Frequency Converter Enables Ultra-High Sensitivity Infrared Spectrometry

Single photon level spectroscopy for the elusive infrared region has been demonstrated in our quantum communications laboratory. As part of ITL’s Quantum Information Program, we have developed and demonstrated a new technology to measure the spectra in the near infrared (IR) region at single photon levels of light. Using the frequency up-conversion technology developed previously in the lab, we successfully implemented a highly sensitive spectral measurement system from 1,300 nm to 1,320 nm. This new method can measure spectra for signals as weak as -126 dBm and is about three orders of magnitude more sensitive than existing commercial systems.

Single photon detection at near IR regions is very difficult due to the lack of high performance detectors. InGaAs and superconducting-based detectors can be operated in this region but they have some significant drawbacks. The readily available silicon-based avalanche photodiodes (Si-APDs) do not work at these wavelengths, although they are very efficient in the visible region. Two years ago, We, the ITL Quantum Key Distribution (QKD) team developed an up-conversion detector that uses a periodically poled lithium niobate (known as PPLN) waveguide to convert photons at NIR (1310 nm) to the visible region (710 nm) using a strong pump light at a fixed wavelength (1550 nm). The converted photons can then be detected by using a Si-APD with a very high efficiency and low noise. The converter was used in the QKD system for transmission of photons over telecom fibers. OPTICS EXPRESS Vol. 15, No. 12, 7247 (2007).

Based on this up-conversion technology, we have further developed a new method to measure spectra at single photon level in the near infrared region. During the frequency conversion process, the wavelength and polarization of the signal photons are strictly selected by the energy conservation condition in the PPLN waveguide. By using a narrow band, but tunable pump source, the system can scan an IR region and convert a narrow band of IR photons to visible photons to obtain a spectrum as the pump wavelength scans by.

This technology provides a new and better tool for spectral measurement in the near infrared region. In comparison with conventional spectrometers, the technology shows unique advantages, including significantly reducing insertion loss and increasing throughput efficiency; the ability to measure spectra with sensitivity of at about three orders of magnitude higher than that of commercial spectrometers; the ability to be built for both polarization-sensitive and non-polarization-sensitive operations, which can be useful and convenient in some special cases; and the system can be very compact. It is believed that this technology will be utilized in many other fields. See here for more information.

The details are outlined in this paper. OPTICS EXPRESS. Vol. 17, No. 16, 14395, (2009).

       

 

*

Bookmark and Share

 

Project Mission
To conduct quantum information related research to:
blue bullet
Provide solutions for advanced quantum information science and technology to enhance US industrial competitiveness.
blue bullet
Develop and exploit new calibration and metrology techniques to achieve standardization in the area of quantum information and communication.
blue bullet
Provide an infrastructure for quantum communication metrology, testing, calibration, and technology development.
Small horizontal rule
blue bullet About Us
blue bullet Publications
blue bullet Links
blue bullet Collaborations
blue bullet Team
blue bullet Developments
blue bullet Opportunities
Small horizontal rule

R&D 100 Award (2007)


IET Finalist Award (2007)


DoC Silver (2008) and Bronze (2005) Medals

ITL Outstanding Authorship (2007)

Small horizontal rule
Most Resent Publications
Lijun Ma, S Nam, Hai Xu, B Baek, Tiejun Chang, O Slattery, A Mink and Xiao Tang, " 1310 nm differential-phase-shift QKD system using superconducting single-photon detectors ". New Journal of Physics, Vol. 11, April 2009.

Alan Mink, Joshua C Bienfang, Robert Carpenter, Lijun Ma, Barry Hershman, Alessandro Restelli and Xiao Tang, " Programmable instrumentation and gigahertz signaling for single-photon quantum communication systems ". New Journal of Physics, Vol. 11, April 2009.

Lijun Ma, Alan Mink and Xiao Tang, "High Speed Quantum Key Distribution over Optical Fiber Network System ", Journal of Research of the National Institute of Standards and Technology, Vol. 114, Number 3, Page 149, May- June 2009.

A. Mink, S. Frankel, and R. Perlner, " Quantum Key Distribution (QKD) and Commodity Security Protocols: Introduction and Integration ", International Journal of network security and its applications, Vol. 1, No. 2, July 2009.

Lijun Ma, Oliver Slattery, Tiejun Chang and Xiao Tang, " Non-degenerated sequential time-bin entanglement generation using periodically poled KTP waveguide ", Optics Express, Vol. 17 Issue 18, pp.15799-15807 (2009).

Lijun Ma, Oliver Slattery and Xiao Tang, " Experimental study of high sensitivity infrared spectrometer with waveguide-based up-conversion detector ", Optics Express Vol. 17, Issue 16, pp. 14395–14404 (2009).

Xiao Tang, Lijun Ma, Oliver Slattery, “Single photon detection and spectral measurement in near infrared region using up-conversion technology” invited talk, presented at LPHYS09, Barcelona, Spain, July 13-17, 2009.

Lijun Ma, Oliver Slattery, Tiejun Chang and Xiao Tang, “Sequential time-bin entanglement generation using periodically poled KTP waveguide”, CLEO/ IQEC (Optical Society of America, Washington, DC, 2009), JWA85.

Xiao Tang, Lijun Ma, Oliver Slattery, “Single photon detection and spectral measurement in near infrared region using up-conversion technology” invited talk, presented at LPHYS09, Barcelona, Spain, July 13-17, 2009.

Burm Baek, Lijun Ma, Alan Mink, Xiao Tang and Sae Woo Nam, " Detector performance in long-distance quantum key distribution using superconducting nanowire single-photon detectors ", Proc. SPIE, Vol. 7320, 73200D (2009).

Oliver Slattery, Alan Mink, and Xiao Tang, " Low noise up-conversion single photon detector and its applications in quantum information systems ", Proc. of SPIE Vol. 7465, 74650W, 2009.

Oliver Slattery, Lijun Ma and Xiao Tang, " Optimization of photon pair generation in dual-element PPKTP waveguide ", Proc. of SPIE Vol. 7465, 74650K, 2009.

Oliver Slattery, Lijun Ma and Xiao Tang, “High-Speed Coincidence Photon Pair Generation by Dual-Element PPKTP Waveguide over GHz repetition rate”, submitted to Frontier in Optics 2009 (the 93rd annual meeting of Optical Society of American, San Jose, October, 2009). WERB review approved.

Contact

David Su
(301) 975-6174
david.su@nist.gov