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Abstract This paper investigates methods for estimating the effects of natural

experiments, especially those created by an intervention or structural change occurring

at a specific point in time, such as a government policy intervention, a merger, or

the formation or disintegration of a cartel. We draw on the extensive literature of

treatment effects (Rubin, 1974; Rosenbaum and Rubin, 1983; Hahn, 1998; Heckman,

Ichimura, and Todd, 1998; Hirano, Imbens, and Ridder, 2003), but the fact that the

treatment constituted by the natural experiment may precede the measurement of

relevant covariates requires us to develop and operate within a framework ensuring

that the estimated effects of such treatments are not contaminated by confounding

biases that can otherwise easily arise. We analyze both the common dummy variable

approach to estimating the effects of interest and other more flexible methods related

to the treatment effect estimators of Hahn (1998), and Hirano, Imbens, and Ridder

(2003) (HIR). As we show, the dummy variable approach is valid only under very

strong assumptions not plausible in applications. The Hahn and HIR estimators are

more generally valid, but they can be computationally challenging and their properties

are unknown for the time-series applications of interest here. We propose a new

computationally convenient estimator for the effects of interest that shares many of

the advantages of the Hahn and HIR estimators, but whose asymptotic properties

can be straightforwardly analyzed for either time-series or cross-section applications.

Because of its computational simplicity and known properties, this alternate quasi-

nonparametric estimator should prove useful in applications. Our analytic framework

has general utility in that it provides an explicit and extensive role for economic theory

in identifying suitable and unsuitable covariates. We examine the attendant issues in

detail, both from a theoretical perspective and from an empirical perspective.
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1 Introduction

Causality has been a long-standing interest of Clive Granger. His seminal paper
setting forth the concept now known as “Granger Causality” (Granger, 1969)
has spawned a vast literature. As Clive readily points out, Granger causality
is not “true causality, whatever that is,” but he also maintains that his concept
has a key role to play in the attempt to understand causality.

Although notions of cause and effect can be challenging to define in a general
context, I believe it is possible to define satisfying notions of effect in experi-
mental contexts. Generally, economists cannot conduct experiments in the way
that laboratory scientists or clinical researchers can. Nevertheless, economists
can often observe natural experiments, that is, identifiable discrete shifts in the
economic environment, such as passage of a new law, deployment of a new in-
vention or technology, implementation of a new economic or social policy, or a
shift in industry behavior, such as a merger or the operation of a cartel. The
effects of such natural experiments are often of keen interest to economists.

Economists have become increasingly sophisticated in their approach to
measuring such effects A partial list of relevant work focusing on natural
experiments is Angrist (2002a, 2002b), Auten and Carroll (1998), Berry and
Waldfogel (2001), Bronars and Grogger (1994), Cook (2002), Deacon and Son-
stelie (1985), Deltas and Kosmopoulou (2004), Frech (1976), Hotz, Mullin, and
Sanders (1997), Kandel and Zilberfarb (1999), Metrick (1995), Meyer, Viscusi,
and Durbin (1995), Millimet and List (2003), Rosenzweig and Wolpin (1980),
Szymanski (2001), Treble (2003), and Zveglich and Rodger (2003). Useful
methodological overviews directed toward the use (and mis-use) of natural ex-
periments are given by Meyer (1995) and Rosenzweig and Wolpin (2000).

Despite the progress evident in this literature, it is still common for applied
researchers to use the familiar and convenient “dummy variable” approach. To
implement this approach in the regression context, the researcher simply in-
cludes a dummy variable equal to one for observations subject to the operation
of the natural experiment and equal to zero otherwise. The dummy variable
coefficient estimate is then interpreted as the effect of the natural experiment,
holding all other factors constant (the “ceteris paribus effect”).

As Higgins and Johnson (2003) note,

An important practical use of dummy variables occurs in litiga-
tion when damages from some alleged misconduct is at issue. Here,
it is common for the damage expert to find time periods or locations
that differ according to the presence or absence of the complained of
conduct. For example, in a price-fixing case, a cartel may be alleged
to have reigned undetected in the ‘before’ period and, after detec-
tion, to have collapsed into some form of competition in the ‘after’
period. With sufficient observations on price and on supply and de-
mand determinants in the two periods, a dummy variable approach
might be used to estimate a ‘monopoly overcharge’.

Not only “might” the dummy variable method be used, it is in fact extensively
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used in legal proceedings where damages depend on an estimate of what would
have happened but for the alleged conduct. The work of Fisher (1980) and
Rubinfeld (1985) in particular has had a lasting impact in this area. The dummy
variable method has also found application in other areas with significant public
policy import, such as merger event studies. There, the approach described
above has been applied with the ‘before’ period corresponding to pre-merger
observations and the ‘after’ period corresponding to post-merger observations,
yielding, for example, estimates of the price effects of the merger. Examples
are Vita and Sacher (2001), United States General Accounting Office (2004),
and Taylor and Hosken (2004).

Given the common application of the dummy variable method in arenas with
significant economic consequences, it is important to understand its properties
as an estimator of the effect of a natural experiment. Accordingly, our first
goal is to examine the conditions under which the dummy variable approach
consistently estimates the effect of interest. We show that the required condi-
tions are quite stringent. Higgins and Johnson (2003) provide conditions under
which this approach gives an unbiased estimate of the desired effect. We extend
their analysis not only to provide conditions under which the dummy variable
method indeed delivers a consistent estimate, but also to examine in detail what
happens when these ideal conditions fail.

Given the stringency of the conditions required for the dummy variable ap-
proach, our next goal is to provide alternative methods that will deliver consis-
tent estimates of the desired effect under much less restrictive conditions. This
approach is based on methods for estimating the “effect of treatment on the
treated” in the treatment effects estimation literature (Rubin, 1974; Rosenbaum
and Rubin, 1983; Hahn, 1998; Heckman, Ichimura, and Todd, 1998; Hirano, Im-
bens, and Ridder, 2003; see also Chen, Hong, and Tarozzi, 2004).

For an important class of natural experiments of interest here, the “treat-
ment” is a structural change occurring at a given point in time, as in the cartel
and merger event study examples. The treatment effect literature results do not
immediately apply to such cases, however, as those results apply most readily
to a cross-section of observational units (e.g., individuals) whose attributes (the
“covariates”) can be measured prior to the applied treatment and which there-
fore cannot possibly be affected by the treatment. In contrast, when a treatment
occurs at some specific point in a time series, observations on the covariates may
well occur subsequent to the treatment. Thus, particular care must be taken
to insure that the covariates do not somehow embody effects of the treatment,
as including such variables in the analysis can lead to serious distortions in the
measured impact of the natural experiment. Accordingly, we contribute to the
literature by providing in Section 2 an analytic framework in which one can
(i) explicitly account for effects operating in time; and (ii) identify channels of
indirect effect that may, if not properly handled, operate to introduce bias into
the estimation of the effect of the natural experiment.

The framework of Section 2 does more than just provide a bridge between
the existing treatment effects literature and treatments that operate in time.
By focusing explicit attention on how the dependent variable of interest (e.g.,

3



the price of a product) responds to its determining variables (e.g., underlying
cost and demand factors) and by requiring explicit recognition of which such
variables are observable and which are not, our framework not only creates an
explicit role for the operation of economic theory, but it also provides useful
insight into how to construct the covariates. In the previous treatment effect
literature, the desired effects are identified by simply assuming the existence
of a set of covariates that satisfy Rubin’s (1974) “unconfoundedness” assump-
tion, a conditional independence condition related to a certain form of Granger
non-causality. Our framework shows how such well-behaved covariates can
be constructed as “predictive proxies,” obtained as a combination of observable
determining variables and observable proxies for unobservable determining vari-
ables. Thus, even for cross-section applications where existing results apply, the
framework developed here provides useful insight into the selection of covariates.

Section 3 uses the foundation provided by Section 2 to analyze the properties
of the dummy variable approach. In Section 4 we describe alternate procedures
to estimate the effect of a natural experiment based on asymptotically efficient
semiparametric methods previously proposed in the treatment effects literature
by Hahn (1998) and by Hirano, Imbens, and Ridder (2003) (HIR).

Although the Hahn and HIR estimators are more generally valid in cross-
section applications than the dummy variable method, they are computationally
challenging (as they require non-parametric estimation) and their properties are
unknown in the time series context of interest here. In Section 5 we propose a
new computationally convenient “quasi-nonparametric” estimator that delivers
an estimate of the effect of interest as the coefficient of a dummy variable for
the treatment/natural experiment in a linear regression similar to the simple
dummy variable approach of Section 3. We establish consistency and asymptotic
normality of this estimator under conditions plausible for time series and we
compare its efficiency to the Hahn and HIR estimators. Although this estimator
is not necessarily asymptotically efficient, its computational convenience and
known properties make it appealing for applications.

Given the important role played by the predictive proxies, we devote Sec-
tions 6 and 7 to a detailed examination of their construction. Section 7 also
provides new tests of a key condition (“conditional exogeneity”) that ensures
unconfoundedness for a set of proposed predictive proxies. Section 8 contains
concluding remarks.

2 The Data Generating Process and the Effects
of Interest

A standard assumption in the treatment effect estimation literature is that the
attributes of each observational unit are not affected by the treatment. For
example, Rosenbaum and Rubin (1983, p. 42) state:

Let xi be a vector of observed pretreatment measurements or
covariates for the ith unit; all of the measurements in x are made
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prior to treatment assignment ...

By requiring the measurements to be made prior to treatment assignment, it is
guaranteed that the treatment can have no impact on the covariates.

When the “treatment” of interest is a structural change occurring at a point
in time, (e.g., the formation of a cartel or a merger event), the measurement of
the covariates may well occur occur subsequent to the treatment. Particular
care must be taken to ensure that the covariates do not somehow embody either
direct or indirect effects of treatment. In this section, we set forth an analytic
framework that permits us to explicitly account for effects operating in time and
to identify channels of indirect effect that will require proper handling. This
framework also provides the basis for defining the effects of interest here.

We begin with an economic theory specifying how the variable of interest,
Yt, is determined. In particular, we suppose this theory specifies

Yt = c(Λt,Zt), t = 1, 2, . . . ,

where Λt is an indicator variable for the natural experiment, i.e. Λt = 0 in
“regime 0” and Λt = 1 in “regime 1”; and Zt is a vector of “determining
variables” (whose elements may or may not be observable) specified by the
theory. We view Zt as stochastically generated by the operation of a relevant
set of agents and markets, and we Λt as an intervention by some agent or
collection of agents. The response function c is unknown.

Let T0 denote the regime 0 observation indexes, T0 = {t ∈ N :Λt = 0}, and
let T1 denote the regime 1 observation indexes, T1 ≡ {t ∈ N :Λt = 1}. In
time-series contexts, the observations for a given regime may or may not be
contiguous. It is convenient to write

Yt = c0(Zt) = c(0,Zt), t ∈ T0

= c1(Zt) = c(1,Zt), t ∈ T1

to represent the operation of the natural experiment.
It is then natural to define the effect of the natural experiment as

∆(z) = c1(z)−c0(z),

as this is the difference between the regimes of the natural experiment in out-
comes observed for a fixed value z of the determining variables.

This measure is in fact central to our analysis, but particular care is required.
When the determining variables may be generated subsequent to treatment, Zt
can be determined by Λt, in that economic theory entails

Zt = c(1)(Λt,Z
(1)
t )

for some function c(1), say, and variables Z(1)
t , say, determining Zt.

For example, consider a time series example in which Yt is the equilibrium
price of some product of interest, Λt = 1 indicates the operation of an al-
leged cartel, and Zt represents cost and demand shifters that determine the
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equilibrium price of the product. Then c0 represents the non-cartel price de-
termination relation (regime 0) and c1 represents the cartel price determination
relation (regime 1). Suppose that Zt contains the price of a raw material,
say Z1t, purchased by one member of the cartel from another. It is plausible
that this price is determined differently in the cartel and non-cartel regimes, so
Zt = c(1)(Λt,Z

(1)
t ) with c(1)(0,Z(1)

t ) 6= c(1)(1,Z(1)
t ). The value of Z1t will be

impacted by the cartel, and ∆(z) thus will not measure the full effect of the
cartel.

In the cartel example, interest attaches to what the price would have been
in the absence of the cartel, which requires accounting not only for the direct
effect of the cartel (through c) but also its indirect effect (through Zt). We
have

Yt = c(Λt, c(1)(Λt,Z
(1)
t ))

= c[1](Λt,Z
(1)
t ),

say. In such cases, and provided Z(1)
t is not itself determined in some way by

the cartel, the effect of interest, embodying both direct and indirect effects, is

∆[1](z(1)) = c
[1]
1 (z(1))− c

[1]
0 (z(1)),

where c[1]λ (z(1)) ≡ c[1](λ, z(1)) for λ = 0, 1.
If, on the other hand, Z(1)

t is non-trivially determined by Λt according to

Z(1)
t = c(2)(Λt,Z

(2)
t ),

a further substitution gives

Yt = c[1](Λt, c(2)(Λt,Z
(2)
t ))

= c[2](Λt,Z
(2)
t ),

The total effect accounting for direct effects and indirect effects is then

∆[2](z(2)) = c
[2]
1 (z(2))− c

[2]
0 (z(2)).

By considering whatever deeper structures underlie the variables determining
the target variable, we may eventually reach a set of markets and/or agents
sufficiently removed from the operation of the natural experiment that it plays
virtually no role in determining the variables at that level.

Let the first level of underlying determination with this property have index
k. Then Z(k)

t is neither directly nor indirectly determined by the natural
experiment, and all the effects, whether direct or indirect, are captured by

∆[k](z(k)) = c
[k]
1 (z(k))− c

[k]
0 (z(k)).

It is this total effect that will be the focus of our interest; so long as we under-
stand that Zt is neither directly nor indirectly affected by the natural experi-
ment, then we can revert to our original notation and write

∆(z) = c1(z)− c0(z).
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To state our assumption on the data generating process in a way that ac-
commodates this structure, we use the following definitions.

Definition 2.1 (Determining and Non-Determining Variables) Let
V,Z0, and Z1 be random vectors such that Z0 = f0(V,Z1) for some measur-
able function f0. If in addition there exists a measurable function g0 such
that f0(V,Z1) = g0(Z1) almost surely (a.s.), then we say that V is non-
determining for Z0 given Z1, and we call Z1 the determining
variables for Z0.

Definition 2.2 (Determining Chain; Isolatable and Isolating Vari-
ables) Suppose there exists a random vector V, random vectors Zj and func-
tions fj , j = 0, 1, . . . , such that

Zj = fj(V,Zj+1), j = 0, 1, . . . .

We call (V, {Zj , fj , j = 0, 1, . . .}) a determining chain for Z0. If there exists
k ∈ N such that for all j ≥ k V is non-determining for Zj given Zj+1, then we
say that V is (k−)isolatable and that Zk isolates V for Z0. We call V
(k−)isolatable variables, and we call Zk isolating variables for V. If V
is 0-isolatable, we call V fundamentally non-determining for Z0.

To keep our discussion succinct, we mention only in passing that the notion
of k-isolatable variables can be extended to permit degrees of isolation less than
absolute. Heuristically, the idea is that at some remove, the isolated variables
have an impact sufficiently small that they are “almost” isolated.

Our definitions permit us to consider relationships between target variables
of interest Z0 and determining variables V and Zk in which all the effects of V,
direct and indirect, are explicitly captured. Substituting gives

Z0 = f0(V, f1(V,Z1))
≡ f[1](V,Z1)
= f[1](V, f2(V,Z2))
≡ f[2](V,Z2)
= . . .

= f[k](V,Zk).

When Zk isolates V for Z0, changes in V impact Z0 only through f[k] directly;
there are no indirect effects, as V is fundamentally non-determining for Zk.

The function f[k] represents an analog of the reduced form of standard econo-
metrics. To emphasize this, we call f[k] a “determining reduced form.” One
can analogously view f0 (and f[1], . . . , f[k−1]) as a kind of structural equation,
which we call a “determining structural equation.” Just as standard systems
of simultaneous equations can be analyzed using either the structural equations
or the corresponding reduced form, so too can the effects of a natural experi-
ment be analyzed through structural or reduced form analogs. For concreteness
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and simplicity, our focus here is exclusively on the determining reduced form.
Measurement of the effects of natural experiments via determining structural
equations permits an investigation of indirect effects, but for now, adequately
treating the determining reduced form is enough to exhaust the space available.

By requiring that Zt isolates Λt for Yt, we ensure that Zt constitutes a set
of sufficient concomitants in the terminology of Dawid (2000), in that Zt fully
determines Yt and Zt is not determined by Λt. For convenience, however, we
will refer to the elements of Zt as “determining variables” (with the implicit
understanding that Λt does not determine Zt) instead of as “concomitants,” as
the former nomenclature seems more intuitive.

