

Lane Departure Warning Systems

May 9, 2005

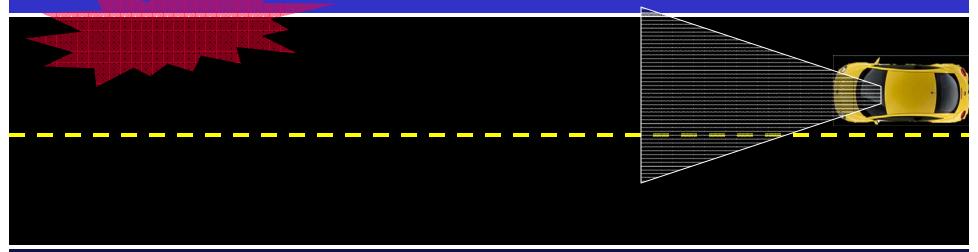
Frank S. Barickman

National Highway Traffic Safety Administration Vehicle Research and Test Center

Problem

- Lane departure is a precursor to many crashes!
- Traffic Safety Facts 2004
 - 38,253 Fatal Crashes
 - 15,124 (40%) Single Vehicle Fatal Crashes, relation to roadway as Off Roadway, Shoulder, or Median
- Additional benefits from LDW may be realized from a possible reduction in head on collisions.

Past NHTSA LDW Work


- Run-Off-Road Collision Avoidance Using IVHS Countermeasures – CMU / Assistware (1994)
- IVI Gen 0 Field Operational Test Mack Truck
- Road Departure Collision Warning Systems FOT UMTRI / Visteon / Assistware
- Numerous programs looking at various research issues with LDW
 - VRTC Driver behavior, lane keeping performance
 - Johns Hopkins Warning algorithm development
 - NIST Objective test procedures
 - VOLPE Crash data analysis, FOT evaluation

LDW - Definition

- Lane Departure Warning (LDW) systems
 - Advanced technology that can help prevent crashes resulting from an unintentional drift of the vehicle out of its travel lane.

LDW is NOT

- Curve Speed Warning (CSW) technology that warns that you are traveling too fast for an upcoming curve
- Road Departure Warning (RDW) technology warns that you are about to depart the road; can consist of both LDW and CSW.
- Lane Keeping Support (LKS) extension of LDW technology that actively keeps the vehicle within the lane by counter steering the vehicle

ESC and LDW

- ESC and LDW both can reduce the number of single vehicle road departure crashes.
- LDW helps drivers who do not steer where ESC helps drivers that are steering

LDW Market History

- LDW and LKS available in Japan as OE in the early 2000s from multiple Japanese manufactures
- LDW available in North America and Europe by 2 OEMs in 2005 (1 OEM in NA and 1 in Europe)
- LKS available in Europe by 1 OEM in 2006
- LDW has been available in heavy trucks and as aftermarket equipment from 2 OE suppliers since early 2000's

Note: all above systems are optical based

Vehicle-Based LDW Technology

Optical

 Uses a forward looking or downward looking optical sensor with image processing algorithms to determine where the lane edge lines are located.

• GPS

 Uses high accuracy GPS position data combined with a high resolution map database.

Vehicle-Based LDW Technology Optical Technology

- Used in all of today's OEM systems
- Typically uses a forward looking CMOS or CCD video camera (one known system uses sensors looking down at the road)
- Lane lines or road features are extracted to calculate lateral vehicle position, lateral velocity, and lane width (all in respect to the lane lines)
 - Pros
 - Uses today's existing infrastructure
 - Easily adapts to road changes (new lines for construction, road design changes, etc)
 - Camera can be used for other assistance systems
 - Cons
 - Trouble operating with poor or no lane lines
 - Low sun angle, snow, fog, oncoming headlights, and other environmental factors can effect system availability
 - These may be conditions where users would rely more on an LDW system

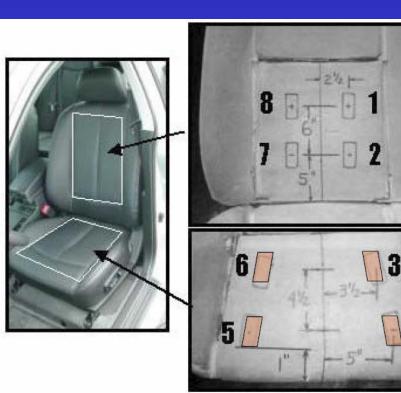
Vehicle-Based LDW Technology GPS

- High accuracy GPS position data is compared to a detailed map data base to determine where the vehicle is within the lane
- Dynamic GPS accuracy is getting better (4-6 inches on the high end equipment).
 - Pros
 - Works in all weather conditions bright sun, rain, snow, fog, etc.
 - Many additional uses for sensor (CSW, Route Nav, ACN, etc.)
 - Cons
 - Requires very highly detailed map databases that must be continuously updated for high availability
 - Updates would require DSRC or similar infrastructure
 - GPS dropouts from bridges and other objects may affect availability

www.nhtsa.dot.gov

people savi

LDW User Interface


- Very important for LDW
- Needs to be effective in modifying the drivers behavior yet benign enough not to 'annoy' the driver (nuisance alarms)
- Do not want to confuse the driver
- Sensing systems could be 100%, yet system effectiveness could 0% if the warning does not elicit the correct response from the driver

LDW User Interface

www.nhtsa.dot.gov

- Auditory Alert
 - Rumble Strip sound
 - Buzzer, chime, etc.
- Visual Alert
- Haptic Alert

NHTSA and LDW

- RDCW FOT just completed
 - UMTRI / Visteon / Assistware
 - 10 Vehicles with RDCW
 - Lateral Drift Warning (Optical)
 - Curve Speed Warning (GPS)
 - Sensors to determine road side objects
 - 78 drivers (balanced age / gender)
 - 4 weeks (1 baseline, 3 RDCW enabled)

Preliminary FOT Findings

- Drivers with LDW alerts displayed:
 - Reduced their lane position variation, including the frequency of travel near, or beyond, a lane edge.
 - Increased their use of turn signals in lane changes.
 - Responded favorably to LDW and its effects.
- Key challenge for LDW:
 - Managing the tradeoff between system availability and nuisance alert rate is the primary technical challenge for LDW.
- FOT Final Report will be available this summer.

Current LDW Work

- NHTSA is researching potential performance evaluation tests for Lane Departure Warning systems.
 - Currently holding discussions with OEMs and suppliers about LDW technology
 - Reviewing ISO and other performance tests that evaluate LDW
 - Develop maneuvers and test procedures for a performance test
 - OEM installed LDW
 - Aftermarket LDW

LDW Sensor Tests

- Under what conditions should the sensor work?
 - Roadway
 - Straight vs. Curved
 - Interstate vs. Rural Roadways
 - Environment
 - Day vs. Night
 - Low sun angle
 - Dry vs. Rain vs. Snow vs. Ice
 - Road Line Quality (optical systems)
 - How degraded can the road marking be before the system cannot track?

LDW System Tests

- What is the range of warning times sufficient to allow the driver to react correctly?
 - How accurate?
 - How repeatable?
- False Alarm Rate Tests
 - What is an acceptable rate?
- User Interface Tests

Many Challenges

For Example

- What is the "real world" availability for an LDW system?
 - 1997: VRTC study, lane tracking 62%
 - 2006: RDCW FOT, lane tracking 62% 60%
- How do we test this?
 - Many conditions cause the system to be unavailable
 - Can be technology dependent
 - What makes an optical system unavailable vs. a GPS based system is different!

Questions or comments?

frank.barickman@nhtsa.dot.gov

