2004

LTCCS Data Review

- LTCCS contains 963 crashes including 1128 vehicles
- 113 Rollover relevant
- 46 Loss of control relevant
- Provides detailed information about crash events
 - Scene diagram
 - Detailed narrative
 - Detailed coded crash events
 - Physical configuration of the vehicle (weights, lengths, axle count, cargo weight and type, etc.)
- 22 crash cases selected for HIL simulation
- Remainder of cases reviewed by an expert panel

Determining Effectiveness of RSC/ESC

- RSC and ESC effectiveness (%) was determined separately for all relevant LTCCS cases
- Rollover
 - For rollovers that occurred after 100 m into the curve
 effectiveness of 95% was assigned
 - Rollovers that occurred before 100 m into the curve evaluated by HIL simulation
 - Rollovers that occurred near the start of the curve evaluated by expert panel
- Loss of Control
 - All cases evaluated by expert panel

Determining Effectiveness by HIL

- Critical Speed (V_c) highest speed for which no rollover occurs
- V_c was determined for ABS, RSC, and ESC
- Effectiveness calculated from a distribution of V_c from field data.

Determining Effectiveness by Expert Panel

- Panel members observed test track handling maneuvers to gain insight into behavior of the RSC/ESC for tractor semitrailers
- Systematic process of scoring 15 factors from the case including:
 - Vehicle speed / road surface / weather conditions
 - Driver braking and steering inputs, and physical condition
 - Indication of oversteer / understeer
 - Would the event trigger the system algorithm?
- Upon review of all factors final effectiveness was assigned

Linking Effectiveness to Potential Safety Benefits

- Scenarios classified by:
 - Road alignment (straight, curve)
 - Road surface condition (dry, not dry)
- RSC and ESC effectiveness calculated separately for each scenario
- GES/TIFA Crash populations associated for each scenario
- Benefits = Crash Population x Effectiveness

Potential Crash Benefit of RSC

Scenario	Crash Population*	Estimated Effectiveness (%)	Benefit (Crash Reduction)
Roll, curve, dry	3783	71.15	2692
Roll, curve, not dry	403	45.56	184
Roll, straight, dry	2480	16.36	406
Roll straight, not dry	207	0	0
LOC, curve, dry	572	14.00	80
LOC, curve, not dry	767	11.54	89
LOC, straight, dry	1207	0.56	6
LOC, straight, not dry	1802	1.76	32
*Source: GES, TIFA 2000-2004 Total			3,489

Potential Crash Benefit of ESC

Scenario	Crash Population*	Estimated Effectiveness (%)	Benefit (Crash Reduction)
Roll, curve, dry	3783	75.05	2840
Roll, curve, not dry	403	55.56	224
Roll, straight, dry	2480	21.14	524
Roll straight, not dry	207	0	0
LOC, curve, dry	572	31.57	181
LOC, curve, not dry	767	39.62	304
LOC, straight, dry	1207	17.78	215
LOC, straight, not dry	1802	20.59	371
*Source: GES, TIFA 2000-2004 Total			4,659

Total Benefits For RSC and ESC

Total Annual Population Rollover and Loss of Control*		Potential Benefits	
		RSC	ESC
Crashes	11,224	3,489	4,659
Fatalities	255	106	126
Total Non Fatal	14,233	4,384	5,909

*Source: GES, TIFA 2000-2004

Percentage of Benefits Derived From RSC and ESC

Summary

- Study provided a means for determining safety benefits of RSC and ESC using available data
- Both RSC and ESC show positive net safety benefits
- ESC provides greater benefits than RSC
- Final report available on NHTSA website in October 2009

For Further Information

Website: www.nhtsa.gov

Thank You