The requirement that Zt isolates Λt for Yt now plays a key role in enforcing
the analog of Rosenbaum and Rubin’s (1983) requirement that the covariates
be measured prior to treatment. The observable concomitants are useful co-
variates, so our requirment ensures that the natural experiment cannot impact
them. Other covariates, whose construction we discuss at length below, will
also be subject to the requirement that they are not determined by Λt.

For simplicity, we assume that the underlying determining chain for Yt is
the same for all t, and we say that Zt stably isolates Λt for Yt according to

Yt = c(Λt,Zt), t = 1, 2, . . . .

We will now leave implicit the determining chain and “isolation level,” k.
Although our use of the subscript “t” to index observations is intended to

suggest time series, our framework applies to both cross-section and time-series.
Nevertheless, requiring that Zt stably isolates Λt for Yt imposes restrictions for
time series that do not arise in cross sections. When an intervention lasts from
period τ + 1 to period n, we have

Λ1 = . . . = Λτ = 0; Λτ+1 = . . . = Λn = 1.

It follows that the requirement that Zt stably isolates Λt for Yt rules out the
presence of lagged values of Yt in Zt. To see why, suppose for simplicity that

Yt = c(Λt, Yt−1),

so that Zt = Yt−1. Then we also have

Yt−1 = c(Λt−1, Yt−2) = c(Λt, Yt−2)

for all t except t = τ + 1, so that Yt−1 cannot isolate Λt for Yt.
Note that this restriction by no means rules out applications to time series

generally. In the determining reduced form, the determining variables can
contain current and lagged values of any time series not impacted by Λt.

We emphasize that this restriction is not a defect of the general approach
taken here, but rather a consequence of the present focus on the determining
reduced form. Treating dynamic determining relationships will require working
with determining structural equations, but this is a task best deferred until the
simpler task of understanding the reduced form has been accomplished.
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We now have the concepts required to specify the data generating process.

Assumption A.1 (Data Generating Process) The observed data are
generated from a realization of the sequence of random variables (Yt,Λt, Z̃t, Z̈t),
t = 1, 2 . . ., where (Z̃t, Z̈t) stably isolates Λt for Yt according to

Yt = c(Λt, Z̃t, Z̈t), t = 1, 2, . . . ,

for some unknown measurable scalar-valued function c, where Λt is {0, 1}-
valued. For i = 0, 1, define Ti ≡ {t ∈ N : Λt = i} and assume that for all
t ∈ Ti (Z̃t, Z̈t) has joint distribution Fi, Z̈t has distribution Gi, Z̃t has joint
distribution Hi, and the conditional distribution of Z̈t given Z̃t = z̃ is G̃i(·| z̃).

We refer to T0 and T1 simply as “regime 0” and “regime 1” respectively. We
distinguish between Z̃t and Z̈t as follows. First, we treat Z̃t as observable and
Z̈t as unobservable. Second, we view the elements of Z̈t unambiguously as de-
termining variables for Yt; however, we permit Z̃t to contain non-determining
variables. As long as Λt has no impact on any non-determining variables
(which is ensured because (Z̃t, Z̈t) is isolating), then the presence of such non-
determining variables has no adverse impact. Thus, we refer to Z̈t as the
“unobservable determinants” of Yt and to Z̃t as the “included observable” vari-
ables. We may for brevity refer to (Z̃t, Z̈t) as “determinants” of Yt, but with
the understanding that some elements of Z̃t may be non-determining.

An interesting feature of the present framework is that although Λt has no
direct or indirect impact on (Z̃t, Z̈t), we nevertheless explicitly permit the joint
distribution of (Z̃t, Z̈t) to depend on Λt. We write

F0(z̃, z̈) = F (z̃, z̈ |Λt = 0)
F1(z̃, z̈) = F (z̃, z̈ |Λt = 1),

where F (· |Λt) is the conditional distribution of (Z̃t, Z̈t) given Λt. In this
context, F0 = F1 is equivalent to independence of Λt and (Z̃t, Z̈t). But there
is nothing in our requirements that can guarantee F0 = F1.

Indeed, economists should expect F0 6= F1, as whatever processes act to gen-
erate (Z̃t, Z̈t) can easily do so in such a way that their joint distribution differs
between regimes. For example, suppose that the price of natural gas is not
impacted by a cartel either directly or indirectly and that it is a determining
variable. Forces in the economy can easily yield distributions of natural gas
prices that differ between cartel and non-cartel regimes. For example, more ex-
treme weather during the cartel regime could cause the average price of natural
gas to be higher in the cartel regime.

Indeed, disentangling the effects of the natural experiment from the effects
of other factors for which F0 6= F1 is one of the most critical challenges in
measuring the effect of a natural experiment. A major focus of our attention
will thus be on handling the implications of F0 6= F1, with particular attention
directed to the separate implications of H0 6= H1 and G̃0 6= G̃1.

9



Proceeding now to consider the effect of the natural experiment, we see that
the relationship between Yt and its determinants changes with the regime shift:

Yt = c0(Z̃t, Z̈t), t ∈ T0

Yt = c1(Z̃t, Z̈t), t ∈ T1.

Thus, the effect of the natural experiment given (z̃, z̈) is

∆(z̃, z̈) ≡ c1(z̃, z̈)− c0(z̃, z̈).

Note that by virtue of the fact that (Z̃t, Z̈t) isolates Λt, this is the total effect
of the natural experiment, capturing all effects, whether direct or indirect.

We pay particular attention to certain average effects. For example, let
G̃(·|z̃) be a conditional distribution for Z̈t given Z̃t = z̃, and define

∆̃(z̃, G̃) ≡
∫

∆(z̃, z̈) dG̃(z̈|z̃).

This is the average effect of the natural experiment given (z̃,G̃), with the average
taken over the unobservable determinants, given the observable determinants.

Next, letting G̃(·|z̃) be some conditional distribution for Z̈t given Z̃t = z̃ and
H be some joint distribution for Z̃t, define

∆∗(H, G̃) ≡
∫

∆̃(z̃; G̃) dH(z̃).

∆∗(H, G̃) is the average effect of the natural experiment given (H, G̃). Of
particular interest is the case in which H = H1 and G̃ = G̃1; we write

∆∗
1 ≡ ∆∗(H1, G̃1).

In the treatment effects literature, this is the “average treatment effect on the
treated.” As this will be a main focus of interest for reasons to be elaborated
next, we will simply refer to this as the “effect of interest.”

In the cartel example, Yt is the equilibrium price of a product and Z̃t and Z̈t
are cost and demand shifters not affected by the cartel and that determine equi-
librium price. Recall that c0 represents the non-cartel price-determination re-
lationship, and c1 represents the cartel price-determination relationship. Then
∆(z̃, z̈) represents the difference in prices between the collusive and non-collusive
regimes, for any given configuration of all demand and cost shifters (“market
conditions”). This effect is not observable, as Z̈t is unobservable.

In contrast, ∆̃(z̃, G̃1) is the average price difference (collusive effect) occur-
ring given observable market conditions Z̃t = z̃, averaged over the conditional
distribution G̃1 of the unobservables of the collusive regime given Z̃t = z̃. Sim-
ilarly, ∆∗

1 is the (unconditional) average price difference (collusive effect) under
the average market conditions of the collusive regime, as the average is over
all price determinants, according to the joint distribution prevailing during the
collusive regime.
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We have

∆̃(z̃, G̃1) =
∫

∆(z̃, z̈) dG̃1(z̈|z̃)

=
∫

[c1(z̃, z̈)− c0(z̃, z̈)] dG̃1(z̈|z̃)

= µ̃1(z̃)− µ̃01(z̃),

with

µ̃1(z̃) ≡
∫
c1(z̃, z̈) dG̃1(z̈|z̃)

µ̃01(z̃) ≡
∫
c0(z̃, z̈) dG̃1(z̈|z̃).

The quantity µ̃01(z̃) is especially important in antitrust analysis, as it is the
expected “but-for” price, that is, the price that would have been expected to
have occurred given observable market conditions z̃, had the non-collusive pric-
ing relation operated under the market conditions prevailing in the collusive
regime, taking into account all effects of the cartel, whether direct or indirect.

Similarly, we have

∆∗
1 =

∫
∆(z̃, z̈) dG̃1(z̈|z̃) dH1(z̃)

=
∫
c1(z̃, z̈) dG̃1(z̈|z̃) dH1(z̃)−

∫
c0(z̃, z̈) dG̃1(z̈|z̃) dH1(z̃)

= µ1 − µ01,

with

µ1 ≡
∫
c1(z̃, z̈) dG̃1(z̈|z̃) dH1(z̃) =

∫
µ̃1(z̃) dH1(z̃)

µ01 ≡
∫
c0(z̃, z̈) dG̃1(z̈|z̃) dH1(z̃) =

∫
µ̃01(z̃) dH1(z̃).

Thus, the average effect of the collusion, ∆∗
1, is the difference between µ1, the

average collusive price in the cartel regime, and µ01, the average but-for price
in the cartel regime. Whereas ∆̃(z̃, G̃1) gives a measure of impact conditional
on Z̃t = z̃, ∆∗

1 provides a measure of overall (unconditional) average impact.

3 The Dummy Variable Approach

As noted in the introduction, a common approach to attempting to measure the
effect of a natural experiment is to estimate the “dummy variable model,”

Yt = Λtα+ Z ′
tβ + υt, t = 1, 2, . . . ,

where Λt is the dummy (indicator) for the natural experiment: Λt = 0 for
t ∈ T0, Λt = 1 for t ∈ T1; Zt = (1, Z̃t)′ is a column vector of included
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regressors, and υt is a “residual,” intended to accommodate the effect on Yt of
Z̈t, the unobservable determinants of Yt.

For simplicity, we assume the model is estimated using ordinary least squares
(OLS). The OLS parameter estimator for a sample of size n is(

α̂

β̂

)
=
(

Λ′Λ Λ′Z
Z ′Λ Z ′Z

)−1(Λ′Y

Z ′Y

)
,

where Λ is the n× 1 vector with elements Λt, Z is the n× k matrix with rows
Z ′
t, and Y is the n×1 vector with elements Yt. Standard manipulations permit

us to write α̂ and β̂ in terms of sample moments as follows:

α̂ = µ̂1 − m̂′
1β̂

β̂ = [(1− p̂1)M̂0 + p̂1M̂1 − p̂1m̂1m̂
′
1]
−1

×[(1− p̂1)L̂0 + p̂1L̂1 − p̂1m̂1µ̂1],

where the proportion of observations in regime 1 is p̂1 ≡ T1/n, with T1 the
number of regime 1 observations, T1 ≡

∑n
t=1 Λt, T0 ≡ n − T1 is the number of

regime 0 observations, and the sample moments are

µ̂1 ≡ T−1
1

n∑
t=1

ΛtYt, m̂1 ≡ T−1
1

n∑
t=‘

ΛtZt,

M̂0 ≡ T−1
0

n∑
t=1

(1− Λt)ZtZ ′
t, M̂1 ≡ T−1

1

n∑
t=1

ΛtZtZ ′
t,

L̂0 ≡ T−1
0

n∑
t=1

(1− Λt)ZtYt, L̂1 ≡ T−1
1

n∑
t=1

ΛtZtYt.

According to the standard textbook interpretation of OLS (e.g. Greene,
1993, pp. 231-232), α̂ estimates the ceteris paribus effect of the natural experi-
ment (the effect of interest) and β̂ estimates the ceteris paribus effects of all the
other included determinants. We now consider whether or not the textbook
interpretation is generally valid or plausible. We do this by giving general con-
ditions ensuring that α̂ and β̂ converge to well-defined probability limits and
then interpreting these probability limits

It is straightforward to give conditions ensuring that α̂ and β̂ converge to
well-defined probability limits. The following assumptions suffice.

Assumption A.2 (Finiteness of Moments) Let z ≡ (1, z̃)′.

(a) 0 < p1 < 1;

(b) (i) M0 ≡
∫
zz′dH0(z̃) <∞, detM0 > 0;

(ii) M1 ≡
∫
zz′dH1(z̃) <∞, detM1 > 0;

12



(c) (i) L0 ≡
∫
zc0(z̃, z̈) dG̃0(z̈|z̃) dH0(z̃) <∞;

(ii) L1 ≡
∫
zc1(z̃, z̈) dG̃1(z̈|z̃) dH1(z̃) <∞.

This assumption is mild and thus plausible. Assumption A.2(a) ensures that
when p̂1

p→ p1, then both regimes constitute a non-vanishing proportion of
the data. Assumption A.2(b) ensures that the regressors have finite and non-
singular second moments in each regime, and A.2(c) ensures that the regressor
and dependent variable cross-moments are finite in each regime.

Assumption A.3 (Laws of Large Numbers)

(a) p̂1
p→ p1;

(b) M̂0
p→M0 and M̂1

p→M1;

(c) L̂0
p→ L0 and L̂1

p→ L1.

These law of large number requirements are also mild and hold under a wide
variety of differing primitive conditions on {Λt, Z̃t, Z̈t} suitable either for cross-
section or time-series data (see, e.g., White, 2001, ch. 3). Assumptions A.2
and A.3 can be further relaxed, but we maintain them for simplicity.

Our first result follows immediately from the continuity of α̂ and β̂ as func-
tions of the sample moments and their convergence in probability.

Proposition 3.1 Given A.1 -A.3, α̂
p→ α∗ and β̂

p→ β∗, where

α∗ ≡ µ1 −m′
1β

∗,

β∗ ≡ [(1− p1)M0 + p1M1 − p1m1m
′
1]
−1

×[(1− p1)L0 + p1L1 − p1m1µ1],

with m1 ≡
∫
z dH1(z̃).

Proofs are given in the Mathematical Appendix.
Our primary focus is on α∗, as this has the standard interpretation as the

effect of interest, i.e., the ceteris paribus effect of the natural experiment. Recall
that the average effect of the treatment on the treated is

∆∗
1 = µ1 − µ01.

Comparing α∗ and ∆∗
1, we see that a necessary and sufficient condition that

α∗ = ∆∗
1, so that α∗ gives the effect of interest, is that

µ01 = m′
1β

∗.

Accordingly, we now investigate the relation between α∗ and ∆∗
1 (equivalently

µ01 and m′
1β

∗). The following result permits a comprehensive analysis.

13



Proposition 3.2 Suppose Assumptions A.1 and A.2 hold and that in addition
L01 ≡

∫
zc0(z̃, z̈) dG̃1(z̈|z̃) dH1(z̃) <∞.Then

α∗ −∆∗
1 = m′

1(β
∗
01 − β∗0) + p1(m0 −m1)′S′S(β∗1 − β∗0)

+p1(1− p1)(m0 −m1)′S′M̃−1(M̃1 − M̃0)S(β∗1 − β∗0)

=
∫
c0(z̃, z̈)(dG̃1(z̈|z̃)− dG̃0(z̈|z̃)) dH1(z̃)

+
∫
c0(z̃, z̈) dG̃0(z̈|z̃) (dH1(z̃)− dH0(z̃))

+p1(m0 −m1)′β∗1 + (1− p1)(m0 −m1)′β∗0

+p1(1− p1)(m0 −m1)′S′M̃−1(M̃1 − M̃0)S(β∗1 − β∗0),

where m0 ≡
∫
z dH0(z̃), β∗0 ≡M−1

0 L0, β∗1 ≡M−1
1 L1, β∗01 ≡M−1

1 L01. S is the
selection matrix that selects the non-constant elements of z (z̃′ = Sz), and

M̃ ≡ (1− p1)M̃0 + p1M̃1,

M̃0 ≡ S(M0 −m0m
′
0)S

′,

M̃1 ≡ S(M1 −m1m
′
1)S

′.

This gives us two contrasting conditions that make it straightforward to identify
circumstances in which the “apparent effect” α∗ coincides with the effect of
interest, ∆∗

1. Further, these expressions enable us to examine the various
roles played by different aspects of the DGP in creating a “causal discrepancy”
between the apparent effect and the effect of interest.

The second expression provides the simplest insight. From this expression
we see that when H0 = H1 and G̃0 = G̃1, then each of the five discrepancy terms
vanishes. Thus, the sufficient conditions for α∗ = ∆∗

1 evident from the second
expression is that the joint distributions F0 and F1 of the included observables
(Z̃t) and the unobservable determinants (Z̈t) are identical across regimes. We
state this result formally as follows:

Corollary 3.3 Suppose Assumptions A.1 and A.2 hold and that L01 <∞. If
in addition H0 = H1 and G̃0 = G̃1, a.s.−H1(= H0), then α∗ = ∆∗

1.

Note that α∗ = ∆∗
1 without the dummy variable model having to be correctly

specified, i.e., we do not require that for some δ∗

c1(z̃, z̈) = δ∗ + c0(z̃, z̈).
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Note also that the conditions H0 = H1, G̃0 = G̃1 are precisely what a laboratory
scientist (an “experimenter”) or clinical researcher can achieve by assigning
treatment at random (“randomization”).

