Skip directly to search Skip directly to A to Z list Skip directly to site content Skip directly to page options
CDC Home

NIOSH Science Blog

Safer Healthier Workers

Share
Compartir

Selected Category: Nanotechnology

Safe Handling of Advanced Nanomaterials

Categories: Nanotechnology

In the last five years, research and development activities in the field of nanotechnology have shifted to include advanced nanomaterials. The main feature of advanced nanomaterials that distinguishes them from simpler nanomaterials, such as carbon black and nanoscale TiO2 used primarily as additives, is the ability of advanced nanomaterials to change or evolve properties during their use, as a result of intended and unintended reactions to the external environment.  Examples of advanced nanomaterials include nanomaterials functionalized for specific applications, such as nanoscale gold used in cancer treatment therapies, quantum dots used in medical imaging of the body, and carbon nanotubes and graphene used in electronics.  Depending on the type of nanomaterial and the conditions of exposure, such a change of properties may result in health risks to workers handling advanced nanomaterials if exposure is not adequately controlled.

Respiratory Protection for Workers Handling Engineered Nanoparticles

Categories: Nanotechnology, Respiratory health

Assessment of nanoparticle capture

Figure 1. Assessment of nanoparticle capture: n = 5; error bars represent standard deviations Sodium Chloride (TSI 3160); Silver (custom-built); Flow rate 85 L/min

Introduction

Each day millions of workers in the United States use National Institute for Occupational Safety and Health (NIOSH) certified respirators to reduce exposure to harmful gases, vapors, and particulate hazards. NIOSH has certification, quality assurance, and auditing procedures in place (42 CFR Part 84) that assure purchasers and users that the products they are buying/using have been tested and manufactured to strict standards. When selected, maintained and used in the context of an Occupational Safety and Health Administration (OSHA)-compliant respiratory protection program, in which personal protective technology is part of the hierarchy of controls to protect the worker, respirator users can expect that their respirator is working and reducing the amount of hazards that they could potentially breathe. However, as new hazards emerge, the applicability of the science that NIOSH uses to base respirator test methods, performance requirements, and use recommendations needs to be continually reaffirmed, updated and improved to assure the expected level of protection is provided.

Pleuropulmonary disease in a polyacrylate facility

Categories: Chemicals, Nanotechnology, Respiratory health

A reminder of the need to protect workers from hazardous dust

On June 24, 2011 the Indian Express, an on-line Indian news outlet, published an article reporting a “new” occupational lung disease and implicating a polyacrylate powder, which “seemed to be at the nano-level.”

The article is based on an investigation published by the Peoples Training and Research Center, a voluntary organization raising awareness and providing training on occupational safety and health. It reports a cluster of five cases of workers with severe pleural and pulmonary disease, which developed within 10–12 months of working at a factory that manufactures and processes polyacrylate and other polymers for use in pharmaceuticals. It is not entirely clear from the report, but it appears that two workers had interstitial lung disease with pneumothorax; one worker had interstitial lung disease associated with severe restrictive impairment; one worker had at least one pneumothorax; and one worker died after developing a symptom complex of fatigue, anorexia, and breathlessness, but no additional medical information was available.

Titanium Dioxide: A Changing Paradigm in Occupational Risk Management

Categories: Chemicals, Nanotechnology

cover of TIO2 documentA recently released NIOSH guidance document (NIOSH, 2011) on handling titanium dioxide (TiO2) powders in the workplace generated a high level of interest as it put forward an innovative approach that might have implications beyond TiO2. Specifically it may be the first document (originally released for external review as a draft in 2005) to recommend separate occupational exposure limits for the same material based on particle size. This document signifies increasing attention to evaluating and mitigating risks of emerging hazards in the workplace before adverse health effects occur in workers and could proactively be used for how other poorly soluble, low toxicity (PSLT) particles are controlled in the workplace.

What is the basis for this document?

Distinct exposure limits for distinct size fractions. NIOSH recommendations for TiO2, an insoluble white powder, used extensively in many commercial products, including paint, cosmetics, plastics, paper, and food, as an anticaking or whitening agent, go back to 1988 when it classified respirable dust of this material as a potential occupational carcinogen (NIOSH, 2002).

Older Posts

Pages
  1. [1]
  2. 2
 
USA.gov: The U.S. Government's Official Web PortalDepartment of Health and Human Services
Centers for Disease Control and Prevention   1600 Clifton Rd. Atlanta, GA 30333, USA
800-CDC-INFO (800-232-4636) TTY: (888) 232-6348 - cdcinfo@cdc.gov
A-Z Index
  1. A
  2. B
  3. C
  4. D
  5. E
  6. F
  7. G
  8. H
  9. I
  10. J
  11. K
  12. L
  13. M
  14. N
  15. O
  16. P
  17. Q
  18. R
  19. S
  20. T
  21. U
  22. V
  23. W
  24. X
  25. Y
  26. Z
  27. #