

An Overview of NHTSA's 2006 Light Vehicle ESC Research Program

May 9, 2006

Garrick J. Forkenbrock NHTSA VRTC

Presentation Overview

- 2005 ESC Testing
- Understeer Mitigation Research
- RSC Research
- Concluding Remarks

2005 ESC Testing

- Work focused on developing a way to evaluate ESC performance
 - Focus was on lateral stability and responsiveness
 - Test maneuver selection
 - Creation of minimum performance criteria
- Data collection was a collaborative effort
 - NHTSA and 11 vehicle manufacturers
 - Over 62 vehicles and 128 configurations were tested
- Technical report to be released in 2006

ESC Understeer Mitigation Research at VRTC

2006 Understeer Mitigation Research Objectives

- Examine situations where excessive understeer may occur
- Identify a test maneuver(s) capable of quantifying understeer mitigation effectiveness
- Assess low friction test feasibility

Real World Situations Where Excessive Understeer May Occur

Example: Decreasing Radius Curves

I-79 to I-70 Ramp in Washington, PA

Interchange 12 in Carteret, NJ

2006 Understeer Mitigation Research Test Program

- Anticipated maneuvers
 - J-Turn
 - Closing Radius Turn
 - Slowly Increasing Steer
- Small, diverse test fleet
 - Sports car
 - Two SUVs
 - Two sedans
 - 15-passenger van

- One load configuration
 (Nominal load)
- Testing initiated April 2006

2006 Understeer Mitigation Research Testing Concerns

- ESC benefits on low friction surfaces have been documented, but are based on crash data and <u>subjective</u> test track evaluations
- Results from tests performed on low friction surfaces are prone to high test variability
- NHTSA would like to <u>objectively</u> quantify the effects of understeer mitigation so that minimum performance criteria can be developed
- Suggestions on how to resolve this problem would be greatly appreciated!

Roll Stability Control (RSC) Research at VRTC

What is RSC?

- In this presentation, "RSC" is a generic term for roll stability control
 - Note: The terms Roll Stability Control and RSC are trademarks of the Ford Motor Company
- RSC control logic is only available on vehicles equipped with ESC
- Unlike those associated with conventional ESC, RSC interventions are specifically intended to lessen body roll angle via a reduction in the lateral forces produced by the tires

How does RSC work?

- Braking introduces longitudinal wheel slip
- As this slip increases, the lateral force capability of the vehicle's tires is significantly reduced
- The reduced lateral force capability results in reduced lateral acceleration
- In an RSC intervention, significant braking occurs at the outside front corner of the vehicle

Intervention Example Ford Explorer and Lincoln Navigator

Note RF wheel lock

Note effect on path

Effect of RSC Intervention

- Since the primary objective of RSC intervention is on-road rollover mitigation, a brief loss of path-following capability is deemed acceptable
 - Vehicle dependent effect
 - NHTSA's responsiveness metric is one (albeit limited) way of objectively quantifying this effect
- Effect is being / will be researched
- Controllability of little practical use if vehicle is on two wheels!

Intervention Example 2005 Mitsubishi Montero

Note intervention effectiveness, entrance speed differences

2006 RSC Research

Objectives

- Develop an increased understanding of RSC functionality
- Assess how loading can influence RSC effectiveness
- Develop a way of identifying whether a vehicle is equipped with RSC
- Assess whether improved dynamic rollover resistance is achieved at the expense of lateral stability and/or responsiveness

2006 RSC Research

Test Program

Maneuvers

- NHTSA Fishhook
- 0.7 Hz Sine with Dwell

Four SUVs

- 2006 Jeep Grand Cherokee
- 2005 Ford Explorer
- 2005 Mitsubishi Montero
- 2005 Nissan Armada
- Four load configurations

Sine with Dwell Maneuver

www.nhtsa.dot.gov

savina pe

2006 RSC Research Anticipated Load Configurations

Nominal Load

- Instrumentation, driver, and outriggers
- Multi-Passenger Load
 - Three 175 lb water dummies
- Rear Trunk Load
 - Vehicle weight at GVWR, rear GAWR
- Roof Load
 - Ballast to maximum recommended by manufacturer
 - SSF lowered by 0.1

Concluding Remarks

- A technical report summarizing the 2005 ESC tests is presently being circulated for approval
- 2006 RSC testing will help NHTSA better understand system functionality, limitations, and the balance between on-road rollover resistance and responsiveness
- 2006 understeer mitigation research will broaden NHTSA's knowledge of ESC functionality, and facilitate a more comprehensive evaluation of ESC performance

Additional Information

- NHTSA's ESC Docket
 - http://dms.dot.gov/search/searchFormSimple.cfm
 - Docket Number 19951
- VRTC ESC Website
 - http://www-nrd.nhtsa.dot.gov/vrtc/ca/esc.htm

