NHTSA Research on Improved Restraints in Rollovers

Michael L. Sword Transportation Research Center, Inc.

SAE Government/Industry Meeting 9 May 2006 Session G3

Overview

Introduction

Introduction

- Reducing Roof Crush alone will not eliminate occupant contact with roof.
- Previous NHTSA (mid-1990's) research found reduced occupant excursion with improved restraint systems in rollover conditions.
- Few studies looking at improved restraint system effectiveness for rollover accident conditions exist.

Objective

- Evaluate the current state-of-the-art of restraint systems in a rollover condition.
- Examine Occupant Head Excursion of various restraint configurations.
- Build research data for aiding in the potential test procedure development for assessing restraint effectiveness.

Introduction

RRT Test Fixture

Introduction

RRT Overview Video

Test Protocol

- Evaluate Restraint Performance in a Rollover Scenario
- Phase I uses 50th male Hybrid III (instrumented head, neck and chest)
- Each Configuration repeated 3 times
- Use video analysis to evaluate occupant head excursion

Testing

Phase I Test Matrix

Integrated 3-Point:

No Pretensioner A

SWAP No Pretensioner **B**

Other:

4-Point with two lower anchor Pretensioners **J**

Non-Integrated 3-point:

Lower D-Ring (No Pretension) **C**

Upper D- Ring (No Pretension) D

Retractor Pretensioner E

Buckle Pretensioner F

Retractor & Buckle Pretensioner G

Motorized Pretensioner **H**

Motorized & Buckle Pretensioner

Configuration A Integrated 3 pt. Seat

 RRT_50th_A1

 Integrated (3pt)

 1/9/08

Session G3: Rollover Crashworthiness SAE Government/Industry Meeting 9 May 2006

Testing

Testing

Configuration C Non Integrated 3 pt. Seat

 PRE

 Image: Constraint of the second second

POST

Testing

Configuration J 4 Point Belt

<image>

POST

PRE

Fixture Dynamics

- Roll Rate (Goal: 315 deg/s at impact)
- Impact Force(~100000 N)
- Shock Deflection (up to 25 cm)
- Acceleration Under Seat (~50 g)
- Lap Belt Force
- Shoulder Belt Force

Static Test Pre and Post Test

Dynamic Test

Pre and Post Test

Video Analysis

Measure Dynamic Excursion 2 On Board Cameras (Low speed, 33 fps) 2 Off Board Cameras (High speed, 500 fps)

Excursion

Pre Test

Excursion

Post Test

Preliminary Results

Roll Angle

Roll Rate

Roll Rate Vs. Time

Impact Roll Rate

Average Impact Roll Rate (Deg/S) w/Std Deviation (RRT)

Phase I Test Matrix

Integrated 3-Point:

No Pretensioner A

SWAP No Pretensioner **B**

Other:

4-Point with two lower anchor Pretensioners **J**

Non-Integrated 3-point:

Lower D-Ring (No Pretension) **C**

Upper D- Ring (No Pretension) D

Retractor Pretensioner E

Buckle Pretensioner F

Retractor & Buckle Pretensioner G

Motorized Pretensioner **H**

Motorized & Buckle Pretensioner

Excursion Y-Direction

Excursion

Y-Direction

PRE IMPACT Y(IN) AND Y(OUT)

Excursion

Y-Direction

PRE IMPACT Y(IN) AND Y(OUT)

Video Comparison Pre Impact

Video Comparison Pre Impact

Excursion Z-Direction

PRE AND POST IMPACT Z

PRE AND POST IMPACT Z

Video Comparison Post Impact

Test G

Summary

- The RRT tester can provide repeatable dynamics.
- Pretensioning appears to reduce head excursion during the tests of the 50th male.
- Future studies will include different occupant sizes, restraint technologies and dynamic parameters.
- Explore a way to include a partial cab to utilize other restraint devices (Rollover Bags)

Thank You

NHTSA Research on Improved Restraints in Rollovers

Michael L. Sword Transportation Research Center, Inc. <u>mike.sword@nhtsa.dot.gov</u> 937-666-4511

