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Abstract—Computer systems often exhibit degraded 
performance due to resource leakage caused by erroneous 
programming or malicious attacks, and computers can even 
crash in extreme cases of resource exhaustion. The advent of 
cloud computing provides increased opportunities to amplify 
such vulnerabilities, thus affecting a significant number of 
computer users. Using simulation, we demonstrate that cloud 
computing systems based on open-source code could be 
subjected to a simple malicious attack capable of degrading 
availability of virtual machines (VMs). We describe how the 
attack leads to VM leakage, causing orphaned VMs to 
accumulate over time, reducing the pool of resources available 
to users. We identify a set of orphan control processes needed 
in multiple cloud components, and we illustrate how such 
processes detect and eliminate orphaned VMs. We show that 
adding orphan control allows an open-source cloud to sustain a 
higher level of VM availability during malicious attacks. We 
also report on the overhead of implementing orphan control. 

Keywords- availability; cloud computing; modeling; 
reliability; scalable fault resilience techniques 

I.  INTRODUCTION  
The impact of resource leakage on computer performance 

is a well-known problem [1-8]. A number of studies have 
shown how programming errors [1-3, 7], data corruption 
[5], and events such as external malicious attacks [6, 9] can 
cause resource losses, which degrade system performance. 
Ultimately, if needed resources are depleted, or exhausted, a 
system can fail [4, 8]. We extend the general concept of 
resource leakage to encompass virtual machine (VM) 
leakage in clouds. 

The advent of cloud computing has resulted in many 
innovative applications, which promise to transform the 
practice of information technology. Much of this innovative 
work has centered on open-source cloud software [10-14], 
which has gained widespread distribution. Such open-source 
software may be used to establish cloud systems for 
experimentation, for private use and for public use. 
Unfortunately, development and distribution sites are 
susceptible to attacks that can place Trojan code into 
software packages [15]. Such attacks have occurred on both 
proprietary software [16] and open-source software [17-21]. 
This paper considers a scenario where Trojan code is 
inserted into an open-source Web server, used as one 
component in an open-source cloud software distribution. 

The Trojan code randomly discards Web messages, a simple 
malicious attack requiring no knowledge of the internal 
operation of the cloud software. 

Using simulation, we demonstrate how a cloud system, 
based on the infected software, can exhibit degraded 
availability of computing resources in the form of virtual 
machines (VMs). We describe how the simple message-
discard attack leads to VM leakage, causing orphaned VMs 
to accumulate over time, exhausting the pool of resources 
available to users, and leading to a collapse in system 
performance. We identify two kinds of VM orphans that 
could exist in clouds and the circumstances under which 
they are created. We then suggest a set of orphan control 
processes and provide examples of their use to detect and 
eliminate orphaned VMs. We show that adding orphan 
control allows a cloud system to sustain a higher level of 
VM availability during message-discard attacks. In addition, 
we show that more than one orphan control method is 
needed to prevent performance collapse. We also report on 
the overhead of implementing orphan control. In doing this, 
we hope to provide awareness of the potential for resource 
leakage in clouds, and to further research on cloud 
reliability. 

The paper consists of six sections. Section II describes 
previous work on resource leakage in computer systems. 
Section III overviews the cloud model used in this study. 
Section IV defines the concept of VM leakage in cloud 
systems, identifies potential causes, and proposes remedial 
VM orphan control methods. Section V describes the 
experiment scenario used here, in which a malicious attack 
on an open-source cloud leads to significant VM leakage. 
Section VI provides experiment results, and details both the 
potential impacts of VM leakage, and the remedial effects of 
orphan control. Section VII concludes.  

II. PREVIOUS WORK 
The problem of resource leakage in computer systems has 

received significant attention, most particularly with respect 
to memory leaks in executing programs coded in languages 
such as C [1] and Java [2], or in garbage collectors [3]. The 
effect of memory leaks has also been considered in the 
study of software aging in Web servers [4]. Other studies 
use the more general term resource leakage [5-8], and some 
use the term resource exhaustion to denote total depletion of 
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needed system resources, including [6, 8, 9]. The term 
orphan has been used [5] to refer to leaked database records. 
Hence, the general concepts associated with resource 
leakage in computer systems are established. However, to 
date, the resource leakage problem has not been studied for 
VMs as resources in computational clouds. 