In certain circumstances it may be possible to achieve H0 = H1 and G̃0 = G̃1

even without experimental control. This can occur in studies of twins (e.g.
Bronars and Grogger (1994) and Rosenzweig and Wolpin (1980)), although here
one may well find H0 6= H1 due to varying life circumstances. As it may be
possible to accomodate H0 6= H1 by suitable regression methods, this need not
be problematic.

Generally, however, there is nothing to ensure that nature, in conducting
natural experiments, does so in such a way as to assign treatment to cases at
random. Economists who cannot control the phenomena they observe (and
who lack samples of twins) must confront the fact that in general either or,
more likely, both H0 = H1 and G̃0 = G̃1 may fail. Because of this lack of
experimental control, we henceforth refer to such economists or other similarly
experimentally challenged researchers as “observers.”

Indeed, not only should economists not expect nature to perform exper-
iments in the way that they might wish, but economists should expect that
other economists may conduct analyses, especially when the effect of the natu-
ral experiment may be controversial, so as to guarantee that m0 6= m1. This
is well illustrated by the case in which antitrust damages are to be calculated.
If increases in price are the result of demonstrable changes in market condi-
tions (for example, increases in the average levels of cost and demand shifters),
then increases in price can be explained as the innocent effect of these changes,
rather than the illegal operation of a cartel. In such cases, one should expect
analyses performed on behalf of defendants in antitrust proceedings to point to
precisely such supposedly innocent effects, necessitating m0 6= m1. Proposition
3.2 then applies, and, as should be evident from this result, the researcher’s dis-
cretion over which observable variables to include (and which to exclude) when
using the dummy variable approach creates an expansive opportunity for the
manipulation of results to favor one side or the other.

Given that economists and observers generally cannot rely on nature (or
colleagues in controversy) to conveniently arrange matters so that H0 = H1

and G̃0 = G̃1, we ask whether other conditions may yet guarantee α∗ = ∆∗
1.

Such conditions are readily extracted from the first expression for α∗ − ∆∗
1 in

Proposition 3.2, from which it suffices that β∗01 = β∗0 and S(β∗1 − β∗0) = 0. The
first condition causes the first term m′

1(β
∗
01−β

∗
0) to vanish, whereas the second

causes the remaining two terms to vanish.
The following result shows what is required to deliver these conditions, when

the dummy variable model is correctly specified to a high degree.

Corollary 3.4 Suppose Assumptions A.1 and A.2 hold and that L01 <∞.

(i) Suppose further that
c0(z̃, z̈) = z′b∗ + u0(z̈)
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for some unknown finite vector b∗ and measurable function u0, such that∫
u0(z̈) dG̃0(z̈|z̃) = 0,

and that for some unknown finite scalar δ∗ we have

c1(z̃, z̈) = δ∗ + c0(z̃, z̈).

Then

β∗0 = b∗,

β∗01 = b∗ +M−1
1

∫
zu0(z̈) [ dG̃1(z̈|z̃)− dG̃0(z̈|z̃)] dH1(z̃),

β∗1 = β∗01 + S′1δ
∗,

where S1 = (1, 0, . . . , 0).

(ii) If in addition G̃0 = G̃1 a.s.−H1, then β∗0 = β∗01 and S(β∗1 − β∗0) = 0, so
that

α∗ = δ∗ = ∆∗
1.

This says that the dummy variable approach consistently estimates the effect of
interest, provided that the model is fully correctly specified and that G̃0 = G̃1.

By assuming that c0(z̃, z̈) = z′b∗+u0(z̈) and c1(z̃, z̈) = δ∗+c0(z̃, z̈), we have
the DGP

Yt = Λtδ∗ + Ztb
∗ + υt, t = 1, 2, . . . ,

This is an extremely strong assumption, as it not only imposes the restriction
that the effect of the natural experiment is an additive shift δ∗, but it also
requires: (i) that the effects of the remaining underlying variables are separable
between observables and unobservables; and (ii) that the effects of the included
observable variables must be separable and proportional. Both of these are
strong and not particularly plausible assumptions.

A standard assumption economists employ to ensure G̃0 = G̃1 is to assume
that (Λt, Z̃t) is independent of Z̈t. In this case, we have

G̃0(z̈|z̃) = G̃1(z̈|z̃) = G(z̈).

Significantly, the condition G̃0 = G̃1 does not require independence of (Λt, Z̃t)
and Z̈t. For λ = 0, 1, write

G̃(z̈|λ, z̃) = G̃λ(z̈|z̃).

The requirement that G̃0 = G̃1 can then be expressed as, say,

G̃(z̈|λ, z̃) = G̃(z̈|z̃), λ = 0, 1,
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indulging in a mild abuse of notation. This expresses the property that Z̈t is
independent of Λt given Z̃t, written

Z̈t ⊥ Λt | Z̃t.

This conditional independence property plays a key role in statistics (Dawid,
1979), and is closely related to the concept of Granger (1969) non-causality.
(See Florens and Mouchart (1982) and Florens and Fougere (1996) for detailed
discussion of this relation.) Together with correct specification, this conditional
independence condition ensures α∗ = ∆∗

1 = δ∗ = ∆(z̃, z̈), so that the dummy
variable method consistently estimates the desired effects.

Clinical investigators can ensure conditional independence by assigning treat-
ment independently of the unobservables, as we then have

dG̃0(z̈|z̃) = dG̃1(z̈|z̃) = dG̃(z̈|z̃).

The use of twins may also achieve this goal. Note that even if the investigator or
twins researcher has H0 6= H1, the correct specification of the model neutralizes
any adverse impact for α∗ = ∆∗

1.
The result of 3.4(ii) does not, however, offer much comfort to economists or

observers generally, as nature cannot plausibly be trusted to ensure the desired
conditional independence, G̃0 = G̃1. The conditions of Corollary 3.4 also
require correct specification to a high degree. Our next result shows that
correct specification is a necessary condition when H0 6= H1, as α∗ is no longer
consistent for ∆∗

1 when the dummy variable model is misspecified in even a
modest way.

Corollary 3.5 Suppose Assumptions A.1 and A.2 hold and that L01 <∞.

(i) Suppose further that

c0(z̃, z̈) = z′b∗0 + u0(z̈)
c1(z̃, z̈) = z′b∗1 + u1(z̈)

for unknown finite vectors b∗0 and b∗1 and measurable functions u0 and u1

such that ∫
u0(z̈) dG̃0(z̈|z̃) = 0∫
u1(z̈) dG̃1(z̈|z̃) = 0.

Then

β∗0 = b∗0

β∗01 = b∗0 +M−1
1

∫
zu0(z̈)[dG̃1(z̈|z̃)− dG̃0(z̈|z̃)] dH1(z̃)

β∗1 = b∗1.
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(ii) If in addition G̃0 = G̃1 a.s.−H1, then β∗0 = β∗01 and

α∗ −∆∗
1 = p1(m0 −m1)′S′S(b∗1 − b∗0)

+p1(1− p1)(m0 −m1)S′M̃−1(M̃1 − M̃0)S(b∗1 − b∗0).

We characterize the misspecification as “mild” in that the response functions
c0 and c1 are still separable between the observables and unobservables and
linear (actually affine) in the included observable variables. Now, however, the
ceteris paribus effect of the natural experiment is not simply an additive shift
δ∗, but is instead ∆(z̃, z̈) = z′(b∗1− b∗0)+u1(z̈)−u0(z̈). The natural experiment
has the effect of changing the way that the dependent variable responds to the
underlying variables.

For cases like the natural experiment of a cartel, this situation is highly rele-
vant, as economic theory dictates that the way that equilibrium prices respond
to cost and demand shifters generally depends on the degree of competition in
the industry. For example, perfect competitors pass along 100% of cost in-
creases, whereas a monopoly (a perfect cartel) passes along less than 100% of
cost increases.

In this case, the effect of interest is

∆∗
1 = m′

1(b
∗
1 − b∗0) +

∫
u0(z̈) dG1(z̈).

But even if the observer were to somehow achieve G̃0 = G̃1, which then yields
∆∗

1 = m′
1(b

∗
1 − b∗0), we see from 3.5(ii) that the combination of H0 6= H1 and

S(b∗1 − b∗0) 6= 0 creates a wide field of possibilities for the causal discrepancy
α∗ −∆∗

1, readily subject to manipulation by interested parties.
Note that Corollary 3.5(ii) contains as a special case the analog of the first

Proposition of Higgins and Johnson (2003, p. 258), in which they establish
the unbiasedness of the dummy coefficient as an estimate of the average effect
when the linear model is correctly specified (although with differing slopes), but
the included regressors have identical means (m0 = m1). If indeed m0 = m1

with correct specification and conditional independence of Z̈t and Λt given Z̃t
(G̃0 = G̃1) then the dummy coefficient is consistent for the desired effect as a
consequence of Corollary 3.5 (ii).

The message from this analysis is that economists cannot generally rely on
the simple dummy variable approach to measure the effect of interest ∆∗

1 for a
natural experiment, much less the ceteris paribus effect ∆(z̃, z̈). In the hands
of economists, the dummy variable approach is fatally flawed, as it can be used
to manipulate the apparent effect (α∗) of a natural experiment to support a
wide range of different positions. The reason for this is the economist’s lack
of experimental control. Even if the dummy variable model were correctly
specified as a description of the natural experiment at hand, the economist is
not able to ensure G̃0 = G̃1 in the same way that an investigator or twins
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researcher can. The economist thus cannot plausibly appeal to Corollary 3.4
to claim that the causal discrepancy vanishes. Moreover, when the dummy
variable model is misspecified, as is generally the case, the economist again
cannot exercise experimental control in the same way that an experimenter
or investigator can (randomizing treatment so that G̃0 = G̃1 and H0 = H1) to
overcome the otherwise adverse impact of the misspecification. Except in highly
exceptional circumstances, the dummy variable approach yields an apparent
effect α∗ of a natural experiment that can be considerably at variance with the
effect of interest, ∆∗

1.

4 The Treatment Effects Approach

The results of Section 3 show that the dummy variable approach to measuring
the effect of a natural experiment is valid only under very strong assumptions.
Although experimenters and, in certain circumstances, clinical investigators can
ensure that these assumptions hold by virtue of their ability to randomize treat-
ment, economists and observers generally cannot rely on nature to conduct ex-
periments with the required regard for the researcher’s objectives. Thus, the
econometric folklore justifying the dummy variable approach is misleading, and
another approach must be found.

In analyzing the dummy variable approach we essentially considered whether
given statistical methods (dummy variable regression) were capable of achieving
a specified goal (consistent estimation of ∆∗

1). Here we take a direct approach
and ask what statistical methods can be brought to bear to achieve our goal.

Thus, consider estimating the average effect of the natural experiment,

∆∗
1 = µ1 − µ01,

where we recall that

µ1 ≡
∫
c1(z̃, z̈) dG̃1(z̈|z̃) dH1(z̃)

µ01 ≡
∫
c0(z̃, z̈) dG̃1(z̈|z̃) dH1(z̃).

It is easy to construct a consistent estimator for µ1. For example, one can use
the regime 1 average,

µ̂1 = T−1
1

n∑
t=1

ΛtYt.

The challenge is to estimate µ01 consistently. We saw in Section 3 that only
in very special circumstances is the estimator m̂′

1β̂ given by the dummy vari-
able approach useful for this purpose. Accordingly we seek a method that,
unlike the dummy variable approach, will not be adversely affected by model
misspecification and the failure of independence or conditional independence.

A way forward is provided by the properties of conditional expectation.
Suppose that in addition to Z̃t, we can also observe auxiliary variables W̃t,
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which we view as proxies for the unobservable determinants Z̈t. Note that
the W̃t’s are not themselves determinants of Yt, as they are observable, and all
observable determinants have already been included in Z̃t.

Let the joint distributions of (Z̃t, W̃t) be denoted H̆0 and H̆1 for regimes 0
and 1 respectively, and let the conditional distributions of Z̈t given (Z̃t, W̃t) =
(z̃, w̃) be given by Ğ0(·|z̃, w̃) and Ğ1(·|z̃, w̃) for regimes 0 and 1 respectively.
We view Ğ0 and Ğ1 as the predictive distributions of Z̈t given (Z̃t, W̃t), and we
accordingly refer to (Z̃t, W̃t) jointly as “predictive proxies” for Z̈t.

With this notation and using the properties of conditional expectation, we
have

µ01 =
∫
c0(z̃, z̈) dG̃1(z̈|z̃) dH1(z̃)

=
∫
c0(z̃, z̈) dĞ1(z̈|z̃, w̃) dH̆1(z̃, w̃).

The key to the treatment effect approach is to exploit economic theory to choose
W̃t in such a way that even though we may not have G̃0 = G̃1, we do have

Ğ0 = Ğ1 (a.s.− H̆1).

Just as G̃0 = G̃1 represents the conditional independence property

Z̈t ⊥ Λt | Z̃t,

the condition Ğ0 = Ğ1 represents the conditional independence property

Z̈t ⊥ Λt | (Z̃t, W̃t),

which for convenience we refer to as “conditional independence given predictive
proxies,” or simply CIPP. When CIPP holds, we say that the predictive proxies
ensure the “conditional exogeneity” of the treatment, or even more simply, that
conditional exogeneity holds. The modifier “conditional” serves a reminder
that the referenced property involves conditioning. The designation “exoge-
nous” indicates that certain otherwise problematic dependencies between the
treatment and the unobservables are absent.

The CIPP condition is closely related to Rubin’s (1974) “unconfoundedness”
assumption, also known as “selection on observables.” To draw the necessary
connections in a notationally compatible way, let Λ be the treatment indicator
(Λ = 1 with treatment, Λ = 0 otherwise), let Y 0 denote the outcome without
treatment, let Y 1 denote the outcome with treatment, and let X denote covari-
ates not impacted by the treatment. Assume that given any possible value x of
X, both treatment and non-treatment occur with positive probability:

0 < P [Λ = 1|X = x] < 1.

Our interest here attaches to the average treatment effect on the treated,

∆∗
1 ≡ E(Y 1 − Y 0|Λ = 1).
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Applying the law of iterated expectations gives

∆∗
1 = E(E(Y 1|Λ = 1, X)|Λ = 1)− E(E(Y 0|Λ = 1, X)|Λ = 1).

Rubin’s unconfoundedness assumption is that

(Y 0, Y 1) ⊥ Λ | X.

With this condition we have

E(Y 0|Λ = 1, X) = E(Y 0|Λ = 0, X) = E(Y 0|X),

so we can substitute in the second term of the above expression for ∆∗
1 to obtain

∆∗
1 = E(E(Y 1|Λ = 1, X)|Λ = 1)− E(E(Y 0|Λ = 0, X)|Λ = 1).

Only the second term presents a challenge, as the first term is just E(Y 1|Λ = 1).
But E(Y 0|X) = E(Y 0|Λ = 0, X) can now be identified from observations on
the untreated cases, ensuring that the effect of interest ∆∗

1 can be identified.
(see, e.g. Heckman, Ichimura, and Todd (1998) for further discussion.)

A further implication of the unconfoundedness assumption shown by Rosen-
baum and Rubin (1983) is that Y 0 ⊥ Λ | X is equivalent to

Y 0 ⊥ Λ | p(X),

where
p(x) ≡ P [Λ = 1|X = x]

is the treatment propensity score. The second term in ∆∗
1 can then also be

identified using the fact that

E(Y 0| Λ = 0, X) = E(Y 0| Λ = 0, p(X)) = E(Y 0| p(X)).

This creates significant opportunities for simplifying the analysis of effect by
conditioning on the scalar p(X) rather than on the vector X. See Rosenbaum
and Rubin (1983) and Hirano, Imbens, and Ridden (2003) for more.

It is now straightforward to relate Rubin’s unconfoundedness assumption to
conditional exogeneity. We do this simply by making the identifications

Y i = ci(Z̃, Z̈) i = 0, 1
X = (Z̃, W̃ ).

Our next result establishes that conditional exogeneity, i.e. conditional inde-
pendence given predictive proxies, implies unconfoundedness.

Proposition 4.1: If Z̈t ⊥ Λt |(Z̃t, W̃t), then (c0(Z̃t, Z̈t), c1(Z̃t, Z̈t)) ⊥ Λt |
(Z̃t, W̃t), i.e. CIPP /conditional exogeneity implies unconfoundedness.

One might ask whether CIPP is equivalent to unconfoundedness. Equiva-
lence can indeed be shown if z̈ can be expressed as a function of y0, y1, and z̃
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using y0 = c0(z̃, z̈), y1 = c1(z̃, z̈). Generally, z̈ will have to be of dimension 2 or
less for this to be possible, and although this may hold in particular instances
(e.g. additive separability of c0 and c1 between z̃ and z̈) this is not plausible for
the general case.

