NHTSA Evaluation of the Hybrid III 10 Year Old Dummy

Jason Stammen

Vehicle Research and Test Center National Highway Traffic Safety Administration

SAE Government/Industry Meeting 2003

Overview

- Why a "10 year old" dummy?
- History/background
- NHTSA role in HIII-10C development
- HIII-10C dummy features
- VRTC evaluation program
- Future work

Why a "10 Year Old"?

- NHTSA, advocates pushing booster use
- Boosters made to protect kids up to 80 lbs
 - Meet state requirements for use
 - No dummy to test these larger CRS

Background

NHTSA's Role

- Attended/participated in SAE meetings
- Evaluated 1st prototype dummy
- Evaluating "production-intent" dummies

Dummy Description

Weight = 77.6 lbs (35.3 kg)Sitting Height = 28.5 in (72.4 cm)Theoretical Standing Height = 51 in (129.5 cm)

FEATURES:

Instrumented shoulders with more realistic shape

Dummy Description

Weight = 77.6 lbs (35.3 kg) Sitting Height = 28.5 in (72.4 cm) Theoretical Standing Height = 51 in (129.5 cm)

FEATURES:

Thoracic instrumentation optional to chest ball-slider mechanism

Dummy Description

Weight = 77.6 lbs (35.3 kg) Sitting Height = 28.5 in (72.4 cm) Theoretical Standing Height = 51 in (129.5 cm)

FEATURES:

Adjustable lumbar angle to simulate slouch posture in children

Inspection

- Received drawings from each manufacturer
 Reviewed them for completeness, accuracy
- Acquired two dummies
 - Conducted part-by-part inspection vs. drawings
- Reviewed external dimensions & weights

Component Testing

- Tested head, neck, thorax, knees, torso flex
 - SAE-proposed test procedure and response corridors (Mertz et al, 2001 Stapp)

Components within corridor, repeatable

Booster Seat Testing

- Two dummies per test
- Five seating configurations
 - Two boosters, three non-booster (upright, slouched, belt misuse)

Booster Seat Testing

	Boosters	Non-Booster (Upright)	Non-Booster (Slouch)
HIC Unlimited	653	965	1306
Neck Occipital Moment (Nm)	40 (F)	49 (E)	45 (E)
Lower Neck Y Moment (Nm)	256 (F)	375 (F)	308 (F)
Chest Deflection (mm)	39	37	36
Chest Acceleration (g)	50	54	52
Lumbar Shear Force (N)	1999	3743	4917

** (F) = Flexion (E) = Extension

Boosters make a difference

Minor durability problems solved

Vehicle Sled Testing

- 2000 Model Year Large SUV
- NCAP-derived crash pulse (25 g, 35 mph)
- Booster and non-booster situations

Booster

Vehicle Sled Testing

	Boosters	Non-Booster (Upright)	Non-Booster (Slouch)
HIC Unlimited	1188	1332	1450
Neck Occipital Moment (Nm)	44 (F)	50 (F)	39 (F)
Upper Neck Tensile Force (N)	3087	3898	4648
Chest Deflection (mm)	42	36	33
Chest Acceleration (g)	55	57	53
Lumbar Shear Force (N)	1462	2083	5494

"Submarining" = high lumbar forces Some rib delamination present

Static OOP Airbag Testing

- Durability of neck structure/instrumentation
 Setup in head and chest-to-IP
- Utility of IR-Tracc system

Static OOP Airbag Testing

Upper Neck Tensile Force (N)	4544
Upper Neck X Shear Force (N)	2395
Neck Occipital Moment (Nm)	170 (E)
Lower Neck Tensile Force (N)	4259
Chest Deflection (mm)	23
Chest Acceleration (g)	70

Neck load cells have sufficient capacity
 Neck components durable
 IR-Tracc displayed no problems

Two-Dummy R&R Testing

- Assess repeatability and reproducibility
- Rigid 213 seat, 75% energy pulse, 5 tests
 Minimize non-dummy variation

Two-Dummy R&R Testing

	Dummy #1		Dummy #2	
	AVG	CV	AVG	CV
HIC Unlimited	456	6.0%	431	3.9%
Neck Occipital Moment (Nm)	34.3	6.6%	34.8	3.6%
Lower Neck Y Moment (Nm)	186	7.9%	170	2.4%
Chest Deflection (mm)	31	5.4%	26	5.4%
Chest Acceleration (g)	41	4.4%	39	1.6%
Lumbar Shear Force (N)	1225	9.7%	1168	5.0%

Repeatability (88% of channels < 10% CV) Reproducibility (59% of channels < 10% CV)

Three-Dummy R&R Testing

Assess reproducibility

 One full dummy from each manufacturer, one with half (upper and lower torso) built by each manufacturer

• Rigid 213 seat, FMVSS 213 pulse, 4 tests

Three-Dummy R&R Testing

	AVG	CV
HIC Unlimited	539	7.6%
Neck Occipital Moment (Nm)	37.6	10.0%
Upper Neck Tensile Force (N)	1797	6.1%
Chest Deflection (mm)	32	6.6%
Chest Acceleration (g)	39	5.8%
Lumbar Y Moment (Nm)	83	5.6%
Pelvis Acceleration (g)	45	7.7%

Good reproducibility

Dummy parts are interchangeable

Summary

- Three HIII-10C conformed to drawings
- Components meet SAE corridors
- Boosters reduce head, neck, lumbar loads
- Durable in severe airbag/sled environments
- Good repeatability and reproducibility
- Mixing parts doesn't affect performance

Remaining Work

- Put dummy in a crash test environment
- Evaluate IR-Tracc more thoroughly
- Develop injury criteria

THANK YOU!!!