*
Bookmark and Share

NIST Center for Automotive Lightweighting

Summary:

Our objective is to develop the measurement methodology, standards and analysis necessary for the US auto industry and base metal suppliers to transition from a strain-based to a stress-based design system for auto body components, and successfully transfer this technology to our customers in industry. With this knowledge, the US automotive industry will be able to transition to new advanced and lightweight materials more easily, as more accurate data and material models will lead to more accurate die designs, reducing die tryouts and new model development costs. 

Description:

The US auto industry spends $600M per year fixing and tweaking forming dies that do not make correct parts. The primary reason that the dies are inaccurate is that the computer models of the dies utilize materials models that are inaccurate. Upon surveying our industrial partners, we determined that a key NIST role in addressing this problem lies in developing new mechanical testing methods and metrology, and also developing a fundamental understanding of the interplay between multiaxial strain behavior and sheet microstructure.

 springback cup test

Springback Cup Test

We have developed a technique where, for the first time, the sheet's stress-strain response can be measured along non-linear multiaxial paths. This provides unique data on how the multiaxial flow surface changes with plastic strain, and this can be used to modify materials models used by industry. Concurrently, we also measure the evolving crystallographic texture of the sheet and the surface roughness, to develop a microstructural understanding of the materials' deformation response.

Major Accomplishments:

For information on the individual experimental projects, see the list of links at right under "Related Programs and Projects" --->

The tensile multiaxial yield surface of 5754 aluminum alloy sheet was measured from initial yield up to failure for the first time. The initial shape of the surface closely approximates an ellipse, as predicted by most plasticity models of forming. However, as the strain levels increase to levels typical of forming (5% to 20% plastic strain), the locus evolves asymmetrically, and an apex forms in the direction of balanced biaxial (BB) straining. At the highest strain levels, the error between the predicted and the measured flow stresses exceeds 25%.

yield locus

Yield locus evolution 


light car frame

Start Date:

October 1, 2003

End Date:

ongoing

Lead Organizational Unit:

mml

Customers/Contributors/Collaborators:

Thomas Stoughton (GM)
Cedric Xia (Ford)
Dajun Zhou (Chrysler)
Ming Shi (USS)
Gang Huang (Arcelor Mittal)
Anthony Rollett (Carnegie Mellon University)
Auto/Steel Partnership
USCAR

Related Programs and Projects:

Crystal Plasticity Modeling
Yield Surface Measurement

Cruciform Multiaxial Testing
Marciniak Multiaxial Testing
Tension/Compression Testing
High Rate Testing
X-ray Stress Measurement
Neutron Stress Measurement
Springback
Surface Roughness

Uniaxial Tension Beyond Localization

Associated Products:

Project Summary (PDF)

 

Contact

General Information:
Tim Foecke, Director, NIST Center for Automotive Lightweighting
timothy.foecke@nist.gov
301-975-6592 Telephone
301-975-4553 Facsimile

100 Bureau Drive, M/S 8553
Gaithersburg, MD 20899-8553