What, then, does conditional exogeneity add, since it is generally stronger
than unconfoundedness? The answer is that it provides insight that is particu-
larly germane to economic applications. Proposition 4.1 establishes CIPP as a
(perhaps the) natural primitive condition to ensure unconfoundedness, when the
observable and unobservable determinants of the dependent variable are explic-
itly identified. This places a clear premium on economic theory in specifying
the determining variables and on the need to carefully assess which determining
variables are observable. Further, CIPP provides important insight into what
constitute suitable covariates. Our discussion so far has suggested that suitable
covariates are not only the observable determining factors Z̃t but also observable
non-determining factors W̃t that serve as proxies for unobservable determining
factors. In Sections 6 and 7 we examine the choice of auxiliary variables W̃t

in depth. This will take us considerably beyond simply positing that some col-
lection of covariates satisfies unconfoundedness, further highlighting the central
role of economic theory in identifying the predictive proxies.

Now consider the consequences of conditional exogeneity. If Ğ0 = Ğ1,

µ01 =
∫
c0(z̃, z̈) dĞ1(z̈|x) dH̆1(x)

=
∫
c0(z̃, z̈) dĞ0(z̈|x) dH̆1(x)

=
∫
µ̆0(x) dH̆1(x),

where
µ̆0(x) ≡

∫
c0(z̃, z̈) dĞ0(z̈|x)

is the conditional expectation of c0(Z̃t, Z̈t) given Xt ≡ (Z̃t, W̃t) = (z̃, w̃) ≡ x.
It follows that one can straightforwardly obtain a consistent estimate of

µ01 by estimating µ̆0 consistently and then averaging over H̆1, the regime 1
distribution of (Z̃t, W̃t). This is the approach taken by Hahn (1998) who
estimates µ01 as

µ̂H01 = T−1
1

n∑
t=1

Λtβ̂0(Xt)

where

β̂0(Xt) ≡
Ê[(1− Λt)Yt|Xt]

1− Ê[Λt|Xt]
,

with Ê a nonparametric estimator of the indicated conditional expectation.
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Hahn’s estimator of the treatment effect on the treated (γ̃ in his notation)
also makes use of an estimator for µ1 constructed parallel to µ̂H01, namely

µ̂H1 = T−1
1

n∑
t=1

Λtβ̂1(Xt),

where

β̂1(Xt) ≡
Ê[ΛtYt|Xt]
Ê[Λt|Xt]

.

Thus Hahn’s estimator for the effect of interest is

∆̂H ≡ µ̂H1 − µ̂H01.

This estimator requires nonparametric estimation of E[Yt|Xt], E[ΛtYt|Xt], and
of the propensity score, E(Λt|Xt). Hahn proposes the use of nonparametric
series estimators (polynomials in Xt) for these conditional expectations and,
in his Theorem 6, provides conditions ensuring that ∆̂H is consistent for ∆∗

1,
asymptotically normal, and attains the semi-parametric efficiency bound.

Hahn’s conditions include a random sampling assumption (i.i.d. observa-
tions) that is ideally suited for cross-section applications. For the natural
experiments of interest here, the i.i.d. assumption is too strong. Nevertheless,
weaker conditions permitting dependence (i.e. suitable martingale difference
conditions, together with α- or β-mixing conditions on Z̃t, Z̈t, and W̃t) should
deliver analogous asymptotic normality results. Whether asymptotic efficiency
condinues to hold is an interesting topic for further research.

Hirano, Imbens, and Ridder (2003) (HIR) note that the burden of nonpara-
metric estimation posed by Hahn’s estimator can be significantly reduced by
exploiting the properties of the propensity score. Among the estimators they
consider is an estimator of the average treatment effect on the treated that can
be written

∆̂HIR = µ̂1 − µ̂HIR01 ,

where µ̂1 ≡ T−1
1

∑n
t=1 ΛtYt is the regime 1 sample mean as above, and

µ̂HIR01 ≡ T−1
1

n∑
t=1

(1− Λt)Yt p̂(Xt) / (1− p̂(Xt)),

with p̂ a nonparametric estimator of the propensity score. The HIR estimator
eliminates the need to estimate E[Yt | Xt] and E[ΛtYt | Xt]. HIR propose
a logistic series estimator for constructing p̂, and in their Theorem 5 provide
conditions under which ∆̂HIR is consistent for ∆∗

1, asymptotically normal, and
also attains the semiparametric efficiency bound. HIR’s conditions also include
an i.i.d. assumption, but, just as for Hahn’s estimator, the extension of the
asymptotic normality results to the dependent case should be straightforward.

An interesting feature of the HIR estimator is that µ̂HIR01 is not constructed
by averaging over the observations of regime 1, but is instead a weighted average
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over regime 0. Heuristically, the effect is to approximate

µ00(h) ≡
∫
µ̆0(x)h(x) dH̆0(x)

with h chosen as dH̆1/ dH̆0, as then

µ00(dH̆1/ dH̆0) = µ01.

HIR’s estimator approximates dH̆1/ dH̆0 as

ĥ(x) = (T0/T1)p̂(x)/(1− p̂(x))

and then averages over the empirical distribution of Xt ≡ (Z̃t, W̃t) in regime 0.
Thus, the researcher interested in estimating the effect of a natural exper-

iment such as a cartel or a merger can do so consistently using ∆̂H or ∆̂HIR

without having to satisfy the restrictive conditions ensuring the validity of the
dummy variable approach. Specifically, there is no need to correctly specify
models for c0 and c1, it is not necessary to achieve conditional independence
of Z̈t and Λt given Z̃t (G̃0 = G̃1) and/or H0 = H1 or m0 = m1, and included
variables need not be error free, but may be error-laden proxies for otherwise
unobservable determining variables. Heuristically, the freedom from the need
for correct specification is ensured by the nonparametric estimation of the condi-
tional expectations. The remaining benefits are provided by the introduction of
the auxiliary variables W̃t delivering predictive proxies Xt ≡ (Z̃t, W̃t) satisfying
CIPP and therefore unconfoundedness.

5 An Alternative Quasi-Nonparametric Estima-
tor

Perhaps the leading reasons for the common application of the dummy variable
approach to estimate the effects of interest here are its familiarity and its simple
computation. The estimators ∆̂H and ∆̂HIR are less familiar and require a
potentially challenging nonprametric estimation. In this section we propose a
new “quasi-nonparametric” estimator for the effect of a natural experiment that
requires only a straightforward dummy variable regression, thus achieving the
advantages of familiarity and ease of computation, but that can also achieve an
arbitrarily close approximation to the effect of interest, due to its flexibility.

Our approach is quasi-nonparametric in that its flexibility provides the basis
for full nonparametric estimation, but for simplicity we do not pursue the tech-
nicalities to fully justify this here. Rather, we content ourselves with setting
forth the basic method and establishing its properties under simpler conditions
than are required for fully justifying our approach as nonparametric. This
latter task may be taken up elsewhere. Our regularity conditions are suffi-
ciently flexible as to deliver the consistency and asymptotic normality of our
quasi-nonparametric estimator in either cross-section or time-series settings.
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Our approach estimates the effect of interest as

∆̂1 = µ̂1 − µ̂01,

where

µ̂01 = T−1
n∑
t=1

Λt̂̆µ0(Xt)

and ̂̆µ0 is an estimator of

µ̆0(x) ≡
∫
c0(z̃, z̈) dĞ0(z̈|x).

Thus, our estimate of the effect of interest constitutes a predictive approach, in
that it is constructed as the difference between the average actual outcome, µ̂1,
and the average outcome predicted for regime 1 under the retime 0 predictive
relation.

To motivate our approach, we will proceed as if

µ̆0(x) =
q−1∑
j=0

ψj(x)b
∗
ψ,0,j

= x′ψb
∗
ψ,0,

where xψ is the q× 1 vector with elements ψ0(x) = 1, ψj(x), ψj a given known
measurable function, j = 1, . . . , q − 1; and b∗ψ,0 is an unknown q × 1 vector of
coefficients to be estimated, having elements b∗ψ,0,j , j = 0, . . . , q − 1. Suitable
choice of q and {ψj} yields a vast array of flexible functional forms, including the
polynomial series proposed by Hahn (1998) and HIR, as well as Fourier series,
artificial neural networks, and wavelets. These flexible forms can well approxi-
mate whatever the true function µ̆0 might be. (See Hornik, Stinchcombe, and
White (1989, 1990), White (1990), Gallant and White (1992), Stinchcombe and
White (1998), Gencay, Selchuk, and Whitcher (2001), and White (2004).)

Estimation of b∗ψ,0 is straightforward. An obvious consistent method is OLS
regression of Yt onXψt ≡ (1, ψ1(Xt), ..., ψq−1(Xt))′ using regime 0 observations:

β̂ψ,0 ≡

(
n∑
t=1

(1− Λt)XψtX
′
ψt

)−1 n∑
t=1

(1− Λt)XψtYt.

This yields ̂̆µ0(x) = x′ψβ̂ψ,0

and, with m̂ψ,1 ≡ T−1
1

∑n
t=1 ΛtXψt,

µ̂01 = T−1
1

n∑
t=1

ΛtX ′
ψtβ̂ψ,0

= m̂′
ψ,1β̂ψ,0,
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Our quasi-nonparametric estimate of the efffect of interest is thus

α̂ψ ≡ µ̂1 − m̂′
ψ,1β̂ψ,0.

By standard properties of OLS, α̂ψ can be obtained by applying OLS to

Yt = Λtα+X ′
ψtβ + ΛtX̃ ′

ψtγ + εt, t = 1, 2, . . . ,

where Xψt ≡ (1, X̃ ′
ψt)

′. Note the close resemblance of this model to the dummy
variable model of Section 3. The only differences are: (1) we use regressors
Xψt (that include flexible transformations of Xt) as opposed to regressors Zt =
(1, Z̃t); and (2) we include ΛtX̃ψt in the regression.

Our first formal condition extends the DGP to accommodate W̃t.

Assumption B.1 (Data Generating Process) The observed data are gen-
erated from a realization of the sequence of random variables (Yt,Λt, Z̃t, Z̈t, W̃t),
t = 1, 2, . . ., where (Z̃t, Z̈t) stably isolates Λt for Yt according to

Yt = c(Λt, Z̃t, Z̈t), t = 1, 2, . . .

for some unknown measurable scalar-valued function c, where Λt is {0, 1}-
valued, and Λt is fundamentally non-determining for W̃t.

For i = 0, 1, define Ti ≡ {t ∈ N : Λt = i}, and assume further that for
all t ∈ Ti, (Z̃t, Z̈t, W̃t) has joint distribution F̆i, (Z̃t, Z̈t) has joint distribution
Fi, (Z̃t, W̃t) has joint distribution H̆i, Z̃t has joint distribution Hi, Z̈t has joint
distribution Gi, the conditional distribution of Z̈t given (Z̃t, W̃t) = (z̃, w̃) is
Ği(·|z̃, w̃), and the conditional distribution of Z̈t given Z̃t = z̃ is G̃i(·|z̃).

The variables W̃t represent observable non-determining variables that can
act as useful proxies for the unobservable determining variables Z̈t. Note that
we permit W̃t to contain error-laden measures of determining variables that
would conventionally be thought to create “errors in variables” problems.

Note the key requirement that Λt is fundamentally non-determining for
W̃t. Because (Z̃t, Z̈t) stably isolates Λt, we have that Λt is fundamentally
non-determining for (Z̃t, W̃t) jointly. In the absence of this condition, indirect
effects of the natural experiment can enter through W̃t, whose regression co-
efficients will pick up effects properly due to the natural experiment, thereby
contaminating the analysis.

Moment conditions for our flexible regressors are specified as follows.

Assumption B.2 (Finiteness of Moments) For given q ∈ N and given
known measurable scalar valued functions ψ0 = 1, ψj , j = 1, . . . , q − 1, let
xψ ≡ (ψ0(x), . . . , ψq−1(x))′, where x ≡ (z̃, w̃).

(a) 0 < p1 < 1;

(b) (i) Mψ,0 ≡
∫
xψx

′
ψdH̆0(x) <∞, detMψ,0 > 0;
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(ii) mψ,1 ≡
∫
xψdH̆1(x) <∞;

(c) (i) Lψ,0 ≡
∫
xψc0(z̃, z̈) dĞ0(z̈|x) dH̆0(x) <∞;

(ii) µ1 ≡
∫
c1(z̃, z̈) dG̃1(z̈|z̃) dH1(z̃) <∞.

To state our next assumption, we define

M̂ψ,0 ≡ T−1
0

n∑
t=1

(1− Λt)XψtX
′
ψt

L̂ψ,0 ≡ T−1
0

n∑
t=1

(1− Λt)XψtYt.

The law of large numbers requirement for our predictive approach is

Assumption B.3 (Laws of Large Numbers)

(a) p̂1
p→ p1;

(b) M̂ψ,0
p→Mψ,0 and m̂ψ,1

p→ mψ,1;

(c) L̂ψ,0
p→ Lψ,0 and µ̂1

p→ µ1.

As before, this condition is mild and thus generally plausible. We now have

Proposition 5.1 Given B.1-B.3, α̂ψ
p→ α∗ψ and β̂ψ,0 → β∗ψ,0, where

α∗ψ ≡ µ1 −m′
ψ,1β

∗
ψ,0

β∗ψ,0 ≡ M−1
ψ,0Lψ,0.

Proposition 5.2 Suppose Assumptions B.1 and B.2 hold and that in addition
µ01 ≡

∫
c0(z̃, z̈) dG̃1(z̈|z̃) dH1(z̃) <∞. Then

α∗ψ −∆∗
1 =

∫
(µ̆01(x)− µ̆0(x)) dH̆1(x)

+
∫

(µ̆0(x)− x′ψβ
∗
ψ,0) dH̆1(x),

where µ̆01(x) ≡
∫
c0(z̃, z̈) dĞ1(z̈|x).

Observe that this result stops short of establishing that the causal discrep-
ancy α∗ψ − ∆∗

1 vanishes. Instead it decomposes it into two pieces, the first
component depending on µ̆01 − µ̆0 (hence Ğ1 − Ğ0) and the second depending
on the error µ̆0(x) − x′ψβ

∗
ψ,0 in approximating the optimal predictor µ̆0. By
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suitably choosing proxies Xt so that Ğ0 = Ğ1, the economist can make µ̆01− µ̆0

vanish. By suitably choosing q and {ψj}, the economist can make the ap-
proximation error negligible. Together, these choices ensure that the causal
discrepancy (essentially) vanishes. Stated formally, we have

Corollary 5.3 Suppose Assumptions B.1 and B.2 hold and that µ01 <∞.

(i) Suppose further that µ̆0(x) = x′ψb
∗
ψ,0 for some unknown finite vector b∗ψ,0.

Then β∗ψ,0 = b∗ψ,0.

(ii) If in addition Ğ0 = Ğ1 a.s.− H̆1, then µ̆0 = µ̆01 a.s.− H̆1 and

α∗ψ = ∆∗
1.

Thus our alternative approach can yield a consistent estimate of the average
effect of the natural experiment under plausible conditions. Success is ensured
by satisfying two key requirements: First, the researcher must achieve an accu-
rate approximation to the conditional expectation µ̆0. This requires some care
and thought, but it is an attainable goal, especially given the availability of flex-
ible modeling tools like PcGets (e.g., Hendry and Krolzig (2001) and Campos,
Hendry, and Krolzig (2003)), RETINA (Perez-Amaral, Gallo, and White, 2003),
and QuickNet (White, 2004). Second, the researcher must choose Xt so that
Ğ0 = Ğ1. It is here that statistical reasoning leaves off and where economic
understanding assumes the leading role, as we discuss in detail in Sections 6
and 7.

Our estimator is quasi-nonparametric in that although we have formally
treated only the parametric case here, a fully nonparametric estimator can be
attained by letting q → ∞ as n → ∞ at the appropriate rate with suitable
choice of {ψj} . Results of Chen and White (1999) may be useful in establishing
asymptotic properties.

A main focus of Hahn (1998) and Hirano, Imbens, and Ridder (2003) is to
establish the asymptotic normality of their estimators and their attainment of
the semiparametric efficiency bound. Our next results permit a comparison of
α̂ψ with ∆̂H and ∆̂HIR. For this, we provide conditions ensuring the asymptotic
normality of α̂ψ and examine the asymptotic variance.

Our first condition to this end is a moment condition analogous to B.2:

Assumption B.4 (Finiteness of Moments): For q and xψ as in B.2,

(a) Mψ,1 ≡
∫
xψx

′
ψdH̆1(x) <∞, det Mψ,1 > 0;

(b) Lψ,1 ≡
∫
xψc1(z̃, z̈) dĞ1(z̈|x) dH̆1(x) <∞.

This condition ensures the existence of

β∗ψ,1 ≡M−1
ψ,1Lψ,1,
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which is the vector of regression coefficients delivering the m.s.e.-optimal ap-
proximation to µ̆1(x), which has the form

µ∗1(xψ) ≡ x′ψβ
∗
ψ,1.

We analogously define the m.s.e.-optimal approximation to µ̆0(x),

µ∗0(xψ) ≡ x′ψβ
∗
ψ,0.

The m.s.e.-optimality property ensures that

µ1 =
∫
µ∗1(xψ) dH̆1(x)

so that ∫
(µ∗1(xψ)− µ∗0(xψ)) dH̆1(x) = µ1 −m′

ψ,1β
∗
ψ,0 = α∗ψ.