III. MODEL OF AN OPEN-SOURCE CLOUD 
We based our study on Koala [22], a discrete-event 

simulator inspired by the Amazon Elastic Compute Cloud 
(EC2) 1  [23] and by the Eucalyptus open-source software 
[11]. Using published information describing the EC2 
application programming interface (API) [24] and available 
virtual machine (VM) types [25], Koala models essential 
features of the interface between users and EC2. Koala 
models four EC2 commands, three of which we use here: 
RunInstances DescribeInstances, and TerminateInstances. 
The internal structure of Koala is based on three Eucalyptus 
(v1.6) open-source cloud software components: cloud 
controller, cluster controller and node controller. As in 
Eucalyptus, these Koala components communicate using 
simulated Web Services [26]. In this study, Koala simulates 
20 clusters and 200 nodes overall, where each node can be of 
one of four possible platform configurations (see [27] for 
details). Koala is organized as five layers: (1) demand layer, 
(2) supply layer, (3) resource allocation layer, (4) 
Internet/Intranet layer and (5) VM behavior layer. Elsewhere 
[28], we provide details of each layer. Here, we summarize 
and identify selected parameter values used in the 
experiments described in Sec. V. 

In a Koala simulation, a variable number of users (500) 
execute in a cycle. During each cycle, a user issues a 
RunInstances request to the cloud controller to request a 
minimum and maximum number of instances of one or more 
VM types. Each VM type is defined to include an integrated 
set of virtual cores (processors), memory and disk space. The 
VM types and quantities a user selects depend upon the 
user’s type, which is also randomly determined (see 
[27]).The cloud controller may respond to a RunInstances 
request with an allocation of instances between the minimum 
and maximum for each requested VM type or with a NERA 
(not enough resources available) fault. A full grant denotes 
that a user was allocated the maximum requested instances 
of each VM type. A partial grant denotes that allocated VMs 
were below the maximum requested. If VM instances are 
allocated, a holding time is then determined (mean 4 hours). 
Upon receiving a grant response, the user issues a 
DescribeInstances request to determine when granted VMs 
have booted. At the end of the holding period, the user issues 
a TerminateInstances request to stop any remaining running 
instances, which is called the final termination request. If 
this request fails, the user retries (0 to 3) times before giving 
up. After termination, or when retries are exhausted, the user 
pauses for a time (mean 7.5 minutes) and then starts a new 
request cycle.  

                                                           
1�Any mention of commercial products within this paper is for information 
only; it does not imply recommendation or endorsement by NIST.�

During the holding period following a grant, users may 
randomly terminate subsets of running instances, which we 
call intermediate termination requests. Upon failure of an 
intermediate termination, a user retries 0 to 3 times for 
individual instances. If the cloud controller responds to a 
RunInstances request with a NERA, then the user waits for a 
mean time of 7.5 minutes before retrying the request. The 
user retries for a random period (mean 2 hours) before 
resting for a random period (mean 8 hours), until a random 
number of retry/rest periods (mean 4) occur. Then, the user 
abandons the request and starts a new cycle. 

Koala patterns resource allocation after Eucalyptus 
procedures, which involve two decisions: (1) on which 
cluster should requested VMs be allocated and (2) on which 
nodes within the cluster should VMs be allocated. Allocating 
all VMs in a single request to the same cluster ensures that 
inter-VM communications remain local to one cluster. At the 
cluster level, Koala simulates the Eucalyptus first-fit 
algorithm to choose nodes for VMs. First-fit simply searches 
nodes by identifier from first to last until a node is found that 
can accommodate a given VM type. In making an 
accommodation decision, the cluster controller compares 
resources required by a VM type against a node’s availability 
of virtual cores, disk space and memory. If no nodes can 
create the VM, the cloud controller receives a NERA fault. 

At the cloud level, Koala simulates the Eucalyptus least-
full-first algorithm, which carries out an initial estimation in 
which it polls the clusters to find out which can 
accommodate the VMs requested and then orders the list 
from the least to most full (we ordered ties by increasing 
time at which clusters responded). Then the cloud controller 
selects the first cluster from the list and asks that the VMs be 
created. If the VMs are created successfully, then the cloud 
controller returns the positive result to the user; otherwise, 
the cloud controller reassigns the VMs to the next cluster on 
the list. This process continues until VMs are created or until 
all clusters have been exhausted. If no clusters can create the 
VMs, then the user receives a NERA fault. 