We also define the regression errors

εt0 ≡ Yt −X ′
ψtβ

∗
ψ,0,

εt1 ≡ Yt −X ′
ψtβ

∗
ψ,1,

and we note that the m.s.e.-optimality properties of β∗ψ,0 and β∗ψ,1 ensure that
εt0 is uncorrelated with Xψt in regime 0 and εt1 is uncorrelated with Xψt in
regime 1. Our next condition can now be stated, with p0 ≡ (1− p1).

Assumption B.5 (Central Limit Conditions)

(a) n−1/2
∑n
t=1(1− Λt)Xψtεt0 = Op(1);

(b) n−1/2
∑n
t=1 Λt[εt1 + (µ∗1(Xψt)− µ∗0(Xψt)− α∗ψ)] = Op(1);

(c) n−1/2
∑n
t=1 ξt

d→ N(0, σ2
ξ), where 0 < σ2

ξ ≡ var(n−1/2
∑n
t=1 ξt) <∞,

ξt ≡ p−1
1 Λt[εt1+(µ∗1(Xψt)−µ∗0(Xψt)−α∗ψ)]−p−1

0 m′
ψ,1M

−1
ψ,0(1−Λt)Xψtεt0.

Assumptions B.1, B.2(a), B.2(b.i), B.2 (c.i), B.3 and B.5(a) ensure that

√
n(β̂ψ,0 − β∗ψ,0) = p−1

0 M−1
ψ,0n

−1/2
n∑
t=1

(1− Λt)Xψtεt0 + op(1).

The summands on right hand side above have mean zero, as εt0 is uncorrelated
withXψt in regime 0, so B.5(a) holds given that {(1−Λt)Xψtεt0} obeys a central
limit theorem (CLT). Primitive conditions for this applicable either to i.i.d. or
time-series settings are given by White (2001, ch.5) For example, certain α-
mixing conditions suffice in the time-series case. When such a CLT holds, we
also have that

√
n(β̂ψ,0 − β∗ψ,0) is asymptotically normal.
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Similarly, a CLT for {Λt[εt1 +(µ∗1(Xψt)−µ∗0(Xψt)−α∗ψ]} suffices for B.5(b).
Note that the properties of εt1, µ∗1, µ

∗
0 and α∗ψ ensure that Λt[εt1 + (µ∗1(Xψt)−

µ∗0(Xψt)− a∗ψ)] has mean zero under regime 1.
Assumption B.5(c) delivers our asymptotic normality result, as we prove

√
n(α̂ψ − α∗ψ) = n−1/2

n∑
t=1

ξt + op(1).

Theorem 5.4: Suppose conditions B.1-B.5 hold. Then
√
n(α̂ψ − α∗ψ) d→ N(0, σ2

ξ).

Thus, our quasi-nonparametric estimator of the effect of interest is not only
consistent for α∗ψ (approximating ∆∗

1, and equal to it under the conditions of
Corollary 5.3), but it is also asymptotically normal with asymptotic variance
σ2
ξ . This variance can be consistently estimated using HAC methods, e.g. under

conditions ensuring the consistent estimation of the variance-covariance matrix
for the OLS estimator of the linear regression (5.1) (see White 2001, ch. 6 or
Gonçalves and White, 2005), so we shall not go into specifics here.

Instead, we compare σ2
ξ with the asymptotic variance of the Hahn and HIR.

As HIR show,

avar(∆̂H) = avar(∆̂HIR)

= T−1
1

∫
σ2

1(x) dH̆1(x)

+ T−1
1

∫
(µ̆1(x)− µ̆0(x)−∆∗

1)
2 dH̆1(x)

+ T−1
0

∫
σ2

0(x)(dH̆1(x)/ dH̆0(x))2dH̆0(x)

where we have re-scaled á la Froehlich (2004) to facilitate comparisons and
interpretations (cf Froehlich, 2004, eq (6)). In the expression above, we define

σ2
0(x) ≡

∫
[c0(z̃, z̈)− µ̆0(x)]

2dĞ0(z̈|x)

σ2
1(x) ≡

∫
[c1(z̃, z̈)− µ̆1(x)]

2dĞ1(z̈|x).

Direct comparison with σ2
ξ is possible only when the summands {ξt} are

uncorrelated, as otherwise additional terms enter that capture possible time-
series dependence. Thus, suppose that {ξt} is i.i.d. Analogous rescaling then
gives

avar(α̂ψ) = T−1
1

∫
σ∗21 (x) dH̆1(x)

+ T−1
1

∫
(µ∗1(xψ)− µ∗0(xψ)− α∗ψ)2dH̆1(x)

+ T−1
0

∫
σ∗20 (x)g(x)2dH̆0(x)
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where

σ∗20 (x) ≡
∫

(c0(z̃, z̈)− µ∗0(xψ))2dĞ0(z̈|x)

σ∗21 (x) ≡
∫

(c1(z̃, z̈)− µ∗1(xψ))2dĞ1(z̈|x)

are the conditional variances of εt0 and εt1 in regimes 0 and 1 respectively, and

g(x) ≡ x′ψM
−1
ψ,0mψ,1.

The expressions for avar(∆̂HIR) = avar(∆̂H) and for avar(α̂ψ) clearly have
a similar structure, with the primary diffrences arising because the Hahn and
HIR estimators are fully nonparametric, whereas α̂ψ is only quasi-nonparametric.
To make the comparison more direct, suppose for simplicity that we have cor-
rect specification as in Corollary 5.3, so that µ∗0(xψ) = µ̆0(x) and similarly that
µ∗1(xψ) = µ̆1(x). Then α∗ψ = ∆∗

1, σ
∗
0 = σ0, and σ∗1 = σ1. We then have

avar(α̂ψ)− avar(∆̂H)

= T−1
0

∫
σ2

0(x)[g(x)
2 − dH̆1(x)2

dH̆0(x)2
] dH̆0(x).

It is not obvious from this expression that the two estimators bear an un-
ambiguous efficiency relation to one another. If, for example, we have correct
specification and the regression errors are conditionally normal and homoskedas-
tic, then α̂ψ is the maximum likelihood estimator (MLE), which is the asymp-
totically efficient parametric estimator. Accordingly, it should be at least as
efficient asymptotically as ∆̂H or ∆̂HIR. When α̂ψ is not the MLE, then a
sufficient condition for α̂ψ to achieve efficiency equal to that of ∆̂H or ∆̂HIR is

|g(x)| ≡ dH̆1(x)/dH̆0(x).

The density ratio dH̆1/ dH̆0 is related to the propensity score p by

dH̆1(x)/ dH̆0(x) =
(1− p1)
p1

p(x)
1− p(x)

.

A sufficient condition for α̂ψ to attain the semi-parametric bound is thus

p(x) = |g(x)| / (|g(x)|+ (1− p1)/p1).

This condition is not one that might be expected to hold generally, so it is not
possible to assert that α̂ψ has any necessary efficiency properties in the i.i.d.
case. Nevertheless, the simplicity with which α̂ψ and a consistent estimate of
its standard error can be computed using standard regression packages makes
it an appealing option even in cross-section applications.

For time series applications, the properties of ∆̂H and ∆̂HIR are unknown,
and it is not clear whether they may still achieve the semiparametric efficiency
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bound, as not only is this bound presently unknown, but the asymptotic vari-
ances of ∆̂H and ∆̂HIR are also unknown in the time series context. It is of
clear interest to analyze ∆̂H and ∆̂HIR in time-series settings. In the mean-
time, however, α̂ψ provides a convenient estimataor with known properties in
both time-series and cross-section applications.

6 Justifying Conditional Exogeneity

As we have seen, some form of conditional independence is necessary in order to
consistently estimate the effect of interest. This assumption must be justified
in each particular application.

We note first that if the unconditional distribution of all the determining
variables is identical between regimes, then it suffices to take Zt = Z̈t, treating
all determining variables as unobservable. No predictive proxies are needed,
and we have G = Ğ0 = Ğ1. This assumption is readily ensured by randomiza-
tion, but economists cannot assign treatment in natural experiments. If even
one component of Zt = Z̈t has a distribution differing across regimes, then
conditional exogeneity fails.

It is therefore critical to account for components of Zt whose distributions
differ across regimes. If such variables are precisely observable, then they can
be included in Z̃t. If the observable determining variables Z̃t are the only
predictive proxies, then CIPP requires G̃0 = G̃1. Again, this assumption is
readily ensured by randomization, but economists typically cannot achieve this.
Absent further justification, the economist cannot plausibly treat Z̃t alone as
predictive proxies ensuring CIPP.

How, then, can one go about selecting additional predictive proxies? The
ideal predictive proxy for any element of Z̈t is itself, but Z̈t is by convention
unobservable. Alternatively and more generally, a set of perfect proxies is pro-
vided by any information-preserving transform of Z̈t, say W̃t = ζ(Z̈t), where
ζ is information-preserving in the sense that the σ−field generated by Z̈t, de-
noted σ(Z̈t), coincides with the σ−field generated by W̃t, σ(W̃t). For example,
even if Z̈t is not observable, it would suffice to observe a non-singular linear (or
nonlinear) transformation of Z̈t, even if the transformation is unknown.

Another possibility is to exploit the determining chain of Section 2 The
next result provides conditions linking functional dependence and statistical
independence in such a way as to expose potential predictive proxies.

Proposition 6.1 Let (Ω,F , P ) be a complete probability space, and let V :
Ω → Rk, Z : Ω → R`, k, ` ∈ N be random vectors. Let f : Rk × R` → Rm be
a measurable function so that Y ≡ f(V,Z) is a random m × 1 vector. Then
Y ⊥ V |Z if and only if there is a measurable function g : R` → Rm such that
Y = g(Z) with probability 1.

Suppose Zt ≡ (Z̃t, Z̈t) isolates Λt and there exists Z(1)
t , say, also isolating
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Λt, such that
Zt = ζ(Z(1)

t ).

Applying Proposition 6.1 with Y = Zt, Z = Z(1)
t and V = Λt we have

Zt ⊥ Λt |Z(1)
t ,

so that in particular Z̈t ⊥ Λt |Z(1)
t . As Z(1)

t is non-determined by Λt, it follows
that Z(1)

t provides admissible predictive proxies. Any observable element of
Z(1)
t can be included in W̃t; moreover, one can continue, sequentially, along the

determining chain, appending observable elements of Z(j)
t to W̃t.

In practice, however, it may not be possible to accurately observe sufficient
determining variables at whatever level of the determining chain to proxy for
those components of Zt whose conditional distributions differ across regimes.
Instead, one may only have available error-laden proxies. To examine the
content of Proposition 5.2 in a realistic setting that clearly exposes the key
elements, suppose that none of the determining variables are observable without
error, so that Z̃t is null. For notational convenience in what follows, we write
Zt = (1, Z̈t)′ and z = (1, z̈)′, and we assume that the regime 0 determining
reduced form is given by

c0(z̃, z̈) = z′b∗0.

Little generality is lost in writing the determining relationship in this way as
information-preserving transformations applied to determining variables can
yield neural-network-like structures analogous to those for µ̆0 of Section 5.

We proceed by obtaining expressions for µ̆0 and µ̆01. Thus, suppose that we
have predictive proxies W̃t fundamentally non-determined by Λt, and construct
Xψt as in Section 4: Xψt ≡ (1, ψ1(W̃t), . . ., ψq−1(W̃t))′, where we drop explicit
reference to the absent Z̃t.

Then
β∗ψ,0 = M−1

ψ,0, Lψ,0,

where

Lψ,0 ≡
∫
xψc0(z̃, z̈) dĞ0(z̈ |x) dH̆0(x)

=
∫
xψz′b∗0 dĞ0(z̈ | w̃) dH̆0(w̃)

= Kψ,0 b
∗
0,

where in the second line we drop explicit reference to z̃, and we define

Kψ,0 ≡
∫
xψz′ dĞ0(z̈ | w̃) dH̆0(w̃).

Next, let
a∗0 ≡M−1

ψ,0Kψ,0.
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This matrix of coefficients ensures that

Z′
t = X ′

ψta
∗
0 + ε′t t ∈ T0,

and E(Xψtε
′
t) = 0 for t ∈ T0. This expression tells us that X ′

ψta
∗
0 gives an

m.s.e.-optimal prediction for Z′
t in regime 0. It follows that

β∗ψ,0 = M−1
ψ,0Kψ,0 b

∗
0

= M−1
ψ,0Mψ,0 a

∗
0 b

∗
0

= a∗0b
∗
0.

With c0 as specified, we have

µ̆0(w̃) = x′ψβ
∗
ψ,0

= x′ψ a
∗
0b
∗
0.

Before proceeding, it is important to note that the regression coefficients
β∗ψ,0 = a∗0b

∗
0 obtained by regressing Yt on Xψt are a blend of coefficients b∗0 that

embody the true effects of the underlying determinants Zt on Yt and coefficients
a∗0 that embody only predictive relationships between Zt and proxies Xψt. It
follows that the coefficients β∗ψ,0 cannot be interpreted as providing any reliable
information about the “effects” of the associated regressors Xψt. Put somewhat
differently, one should not expect the coefficients β∗ψ,0 to make economic sense,
that is, to have signs and magnitudes that one might expect if one had performed
regression using a correctly specified model. Thus, the coefficients β∗ψ,0 enable
the model to account for the effects of the proxied unobservable determinants
Zt, rather than “controlling for” the effects of the included regressors Xψt.

Proceeding to µ̆01, we have

µ̆01(w̃) ≡
∫

z′ b∗0 dĞ1(z̈ | w̃).

Define

a∗1 ≡ M−1
ψ,1Kψ,1

Kψ,1 ≡
∫
xψz′dĞ1(z̈ | w̃) dH̆1(w̃),

so that
Z′
t = X ′

ψta
∗
1 + ε′t t ∈ T1,

and E(Xψtε
′
t) = 0 for t ∈ T1. That is, X ′

ψta
∗
1 gives an m.s.e-optimal prediction

for Z′
t in regime 1. The properties of least squares approximation ensure

m′
ψ,1a

∗
1 =

∫
z′dĞ1(z̈ | w̃) dH̆1(w̃).
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Substituting these results into the causal discrepancy of Proposition 5.2 gives

α∗ψ −∆∗
1 =

∫
(µ̆01(w̃)− µ̆0(w̃)) dH̆1(w̃)

+
∫

(µ̆0(w̃)− x′ψβ
∗
ψ,0) dH̆1(w̃)

=
∫
µ̆01(w̃) dH̆1(w̃)−

∫
µ̆0(w̃) dH̆1(w̃)

= m′
ψ,1a

∗
1b
∗
0 −

∫
x′ψa

∗
0b
∗
0 dH̆1(w̃)

= m′
ψ,1(a

∗
1 − a∗0)b

∗
0.

Thus, a sufficient condition for the causal discrepancy to vanish is

a∗1 = a∗0.

If dim(Zt) ≥ dim(Xψ,t), then a∗1 − a∗0 generally will have full column rank, so
that a∗1 = a∗0 is also a necessary condition for the causal discrepancy to vanish.

The key condition a∗1 = a∗0 succinctly expresses the requirement that the
predictive relation between the unobservable determinants Zt and the predictive
proxies Xψt is stable across regimes, that is ,

Z′
t = X ′

ψta
∗ + ε′t t ∈ T0 ∪ T1, (6.1)

where a∗ = a∗0 = a∗1, and E(Xψtε
′
t) = 0 for all t. This predictive stability is the

essence of CIPP. Indeed, CIPP implies a∗1 = a∗0 for any transformation ψ.
In the absence of the experimental control necessary to assign treatment

randomly, it is not possible to affirmatively verify conditional exogeneity. Nev-
ertheless, conditional exogeneity is subject to refutation, and this can be ap-
proached on both theoretical and empirical grounds. In such circumstances, we
view justifying conditional exogeneity as the process of identifying and removing
possible grounds for refutation. In the next section we discuss statistical (thus
empirical) methods for attempting to refute this assumption. The remainder
of this section discusses a priori economic considerations that bear on possible
refutation of conditional exogeneity.

We proceed by considering how to obtain a properly justified set of predictive
proxies. It is simplest to start from the situation in which the natural exper-
iment is viewed as the only observable determinant of the variable of interest
and all other determinants are unobservable. Thus we have

Yt = c(Λt, Z̈0
t ),

where Z̈0
t denotes the initial set of unobservable determinants that, as required

by B.1, are neither directly nor indirectly determined by Λt. At this stage
there are no predictive proxies; equivalently, we can say that the only predictive
proxy is the constant unity.

We now consider whether to augment the predictive proxies to include ob-
servables. We must do so if there is any evidence that the distribution of
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Z̈0
t differs between the two regimes, as otherwise CIPP fails. Although Z̈0

t is
unobservable, indirect evidence of distributional shifts is often available from
observable proxies for the elements of Z̈0

t . In Section 7, we discuss tests based
on this fact. For now, we proceed assuming knowledge a priori of such a shift
or the possibility of such a shift.

Taking the cartel example for concreteness, suppose that the distribution
of the price of an important raw material differs between regimes for reasons
unrelated to the cartel. For concreteness, suppose the average price increases.
Then we will observe an increase in average price of the cartelized product, but
in the absence of any predictive proxy besides the constant, there is no way to
separate out the effect of the cartel from the unrelated effect of the cost increase.
That is, conditional exogeneity fails as a result of the unaccounted for change
in the distribution of the raw material price.

Although the actual raw material price may not be available (for exam-
ple, because transactions are conducted in a complex way and because accu-
rate records of these complex transactions are not cost effective for the firm to
keep), the economist may have access to monthly government or trade orga-
nization statistics that report some index (i.e., market summary measure) of
the price of the commodity. These monthly price data are almost certainly
not the ideal raw material prices driving the firm’s decisions, but they are an
appealing candidate as a (purely) predictive proxy. Nevertheless, just as we
require that the ideal raw material price must be unaffected by the cartel, so
too must its proxy be unaffected by the cartel. In particular, the predictive
relation between the actual price (that is, the ideal component(s) of Z̈t) and
the commodity price index must be relatively stable across regimes. This is
often quite plausible, as the construction of commodity price indexes typically
involves computing weighted averages of prices surveyed in some more or less
standard way. As long as both the underlying surveyed prices and the weights
used in constructing the weighted average are not appreciably impacted by the
cartel, then we are justified in adding the commodity price index to our set of
(purely) predictive proxies, now designated W̃ 1

t . For concreteness, we assume
that our first predictive proxy goes into W̃ 1

t , leaving Z̃t empty for now.
The next step is to again ask whether there is any evidence that components

of Z̈t have distributions (conditional now on W̃ 1
t ) that differ between regimes

of the natural experiment. If not, we are done. If so, conditional exogeneity
is in question, and further steps are required to resolve the challenge posed by
these other unaccounted-for factors.

Continuing our cartel example, suppose that there is evidence of a shift in
demand across regimes, occurring for reasons unrelated to the cartel. For exam-
ple, suppose the cartelized product is one that is widely used by a broad array
of purchasers (“downstream buyers”), sufficiently so that fluctuations in aggre-
gate demand facing the downstream buyers for their products causes significant
fluctuations in demand for the cartelized product.

In order to properly belong to Z̈t, these demand shifters must be unaffected
either directly or indirectly by the operation of the cartel, and we proceed under
this assumption. This can be justified if the cartelized industry is of modest

36



size relative to the economy as a whole. (If this assumption fails, Assumption
B.1 is called into question.) As it is typically quite difficult to measure the
ideal demand shifter components of Z̈t, it will be necessary to resort to (purely)
predictive proxies for these demand shifters.

To illustrate further challenges to conditional exogeneity that can arise, con-
sider using as predictive proxies indexes of industrial production for industry
segments representing the downstream buyers. In particular, the breadth of
the industrial production index can play an important role.

Specifically, if the industrial production (IP) index is for a sector that con-
tains the cartel, and if the cartel achieves its aims by restricting production,
then Assumption B.1 is violated, as the IP index is being driven by the cartel
activity. To the extent that the cartel is only a small part of the sector covered
by the IP index, then the problem is mitigated. Better, however, would be to
remove the cartel industry component from that sector’s IP index.

Alternatively, if the IP index is for a sector in which the cartel’s products are
a critical input, so that a quantity restriction by the cartel curtails production
in this sector, then once again the IP index for that sector is driven by the
cartel activity and Assumption B.1 is in question. In this case one must seek
predictive proxies for product demand for the downstream buyer’s products.

Once one has located valid predictive proxies of this sort, they may be ap-
pended to W̃ 1

t to create W̃ 2
t .

Proceeding in this way, one arrives finally at some collection of predictive
proxies Xt ≡(Z̃t, W̃t) that have been justified to the extent that (a) elements of
Z̃t are accurately measured determinants of Yt not themselves determined by
Λt; and (b) elements of W̃t are proxies for unobservable determinants Z̈t of Yt,
where Z̈t and W̃t are not determined by Λt, and the predictive relation between
Z̈t and Xt is not impacted by Λt.

As is evident from Corollary 5.2, the impact of the violation of CIPP is a
matter of degree. The more important the unobserved factors (z̈) and the
greater the distributional shift Ğ1 − Ğ0, the greater is α∗ψ − ∆∗

1, the causal
discrepancy. Thus, the greatest care must be directed toward obtaining proxies
for the most important determinants of the affected variable of interest and
toward those for which the distributional shift Ğ1 − Ğ0 is potentially greatest.
Neglect of minor determinants or of determinants for which Ğ1 − Ğ0 is small
will have only minor impact on α∗ψ −∆∗

1.
We emphasize that this process does not constitute a verification of CIPP,

but rather a justification, in that by using economic theory and the economist’s
knowledge of how economic data are constructed, one can avoid obvious (and
perhaps not so obvious) opportunities for the refutation of conditional exo-
geneity and the violation of the requirement that Λt must be fundamentally
non-determining for (Z̃t, W̃t).

Yet another means of avoiding refutation of conditional exogeneity, espe-
cially in controversial settings, is to make use of the underlying factors and/or
predictive proxies identified by parties adverse to one’s own position that either
explicitly or implicitly have been treated as exogenous to whatever degree. If
one accounts for all legitimate factors articulated by one’s rivals and nevertheless
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obtains statistically valid evidence in support of one’s own position, then the
onus is on the rivals to demonstrate why their original factors were inadequate
to support their position — not an enviable position.

Note the importance of the qualifier “legitimate” in the previous sentence.
Predictive proxies that directly or indirectly contain the effects of cartel op-
eration are not legitimate, as this violates B.1. All variables determinatively
linked to variables controlled by cartel members, such as prices, quantities, or
inventories, among other things, are illegitimate for this reason. Also not le-
gitimate are predictive proxies that do not have well-justified economic links to
the elements of z̈. Economic time series are sufficiently numerous that one can
often find a data series with just the right pattern to “explain” the effect of
the natural experiment of interest. A strong antidote to curve-fitting of this
sort, surreptitious or otherwise, is economic theory. The absence of a viable
economic justification for including a particular proxy is strong grounds for its
exclusion, given how easily such variables can mask the true effect.

Economic theory thus plays a decisive role in isolating and analyzing the
effects of a natural experiment, and it is useful to itemize the various aspects
of this role. Specifically, economic theory identifies: (1) the underlying de-
termining factors z not caused by the operation of the natural experiment; (2)
variables that are jointly determined by the operation of the natural experiment
and that are therefore not legitimate components of z; (3) variables that may
or may not therefore form the basis for legitimate predictive proxies for our
unobservable determinants z̈; and (4) variables that are not viably linked by
economic reasoning to z̈ and which are therefore not legitimate proxies.

7 Testing Conditional Exogeneity

Although Z̈t is not observable, the economist is often able to observe variables
that are fundamentally not determined by the natural experiment and that may
serve as proxies for Z̈t. These proxies can be used to empirically test CIPP.

We begin by assuming that we have a set of predictive proxies Xt ≡ (Z̃t, W̃t)
that can be used to construct Xψt as previously defined. (Note that for present
purposes ψ may be chosen differently than before, but we keep the notation the
same for simplicity.) We explicitly allow the possibility that Xt may be null so
that Xψt contains only the constant.

Suppose that we also have some additional proxies for Z̈t, say Ṽt, not already
included in Xt. For example, in the cartel natural experiment, Xt may be null,
and we may have some raw material prices and some demand shifters available
as proxies Ṽt for Z̈t. Alternatively, we may have Xt already containing certain
raw material prices and demand shifters as predictive proxies, but we may have
further proxies for the same or different raw material prices and demand shifters
not yet included in Xt.

In order to isolate any failure of conditional exogeneity, we require certain
identifying information. We adopt the following structure as a means of plausi-
bly achieving the required restrictions. Specifically, we suppose the additional
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proxies Ṽt are related to Z̈t according to

Ṽt = v(Z̈t, Üt), t = 1, 2, . . . ,

for some unknown function v and unobservable variables Üt, conveniently viewed
as measurement errors. Thus, v specifies that the proxies are determined by
Z̈t and some measurement errors Üt in the same way for all observations.

The properties we require of Üt are: (1) Λt is fundamentally non-determining
for Üt; (2) Üt is fundamentally non-determining for Yt. (The latter property
distinguishes elements of Üt from those of Z̈t.) These are reasonable condi-
tions for measurement errors to satisfy. With the conditions stated so far, it
follows that Λt is fundamentally non-determining for Ṽt, so that Ṽt satisfies the
requirements of B.1 for predictive proxies.

With one further condition we have a means of identifying and testing failures
of conditional exogeneity. This condition is that

Üt ⊥ Λt | Z̈t, Z̃t, W̃t,

that is, the conditional distribution of Üt given Z̈t, Z̃t, and W̃t is the same for
all t. Again, this is a plausible condition for measurement errors to satisfy.
Letting J(·|z̈, z̃, w̃) denote this common distribution for Üt given (Z̈t, Z̃t, W̃t) =
(z̈, z̃, w̃), it follows that the conditional expectation of Ṽt given Xt is given in
regime 0 by ∫

v(z̈, ü) dJ(ü | z̈, x) dĞ0(z̈ |x)

and in regime 1 by ∫
v(z̈, ü) dJ(ü | z̈, x) dĞ1(z̈ |x).

If indeed conditional exogeneity (Ğ0 = Ğ1) holds, then the conditional expec-
tation of Ṽt given Xt is identical across regimes. That is, the stability of this
conditional expectation is necessary for conditional exogeneity. Thus, if we find
empirical evidence that this stability fails, then we have evidence of the failure
of conditional exogeneity.

Observe the roles played by our assumptions on v, Üt, and J . If v depended
on Λt, if Üt were determined by Λt, or if J were not stable across regimes,
we would also have the conditional expectation of Ṽt given Xt differing across
regimes and we could not isolate the failure of conditional exogeneity as the sole
and necessary reason for this instability.

We emphasize that the stability of this conditional expectation is a necessary
and not a sufficient condition for conditional exogeneity. Thus, tests based on
this stability indicator could fail to detect violations of conditional exogeneity.
It is nevertheless possible to gain additional power against failures of conditional
exogeneity by testing further necessary conditions. In particular, let φ be any
measurable r × 1 vector-valued function taking Ṽt as an argument. Then we
also have that the conditional expectation of φ(Ṽt) given Xt is stable across
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regimes given conditional exogeneity; the common conditional expectation is∫
φ(v(z̈, ü)) dJ(ü | z̈, x) dĞ(z̈ |x).

For discussion of useful choices of φ see Stinchcombe and White (1998).
To construct a test of the stability of this conditional expectation, we again

exploit the flexible approximation capabilities of Xψt. Thus, we can assume
that there exist matrices a∗φ,0 and a∗φ,1 such that∫

φ(v(z̈, ü))′dJ(ü | z̈, x) dĞ0(z̈|x) = x′ψa
∗
φ,0∫

φ(v(z̈, ü))′dJ(ü | z̈, x) dĞ1(z̈ |x) = x′ψa
∗
φ,1.

Under the conditional exogeneity null hypothesis

H0 : Ğ0 = Ğ1 a.s.

we have a∗φ,0 = a∗φ,1, and it is this necessary condition that we test.
A straightforward analog of the Chow (1960) test statistic can be constructed

using the regime 0 and regime 1 OLS estimators,

α̂φ,0 ≡ (
n∑
t=1

(1− Λt)XψtX
′
ψt)

−1
n∑
t=1

(1− Λt)Xψt φ(Ṽt)′

α̂φ,1 ≡ (
n∑
t=1

ΛtXψtXψt)−1
n∑
t=1

ΛtXψt φ(Ṽt)′.

Using α̂φ,0 and α̂φ,1 we can form a Wald (1943) version of the Chow test,

Wn ≡ n [vec (α̂φ,0 − α̂φ,1)]′Ĉ−1
n [vec (α̂φ,0 − α̂φ,1)],

where Ĉn is a consistent estimator of the asymptotic covariance matrix of
√
n vec (α̂φ,0 − α̂φ,1 − (a∗φ,0 − a∗φ,1)).

Under H0, Wn has the X 2
qr distribution asymptotically.

Equivalently, a convenient test statistic can be computed by exploiting the
representation

φ(Ṽt)′ = X ′
ψt a

∗
ψ,0 + ΛtX ′

φt(a
∗
φ,1 − a∗φ,0) + η′t t = 1, 2, . . . ,

where ηt is uncorrelated by construction with Xψt and ΛtXψt. Using the vec
operator and the identity vec (ABC) = (C ′ ⊗ I) vec B we have

vec φ(Ṽt)′ = (I ⊗X ′
ψt) vec a∗φ,0 + (I ⊗ ΛtX ′

ψt) vec (a∗φ,1 − a∗φ,0) + vec η′t,

or
φ(Ṽt) = Z̃ ′

ψt ã
∗
φ,0 + ΛtZ̃ ′

ψt(ã
∗
φ,1 − ã∗φ,0) + ηt, t = 1, 2, . . . ,
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where

Z̃ψt ≡ (I ⊗Xψt)
ã∗φ,0 ≡ vec a∗φ,0
ã∗φ,1 ≡ vec a∗φ,1.

From this expression,we see that to test conditional exogeneity it suffices to
regress φ(Ṽt) on Z̃ψt and ΛtZ̃ψt and test whether the coefficients on ΛtZ̃ψt (that
is, ã∗φ,1 − ã∗φ,0) are jointly zero. This is quite straightforward, but care should
be exercised to use a suitable heteroskedasticity-and-autocorrelation consistent
(HAC) covariance estimator in constructing the test statistic.

We formalize our discussion by stating the following assumptions and results.

Assumption C.1 (Data Generating Process) Assumption B.1 holds and
additional observed data are generated from a realization of (Ṽt, Üt, Z̈t), t =
1, 2, . . ., where (Üt, Z̈t) stably isolates Λt for Ṽt according to

Ṽt = v(Üt, Z̈t)

for some unknown measurable vector-valued function v, where Üt is fundamen-
tally non-determining for Yt.

For all t = 1, 2, . . ., the conditional distribution of Üt given (Z̈t, Z̃t, W̃t) =
(Z̈t, Xt) = (z̈, x) is given by J(· | z̈, x).

This assumption formalizes our earlier discussion concerning the generation
of proxies Ṽt . Next we impose suitable moment conditions.

Assumption C.2 (Finiteness of Moments) For given q ∈ N and given
known measurable scalar-valued functions ψ0 = 1, ψj , j = 1, . . . , q − 1, let
xψ ≡ (ψ0(x), ..., ψq−1(x))′. Let φ be a given known measurable r × 1 vector-
valued function. Assume

(a) 0 < p1 < 1;

(b) (i) Mψ,0 ≡
∫
xψx

′
ψ dH̆0(x) <∞, detMψ,0 > 0;

(ii) Mψ,1 ≡
∫
xψx

′
ψ dH̆1(x) <∞, detMψ,1 > 0;

(c) (i) Kψφ,0 ≡
∫
xψφ(v(ü, z̈))′ dJ(ü | z̈, x) dF̆0(z̈, x) <∞;

(ii) Kψφ,1 ≡
∫
xψφ(v(ü, z̈))′ dJ(ü | z̈, x) dF̆1(z̈, x) <∞.

This assumption ensures the existence of the coefficient matrices

a∗φ,0 ≡M−1
ψ,0Kψφ,0, a∗φ,1 ≡M−1

ψ,1Kψφ,1.

Using these coefficient matrices, we can also define the residual vector

η′t ≡ φ(Ṽt)′ −X ′
ψta

∗
φ,0 − ΛtX ′

ψt(a
∗
φ,1 − a∗φ,0), t = 1, 2, . . . .
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By construction, these residuals are uncorrelated with both Xψt and ΛtXψt.
The desired behavior of our test statistic is ensured by the following condition,
in which we define

M̂ψ,1 ≡ T−1
1

n∑
t=1

ΛtXψtX
′
ψt.

Assumption C.3 (Laws of Large Numbers, Central Limit Theorem)

(a) p̂1
p→ p1;

(b) M̂ψ,0
p→Mψ,0 and M̂ψ,1

p→Mψ,1;

(c) There exists a 2qr × 2qr matrix D, finite and non-singular, such that

D−1/2n−1/2
n∑
t=1

[
I ⊗Xψt

Λt(I ⊗Xψt)

]
ηt

d→ N(0, I).

The conditional exogeneity test statistic is defined as

Wn ≡ n[ vec (α̂φ,1 − α̂φ,0)]′Ĉ−1
n [ vec (α̂φ,1 − α̂φ,0)],

where

Ĉn ≡ RM̂−1
ψ D̂nM̂

−1
ψ R′,

R = [0qr, Iqr],

M̂ψ =
[

(1− p̂1)M̂ψ,0 + p̂1M̂ψ,1

p̂1M̂ψ,1

p̂1M̂ψ,1

p̂1M̂ψ,1

]
,

and D̂n is a consistent estimator of D. For example, in the absence of dynamic
misspecification, a heteroskedasticity-consistent estimator for D is

D̂n = n−1
n∑
t=1

[
I ⊗Xψt

Λt(I ⊗Xψt)

]
η̂tη̂

′
t

[
I ⊗Xψt

Λt(I ⊗Xψt)

]′
,

where
η̂′t ≡ φ(Ṽt)′ −X ′

ψt α̂φ,0 − ΛtX ′
ψt(α̂φ,1 − α̂φ,0).

We have the following result, establishing the properties of our test for con-
ditional exogeneity given predictive proxies.

Proposition 7.1: Suppose Assumptions C.1-C.3 hold, and that D̂n
p→ D.

Suppose further that for finite matrices a∗φ,0 and a∗φ,1∫
φ(v(z̈, ü))′dJ(ü|z̈, x) dĞ0(z̈|x) = x′ψa

∗
φ,0∫

φ(v(z̈, ü))′dJ(ü|z̈, x) dĞ1(z̈|x) = x′ψa
∗
φ,1.
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(i) Given H0 : Ğ0 = Ğ1 a.s., that is, Z̈t ⊥ Λt | Xt, we have a∗φ,0 = a∗φ,1, and
as n→∞

Wn
d→ X 2

qr.

(ii) Suppose instead that a∗φ,0 6= a∗φ,1. Then for any sequence {kn} = o(n)

P [Wn > kn] → 1 as n→∞.

Proposition 7.1(i) implies that we can perform a test of conditional exogene-
ity having asymptotic level α by rejecting H0 whenever

Wn ≥ X 2
qr,1−α,

where X 2
qr,1−α is the 1 − α percentile of the X 2

qr distribution. Proposition
7.1(ii) implies that when conditional exogeneity fails in such a way that a∗φ,0 6=
a∗φ,1, then a test of fixed asymptotic level α can detect this with probability
approaching one. Further, the asymptotic level can be driven to zero, and,
provided this is at a proper rate such that {kn} = o(n) (not too fast), power
still approaches one.

These results are entirely standard. Local power properties are also entirely
standard, so we do not state them here. They can be obtained by specializing
results of White (1994, ch. 8).

To complete this section, we consider the consequences of rejecting or of
failing to reject H0. If one rejects H0, then conditional exogeneity fails and
the consistency of α̂ψ as an estimator for the average effect ∆∗

1 of the natu-
ral experiment is seriously in question. If one’s objective is to undermine a
rival theory, then this rejection accomplishes that goal by demonstrating the
existence of important determining factors (proxied by Ṽt) left out of account
whose distribution differs between regimes and that may therefore account for
some or all of the observed differences in outcomes between regimes.

More constructively, faced with rejection of H0, one may append some or all
of the elements of Ṽt to W̃t, thereby augmenting the set of predictive proxies.
(Recall that our assumptions ensure that the elements of Ṽt constitute valid
predictive proxies satisfying B.l.) One may repeat the conditional exogeneity
test with the augmented set of predictive proxies, continuing to augment W̃t

with elements of Ṽt until H0 is no longer rejected or all available proxies have
been utilized. In considering which proxies to move from Ṽt to W̃t first, it makes
sense to pay primary attention to proxies for the most important unobserved
factors and/or for the unobserved factors whose distributions apparently differ
the most between regimes. Thus, in the cartel example the price of a raw
material that plays a major role in the variable cost of the product of interest
should be given high priority. This priority is enhanced if the distribution of
this raw material appears to change dramatically between regimes, but it is
diminished if its distribution is relatively stable.

Finally, consider the consequences of failing to reject conditional exogeneity.
then one has empirical evidence that accords with the consistency of α̂ψ as an
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estimator of the average effect ∆∗
1 of the natural experiment. By constructing

the test in such a way to achieve non-trivial power (by compelling choice of prox-
ies and relevant transformations φ), such empirical evidence can considerably
buttress one’s claim to have a useful measure of the effect of interest.

We note, although for brevity we do not pursue this here, that even when H0

is not rejected it may be helpful to augment W̃t with some or all of the elements
of Ṽt. The reason for this is that by including additional valid predictive
proxies in the prediction equation, one reduces the variation of the prediction
error, which leads to more precise estimates of the effect of interest.

8 Concluding Remarks

In this paper we have considered methods for analyzing the effects of a nat-
ural experiment, with particular attention to natural experiments created by
an intervention or structural change occurring at a specific point in time. Our
analysis draws on the extensive literature on treatment effects (Rubin, 1974;
Rosenbaum and Rubin, 1983; Hahn, 1998; Hirano, Imbens, and Ridder, 2003),
but unlike the typical situation in the treatment effects literature, the treatment
constituted by the natural experiments considered here may precede the mea-
surement of relevant covariates. Accordingly, we have devoted particular atten-
tion to articulating a framework, provided in Section 2, that permits the effects
of such treatments to be analyzed without introducing confounding biases. Our
framework also has utility in the more traditional cross-section analysis of treat-
ment effects, in that by requiring the explicit identification of observable and
unobservable determining factors for the response variable of interest, it pro-
vides an explicit and extensive role for economic theory in identifying suitable
and unsuitable covariates.

Given the major role heretofore played by the dummy variable approach in
estimating the effect of such natural experiments as government policy inter-
ventions, merger events, and cartels, we provide a detailed examination of the
conditions necessary and sufficient for the dummy variable approach to yield
reliable estimates of the effects of interest. We find that the conditions under
which the dummy variable approach delivers consistent estimates are very strin-
gent. The dummy variable model must include all relevant determining factors,
measured without error, and must either be correctly specified in full or, if mis-
specified, must be applied in a setting in which the joint distribution of the
observable and unobservable determining factors does not change between the
regimes of the natural experiment. Neither of these possibilities is particularly
plausible for most phenomena of interest to economists.

We then turn our attention to methods that draw on the extensive treat-
ment effects literature. Using notions of unconfoundedness (Rubin, 1974) and
the propensity score (Rosenbaum and Rubin, 1983), Hahn (1998) and Hirano,
Imbens, and Ridder (2003) have proposed estimators for treatment effects in
cross-section settings that attain the semiparametric efficiency bound. These
estimators are consistent and asymptotically normal estimators for the effects
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of interest, and in particular for the “treatment effect on the treated,” without
having to impose correct specification of an underlying model, without requiring
the absolutely accurate measurement of all determining factors, and without re-
quiring the stability of the joint distribution of the determining factors between
treatment regimes.

The Hahn and HIR estimators are thus potentially appealing candidates for
estimating the effects of the natural experiments of interest here, but they also
possess certain drawbacks. First, they are potentially computationally challeng-
ing, as they involve nonparametric estimation of one or more unknown condi-
tional expectations. Second, their properties in the time-series applications of
interest here are presently unknown. One may expect that plausible conditions
can be found under which the Hahn and HIR estimators retain their asymptotic
normality properties in time-series settings relevant in economic applications,
but the semiparametric bound for these settings is currently unknown, as is
whether the Hahn or HIR estimators achieve this bound.

It is of clear interest to extend the analysis of the Hahn and HIR estima-
tors to the time-series context, but here we have pursued the less ambitious
but still useful goal of proposing and analyzing a quasi-nonparametric esti-
mator that shares many of the advantages of the Hahn and HIR estimators,
but which is computationally straightforward and whose asymptotic properties
can be straightforwardly analyzed under conditions that plausibly hold in ei-
ther time-series or cross-section applications in economics. Our estimator can
be computed from a dummy variable regression similar to the simple dummy
variable approach first analyzed, but as for the Hahn and HIR estimators, the
requirements of correct specification, absence of measurement error, etc., are no
longer an issue. As we show, this estimator is consistent for the effect of inter-
est and asymptotically normal under conditions that admit considerable time
dependence, with an asymptotic variance that can be straightforwardly esti-
mated by a variety of convenient HAC estimators. Because of its computational
simplicity and known properties, this alternate quasi-nonparametric estimator
should prove useful in applications.

As mentioned above, the framework of Section 2 provides clear opportunities
for gaining insight into the choice of covariates. In Sections 6 and 7, we examine
these issues in detail, from a theoretical perspective in Section 6 and from an
empirical perspective in Section 7, where we provide tests for the conditional
exogeneity property.

There are a host of interesting questions and opportunities for future re-
search posed by the work reported here. The following is intended as only a
partial list. Determining the properties of the Hahn and HIR estimators (as
well as other natural variants) in a time-series setting is of immediate inter-
est. Although the conditions for the DGP specified here permit considerable
time-series dependence, they do not apply generally to cointegrated processes.
Accordingly, it is of definite interest to extend the analysis undertaken here
to permit cointegrated DGPs. For this, it will be necessary to pursue another
interesting direction for further research, which is to go beyond the analysis
of the determining reduced form that has been our focus here and to analyze
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the determining structural equations. This will permit a decomposition of the
total effect of a natural experiment into component direct and indirect effects.
In particular, this will permit researchers to work with time-series models that
explicitly include lagged dependent variables or cointegrating effects. Another
interesting possibility is to build on the framework developed here to permit
estimation of the effects of continuous treatments, analogous to the analysis for
binary treatment conducted here.

On the empirical side, the methods proposed here offer opportunities for
gaining considerable new or additional insight into a variety of economic phe-
nomena involving natural experiments operating in time, and we look forward
to pursuing these in future work.

9 Mathematical Appendix

Proof of Proposition 3.1. The result follows immediately by applying, e.g.,
Proposition 2.27 of White (2001) to α̂ and β̂.

Proof of Proposition 3.2 By definition

α∗ −∆∗
1 = µ1 −m′

1β
∗ − (µ1 − µ01)

= µ01 −m′
1β

∗

= µ01 −m′
1β

∗
0 +m′

1(β
∗
0 − β∗).

Now
µ01 ≡

∫
c0(z̃, z̈) dG̃1(z̈|z̃) dH1(z̃).

It follows straightforwardly that

µ01 = m′
1β

∗
01,

as β∗01 satisfies the orthogonality conditions∫
z(c0(z̃, z̈)− z′β∗01) dG̃1(z̈|z̃) dH1(z̃) = 0,

and because the first element of z is unity, this implies∫
c0(z̃, z̈) dG̃1(z̈|z̃) dH1(z̃)−

∫
z′β∗01 dG̃1(z̈|z̃) dH1(z̃) = µ01 −m′

1β
∗
01 = 0.

Substituting m′
1β

∗
01 for µ01 gives

α∗ −∆∗
1 = m′

1(β
∗
01 − β∗0) +m′

1(β
∗
0 − β∗).

To obtain the first expression of Proposition 3.2, it suffices to show that

m′
1β

∗ = m′
1β

∗
0 − p1(m0 −m1)′S′S(β∗1 − β∗0)

−p1(1− p1)(m0 −m1)′S′M̃−1(M̃1 − M̃0)S(β∗1 − β∗0).
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We begin by decomposing

β∗ ≡ [(1− p1)M0 + p1(M1 −m1m
′
1)]

−1[(1− p1)L0 + p1(L1 −m1µ1)]
= [M0 + π(M1 −m1m

′
1)]

−1[L0 + π(L1 −m1µ1)],

where π ≡ p1/(1 − p1). Partitioning M0 and M1 to explicitly expose the
non-constant components of z = (1, z̃)′, we have

M0 =
[

1 m′
0S

′

Sm0 SM0S
′

]
M1 =

[
1 m′

1S
′

Sm1 SM1S
′

]
,

where S is the selection matrix such that z̃′ = Sz. It follows that

M0 + π(M1 −m1m
′
1) =

[
1 m′

0S
′

Sm0 S(M0 + π(M1 −m1m
′
1))S

′

]
,

as the first row and column of M1 −m1m
′
1 are zero.

Applying the formula for the partitioned inverse gives

[M0 + π(M1 −m1m
′
1)]

−1 =
[

1 +m′
0S

′M̈−1Sm0 −m′
0S

′M̈−1

−M̈−1Sm0 M̈−1

]
,

where

M̈ ≡ M̃0 + πM̃1

M̃0 ≡ S(M0 −m0m
′
0)S

′

M̃1 ≡ S(M1 −m1m
′
1)S

′.

Next we have

L0 + π(L1 −m1µ1) =
[
µ0

S[L0 + π(L1 −m1µ1)

]
,

so that

β∗ =
[

µ0 +m′
0S

′M̈−1Sm0µ0 −m′
0S

′M̈−1S[L0 + π(L1 −m1µ1)]
−M̈−1Sm0µ0 + M̈−1S[L0 + π(L1 −m1µ1)

]
.

Because the first element of m1 is unity, from this we obtain

m′
1β

∗ = µ0 +m′
0S

′M̈−1Sm0 µ0 −m′
0S

′M̈−1S[L0 + π(L1 −m1µ1)]
−m′

1S
′M̈−1Sm0µ0 +m′

1S
′M̈−1S[L0 + π(L1 −m1µ1)].

The definitions of β∗0 and β∗1 imply that

M̃0Sβ
∗
0 = S(L0 −m0µ0)

M̃1Sβ
∗
1 = S(L1 −m1µ1).
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Substituting these expressions gives

m′
1β

∗ = µ0 − (m0 −m1)′S′M̈−1(M̃0Sβ
∗
0 + πM̃1Sβ

∗
1)

= µ0 − (m0 −m1)′S′M̃−1[(1− p1)M̃0Sβ
∗
0 + p1M̃1Sβ

∗
1],

where we replace M̈ with M̈ = (1 − p1)−1M̃ . Adding and subtracting terms
appropriately gives

m′
1β

∗ = µ0 − (1− p1)(m0 −m1)′S′Sβ∗0 − p1(m0 −m1)′S′Sβ∗1
−(m0 −m1)′SM̃−1[(1− p1)(M̃0 − M̃)Sβ∗0 + p1(M̃1 − M̃)Sβ∗1]

= µ0 − (m0 −m1)′S′Sβ∗0 − p1(m0 −m1)′S′S(β∗1 − β∗0)
−(m0 −m1)′S′M̃−1[(1− p1)p1(M̃0 − M̃1)Sβ∗0 + p1(1− p1)(M̃1 − M̃0)Sβ∗1],

after some rearrangement and using the facts that

M̃0 − M̃ = p1(M̃0 − M̃1)
M̃1 − M̃ = (1− p1)(M̃1 − M̃0).

The orthogonality conditions underlying β∗0 ensure that µ0 = m′
0β

∗
0. It follows

that

µ0 − (m0 −m1)′S′Sβ∗0 = m′
0β

∗
0 − (m0 −m1)′S′Sβ∗0

= m′
1β

∗
0 + (m0 −m1)′β∗0 − (m0 −m1)′S′Sβ∗0

= m′
1β

∗
0,

The last equality holds as the first element of m0 −m1 is zero. Thus

m′
1β

∗ = m′
1β

∗
0 − p1(m0 −m1)′S′S(β∗1 − β∗0)

−p1(1− p1)(m0 −m1)′S′M̃−1(M̃1 − M̃0)S(β∗1 − β∗0),

as was to be shown, establishing the first expression of Proposition 3.2.
To obtain the second expression, it suffices to show that

m′
1(β

∗
01 − β∗0) =

∫
c0(z̃, z̈)(dG̃1(z̈|z̃)− dG̃0(z̈|z̃)) dH1(z̃)

+
∫
c0(z̃, z̈) dG̃0(z̈|z̃)(dH1(z̃)− dH0(z̃))

+(m0 −m1)′β∗0,

as (m0 −m1)′S′S(β∗1 − β∗0) = (m0 −m1)′(β∗1 − β∗0). Simplifying, we have∫
c0(z̃, z̈) dG̃1(z̈ | z̃) dH1(z̃)−

∫
c0(z̃, z̈) dG̃0(z̈|z̃) dH0(z̃) +m′

0β
∗
0 −m′

1β
∗
0

= µ01 −m′
0β

∗
0 +m′

0β
∗
0 −m′

1β
∗
0

= m′
1β

∗
01 −m′

1β
∗
0,
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using the definition of µ01 and the orthogonality condition ensuring that µ0 =
m′

0β
∗
0. The desired result therefore holds, establishing the second expression

for α∗ −∆∗
1 in Proposition 3.2.

Proof of Corollary 3.3. Immediate from of Proposition 3.2.

Proof of Corollary 3.4. (i) We have

β∗0 ≡ M−1
0 L0

= M−1
0

∫
zc0(z̃, z̈) dG̃0(z̈|z̃) dH0(z̃)

= M−1
0

∫
z(z′b∗ + u0(z̈)) dG̃0(z̈|z̃) dH0(z̃)

= M−1
0 [
∫
zz′dG̃0(z̈|z̃) dH0(z̃)]b∗

+M−1
0

∫
zu0(z̈) dG̃0(z̈|z̃) dH0(z̃)

= M−1
0 M0b

∗ +M−1
0

∫
z[
∫
u0(z̈) dG̃0(z̈|z̃)] dH0(z̃)

= b∗,

as we have assumed that
∫
u0(z̈) dG̃0(z̈|z̃) = 0. Next,

β∗01 ≡ M−1
1 L01

= M−1
1

∫
zc0(z̃, z̈) dG̃1(z̈|z̃) dH1(z̃)

= M−1
1

∫
z(z′b∗ + u0(z̈)) dG̃1(z̈|z̃) dH1(z̃)

= M−1
1 [
∫
zz′dG̃1(z̈|z̃) dH1(z̃)]b∗

+M−1
1

∫
zu0(z̈) dG̃1(z̈|z̃) dH1(z̃)

= b∗ +M−1
1

∫
zu0(z̈) dG̃1(z̈|z̃) dH1(z̃)

= b∗ +M−1
1

∫
z[
∫
u0(z̈) dG̃1(z̈|z̃)−

∫
u0(z̈) dG̃0(z̈|z̃)] dH1(z̃)

= b∗ +M−1
1

∫
zu0(z̈)[dG̃1(z̈|z̃)− dG̃0(z̈|z̃)] dH1(z̃),

where the next to last equality follows given
∫
u0(z̈) dG̃0(z̈|z̃) = 0.
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Finally,

β∗1 ≡ M−1
1 L1

= M−1
1 L01 +M−1

1 (L1 − L01)

= β∗01 +M−1
1

∫
z(c1(z̈, z̃)− c0(z̈, z̃)) dG̃1(z̈|z̃) dH1(z̃)

= β∗01 +M−1
1

∫
zδ∗dG̃1(z̈|z̃) dH1(z̃)

= β∗01 +M−1
1

∫
zz′dG̃1(z̈|z̃) dH1(z̃) S′1δ

∗

= β∗01 + S′1δ
∗.

(ii) If G̃0 = G̃1 a.s.−H1, then

M−1
1

∫
zu0(z̈)[dG̃1(z̈|z̃)− dG̃0(z̈|z̃)] dH1(z̃) = 0,

so β∗01 = b∗ = β∗0, β
∗
1 − β∗0 = S′1δ

∗, and finally S(β∗1 − β∗0) = SS′1δ
∗ = 0,

as SS′1 = 0, so that from Proposition 3.2

α∗ = ∆∗
1.

Moreover,

∆∗
1 = µ1 − µ01

=
∫

(c1(z̈, z̃)− c0(z̈, z̃)) dG̃1(z̈|z̃) dH1(z̃)

= δ∗
∫
dG̃1(z̈|z̃) dH1(z̃)

= δ∗,

so α∗ = δ∗ = ∆∗
1.

Proof of Corollary 3.5.

(i) The results for β∗0 and β∗01 follow by reasoning identical to 3.4(i), replacing
b∗ with b∗0. The result for β∗1 follows by reasoning analogous to that for
β∗0 replacing subscript 0’s with subscript 1’s.

(ii) If G̃0 = G̃1 a.s.−H1, then β∗0 = β∗01 by the same logic as in 3.4(ii). The
expression for α∗−∆∗

1 now follows from Proposition 3.2, setting β∗0 = β∗01,
β∗0 = b∗0, and β∗1 = b∗1.

Proof of Proposition 4.1: Lemma 4.1 of Dawid (1979) ensures that Z̈ ⊥
Λ | (Z̃, W̃ ) implies (Z̈, Z̃, W̃ ) ⊥ (Λ, Z̃, W̃ ) | (Z̃, W̃ ). It follows from Dawid
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(1979, Lemma 4.2) that f(Z̈, Z̃, W̃ ) ⊥ g(Λ, Z̃, W̃ ) | (Z̃, W̃ ) for any measurable
functions f and g. Put f(z̈, z̃, w̃) = (c0(z̃, z̈), c1(z̃, z̈)) and g(λ, z̃, w̃) = λ. It
follows that

(c0(Z̃, Z̈), c1(Z̃, Z̈)) ⊥ Λ | (Z̃, W̃ ).

Proof of Proposition 5.1. The result follows immediately by applying, e.g.,
Proposition 2.27 of White (2001) to α̂ψ and β̂ψ.

Proof of Proposition 5.2. We have (with x ≡ (z̃, w̃))

α∗ψ −∆∗
1 = µ1 −m′

ψ,1β
∗
ψ,0 − (µ1 − µ01)

= µ01 −m′
ψ,1β

∗
ψ,0

=
∫
µ̆01(x) dH̆1(x)−

∫
x′ψβ

∗
ψ,0 dH̆1(x)

=
∫

(µ̆01(x)− µ̆0(x)) dH̆1(x)

−
∫

(µ̆0(x)− x′ψβ
∗
ψ,0) dH̆1(x),

where the last equality follows by adding and subtracting
∫
µ̆0(x) dH̆1(x) and

the next to last equality follows because

µ01 =
∫

[
∫
c0(x) dĞ1(z̈|x)] dH̆1(x) =

∫
µ̆01(x) dH̆1(x).

Proof of Corollary 5.3. (i) We have

β∗ψ,0 ≡ M−1
ψ,0Lψ,0

= M−1
ψ,0

∫
xψc0(z̃, z̈) dĞ0(z̈|x) dH̆0(x)

= M−1
ψ,0

∫
xψµ̆0(x) dH̆0(x)

= M−1
ψ,0

∫
xψx

′
ψb

∗
ψ,0 dH̆0(x),

where the last equality follows given µ̆0(x) = x′ψb
∗
ψ,0 and the next to last equality

follows by definition of µ̆0. Thus

β∗ψ,0 = M−1
ψ,0Mψ,0 b

∗
ψ,0 = b∗ψ,0.

(ii) From (i) above and Proposition 4.2 it follows that

α∗ψ −∆∗
1 =

∫
(µ̆01(x)− µ̆0(x)) dH̆1(x).
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Now

µ̆01(x)− µ̆0(x) =
∫
c0(z̃, z̈)(dĞ1(z̈|x)− dĞ0(z̈|x))

= 0 a.s. − H̆1,

given that Ğ0 = Ğ1 a.s. −H̆1. Thus α∗ψ = ∆∗
1.

Proof of Theorem 5.4: By definition
√
n(α̂ψ − α∗ψ) =

√
n(µ̂1 − µ1 − m̂′

ψ,1β̂ψ,0 +m′
ψ,1β

∗
ψ,0)

=
√
n(µ̂1 − µ1)− β∗′ψ,0

√
n(m̂ψ,1 −mψ,1)

−m′
ψ,1

√
n(β̂ψ,0 − β∗ψ,0)

−(m̂ψ,1 −mψ,1)′
√
n(β̂ψ,0 − β∗ψ,0).

Assumption B.3(b) ensures that m̂ψ,1 − mψ,1 = op(1) and Assumptions B.1,
B.2(a), B.2(b.i), B.2(c.i), B.3, and B.5 imply

√
n(β̂ψ,0 − β∗ψ,0) = Op(1), so that

√
n(α̂ψn − α∗ψ) =

√
n(µ̂1 − µ1 − β∗′ψ,0(m̂ψ,1 −mψ,1))

−m′
ψ,1

√
n(β̂ψ,0 − β∗ψ,0) + op(1).

Substituting for µ̂1 and m̂ψ,1, we have

µ̂1 − µ1 − β∗′ψ,0(m̂ψ,1 −mψ,1)

= T−1
1

∑
t∈T1

(Yt −X ′
ψtβ

∗
ψ,0 − µ1 +m′

ψ,1β
∗
ψ,0)

= T−1
1

∑
t∈T1

[Yt −X ′
ψtβ

∗
ψ,1 +X ′

ψtβ
∗
ψ,1 −X ′

ψtβ
∗
ψ,0 − α∗ψ]

= T−1
1

∑
t∈T1

[εt1 + (µ∗1(Xψt)− µ∗0(Xψt)− α∗ψ)],

where εt1 ≡ Yt − X ′
ψtβ

∗
ψ,1, µ

∗
1(Xψt) ≡ X ′

ψtβ
∗
ψ,1, µ

∗
0(Xψt) = X ′

ψtβ
∗
ψ,0, and we

have substituted α∗ψ ≡ µ1 −m′
ψ,1β

∗
ψ,0 in the second equality. Observe that by

construction εt1 is uncorrelated with Xψt and thus with (µ∗1(Xψt)− µ∗0(Xψt)−
α∗ψ) for t ∈ T1. It follows that
√
n(µ̂1 − µ1 − β∗′ψ,0(m̂ψ,1 −mψ,1))

= (T1/n)−1n−1/2
n∑
t=1

Λt[εt1 + (µ∗1(Xψt)− µ∗0(Xψt)− α∗ψ)]

= p−1
1 n−1/2

n∑
t=1

Λt[εt1 + (µ∗1(Xψt)− µ∗0(Xψt)− α∗ψ)] + op(1),
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where the last equality follows given Assumptions B.3(a) and B.5(c).
It follows from Assumptions B.1, B.2(a), B.2(b.i), B.2(c.i), B.3 and B.5(a)

that

√
n(β̂ψ,0 − β∗ψ,0) = (T0/n)−1M−1

ψ,0n
−1/2

n∑
t=1

(1− Λt)Xψtεt0 + op(1)

= p−1
0 M−1

ψ,0n
−1/2

n∑
t=1

(1− Λt)Xψtεt0 + op(1).

Combining these results, we have

√
n(α̂ψ − α∗ψ) = n−1/2

n∑
t=1

ξt + op(1),

where

ξt ≡ p−1
1 Λt[εt1 + (µ∗1(Xψt)− µ∗0(Xψt)− α∗ψ)]− p−1

0 m′
ψ,1M

−1
ψ,0(1− Λt)Xψtεt0.

It now follows immediately from Assumption B.5(i) that
√
n(α̂ψ − α∗ψ) d→ N(0, σ2

ξ).

Proof of Proposition 6.1. First suppose that Y = g(Z) with probability
1 (w.p.1). Let A ∈ B(Rk) and B ∈ B(Rm), where B(Rk) and B(Rm) are the
Borel σ-fields generated by the open sets of Rk and Rm respectively. Then

P [V ∈ A,Y ∈ B|Z] = P [V ∈ A, g(Z) ∈ B|Z]

= P [V ∈ A|Z] 1[g(Z) ∈ B]

= P [V ∈ A|Z]P [g(Z) ∈ B|Z]

= P [V ∈ A|Z]P [Y ∈ B|Z],

as Y = g(Z) with probability 1 if and only if for all B ∈ B(Rm) we have
P [g(Z) ∈ B|Z] = 1[g(Z) ∈ B]. As the result holds for arbitrary A and B, we
have that Y ⊥ V |Z.

Next suppose that Y ⊥ V |Z holds, but that Y = g(Z) w.p.1 is false. That
is, for all g measurable −B(R`)/B(Rm)

P [f(V,Z) = g(Z)] < 1.

Pick any g measurable−B(R`)/B(Rm). Then P [f(V,Z) = g(Z)] < 1 implies
the existence of sets Ag ∈ B(Rk), Bg ∈ B(R`) and Cg ∈ B(Rm) such that
P [Ag ×Bg] > 0 and for all (v, z) ∈ Ag ×Bg we have

1[f(v, z) ∈ Cg] 6= 1[g(z) ∈ Cg].
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Thus for all z ∈ Bg, P [Bg] > 0,

P [ f(V, z) ∈ Cg|Z = z] 6= P [g(Z) ∈ Cg|Z = z]
= 1[g(z) ∈ Cg],

so that for all z ∈ Bg,

0 < P [f(V, z) ∈ Cg | Z = z] < 1.

Now, let Ag,z = f−1(Cg, z) be the pre-image of Cg under f(·, z), so for all z

{ω ∈ Ω | f(V(ω), z) ∈ Cg} = {ω ∈ Ω | V(ω) ∈ Ag,z}.

It follows that

{ω | f(W (ω), z) ∈ Cg,V(ω) ∈ Ag,z} = {ω | V(ω) ∈ Ag,z},

so that
P [V ∈ Ag,z, f(V, z) ∈ Cg | Z = z] = P [V ∈ Ag,z | Z = z].

By conditional independence we also have for all z

P [V ∈ Ag,z, f(V, x) ∈ Cg | Z = z]

= P [V ∈ Ag,z | Z = z]P [f(V, z) ∈ Cg | Z = z]

= P [V ∈ Ag,z | Z = z]2,

as P [V ∈ Ag,z | Z = z] = P [f(V, z) ∈ Cg | Z = z].
Combining our last two results we have that for all z

P [V ∈ Ag,z | Z = z] = P [V ∈ Ag,z | Z = z]2.

But for all z ∈ Bg, P [Bg] > 0, we have

0 < P [V ∈ Ag,z | Z = z] = P [f(V, z) ∈ Cg | Z = z] < 1,

which implies
P [V ∈ Ag,z | Z = z] 6= P [V ∈ Ag,z | Z = z]2

for all z ∈ Bg. We thus have a contradiction, and this contradiction is obtained
regardless of our choice for g. It follows that we cannot simultaneously have
Y ⊥ V |Z and that Y = g(Z) w.p.1 is false. The proof is complete.

Proof of Proposition 7.1. (i) If Ğ0 = Ğ1 a.s.− H̆1 it follows immediately
that a∗φ,0 = a∗φ,1. The result now follows immediately by application of Theorem
4.31 of White (2001). (ii) The conditions given ensure the consistency of α̂φ,0
for a∗φ,0 and of α̂φ,1 for a∗φ,1. The result follows by application of Theorem 8.16
of White (1994).

54



References

Angrist, J., 2002a, Vouchers for Private Schooling in Colombia: Evidence
from a Randomized Natural Experiment, American Economic Review, 92, 1535-
1558.

Angrist, J., 2002b, How Do Sex Ratios Affect Marriage and Labor Mar-
kets? Evidence from America’s Second Generation, The Quarterly Journal of
Economics, 117, 997-1038.

Auten, G. and R. Carroll, 1999, The Effect of Income Taxes on Household
Income, The Review of Economics & Statistics, 81, 681-693.

Berry, S. and J. Waldfogel, 2001, Do Mergers Increase Product Variety?
Evidence From Radio Broadcasting, The Quarterly Journal of Economics, 116,
1009-1025.

Bronars, S. and J. Grogger, 1994, The Economic Consequences of Unwed
Motherhood: Using Twin Births as a Natural Experiment, American Economic
Review, 84, 1141-1156.

Campos, J., D. Hendry, and H.-M. Krolzig, 2003, Consistent Model Selection
by an Automatic Gets Approach, Oxford University Nuffield College Working
Paper.

Chen, X., H. Hong, and A. Tarozzi, 2004, Semiparametric Efficiency in GMM
Models of Nonclassical Measurement Error, Missing Data and Treatment Ef-
fects, Working Paper, New York University, Department of Economics.

Chen, X. and H. White, 1999, Improved Rates and Asymptotic Normality for
Nonparametric Neural Network Estimators, IEEE Transactions on Information
Theory, 45, 628-691.

Chow, G., 1960, Tests of Equality Between Sets of Coefficients in Two Linear
Regressions, Econometrica, 28, 591-605.

Cook, D., 2002, World War II and Convergence, The Review of Economics
& Statistics, 84, 131-138.

Dawid, A.P., 1979, Conditional Independence in Statistical Theory, Journal
of the Royal Statistical Society, Series B, 41, 1-31.

Dawid, A.P., 2000, Causal Inference Without Counterfactuals, Journal of
the American Statistical Association, 95, 407-448.

Deacon, R. and J. Sonstelie, 1985, Rationing by Waiting and the Value of
Time: Results from a Natural Experiment, Journal of Political Economy, 93,
627-647.

Deltas, G. and G. Kosmopoulou, 2004, ‘Catalogue’ vs ‘Order-of-Sale’ Effects
in Sequential Auctions: Theory and Evidence from a Rare Book Sale, Economic
Journal, 114, 28-54.

Fisher, F., 1980, Multiple Regression in Legal Proceedings, Columbia Law
Review, 85, 702-736.

Florens J.P. and D. Fougère, 1996, Noncausality in Continuous Time, Econo-
metrica, 65, 1195-1212.

Florens, J.P. and M. Mouchart, 1982, A Note on Non-causality, Economet-
rica, 50, 583-591.

55



Frech III, H.E., 1976, The Property Rights Theory of the Firm: Empirical
Results from a Natural Experiment, Journal of Political Economy, 84, 143-52.

Froehlich, M., 2004, A Note On the Role of the Propensity Score for Esti-
mating Average Treatment Effects, Econometric Reviews, 23, 167-174.

Gallant, A.R. and H. White, 1992, On Learning the Derivatives of an Un-
known Mapping with Multilayer Feedforward Networks, Neural Networks, 5,
129-138.

Gencay, R., F. Selchuk, and B. Whitcher, 2001, An Introduction to Wavelets
and Other Filtering Methods in Finance and Economics. New York: Academic
Press.
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