IV. VM LEAKAGE AND ORPHAN CONTROL 
We use the term VM leakage to refer to VMs that exist on 

node controllers but that are unknown to any user and that 
are not in the process of being terminated by a cloud or 
cluster controller. Such VMs are considered orphans 
because they can persist indefinitely. Orphaned VMs 
constitute a type of resource leakage, because they retain 
assigned computing resources, including virtual cores, 
memory, disk space, and network channels. These resources 
cannot then be allocated for any other purpose, and so are 
effectively lost (or leaked). 

A. Causes of VM Leakage and Orphan Creation 
Orphaned VMs are created under two circumstances. In 

the first, which gives rise to what we will call creation 
orphans, VMs are successfully created in response to a user 
request, but confirmation messages, reporting VM creation, 
are lost when transiting among elements within the demand 
and supply layers. In our model, there are three such 
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opportunities: (1) a lost message from node to cluster 
controller that indicated successful creation of a VM; (2) a 
lost message from cluster to cloud controller that indicated 
successful (full or partial) allocation; or (3) a lost message 
from cloud controller to user that indicated a successful 
result. In (1), the result is a single orphaned VM.  However, 
in (2) and (3), all VMs allocated for a request become 
orphans, and the amount of leakage can thus be quite large. 
In all three cases, the user will resubmit the request, 
according to the retry regimen described above. Each re-
request is treated as a new request by the cloud.    

The second circumstance, leading to what we will call 
termination orphans, occurs after VMs are created by the 
cloud and the user is notified successfully. Subsequently, 
the user issues a TerminateInstances request for one or more 
VMs. If the user receives confirmation of successful 
termination, the user considers the operation to be finished. 
However, if the user receives no reply, the user retries the 
terminate operation as described above, until either success 
is obtained or the number of retries is exhausted. Within the 
cloud, terminate operations may fail due to lost messages 
when relaying the request from cloud to cluster controller, 
or from cluster to node controller, or because the terminate 
operation fails on the node. Eucalyptus makes no provision 
for retrying failed termination requests by either the cloud or 
cluster controllers; instead such failures are merely logged. 
Thus, the related VMs will remain un-terminated unless a 
user termination request eventually reaches the related node 
controllers. If a user abandons termination retries, the 
affected VMs will persist on nodes until an administrator 
scans the log and manually terminates them. 

If termination orphans arise due to lost termination 
requests sent from user to cloud controller or from cloud to 
cluster controller, then all VMs in the request may become 
termination orphans. In this case the number of orphans and 
the resulting resource leakage can be quite large. This is 
particularly true for final terminations, which encompass all 
VMs held by a user. When termination-related messages are 
lost between cluster and node controller, only individual 
VMs become termination orphans. 

B. Orphan Control Methods 
Neither creation orphans nor termination orphans are 

detected and removed automatically by Eucalyptus. We 
therefore devised two orphan control methods for this 
purpose. First, to eliminate creation orphans, we instituted a 
node controller process, which monitors receipt of 
DescribeInstances requests for VMs. VM requesters use 
replies to DescribeInstances requests to determine when 
allocated VMs are ready for logon. Since these requests 
originate from users, they indicate a user’s awareness of the 
VM. In the node controller, a creation orphan monitor 
relates arriving DescribeInstances requests to recently 
created VMs. If a DescribeInstances request is not received 
for a VM by a specified time (2 h) after boot up, the monitor 

declares the VM to be an orphan, terminates it, and releases 
its resources for use by the supervising cluster controller.   

Second, to mitigate termination orphans, we extended the 
Eucalyptus protocol to provide a persistent termination 
capability to both the cloud and cluster controllers.  
Persistent termination simply means resending termination 
requests until the receiver responds that either (1) the 
termination request has been received and normal 
termination commences, or (2) the termination operation 
was completed earlier and no further action is needed. A 
persistent terminator is activated by the cloud or cluster 
controller when no response is received to a normal 
termination request within a timeout (90 s). Once activated, 
the cloud persistent terminator resends termination requests 
to a cluster controller at specified intervals (90 s) until it 
receives one of the two desired responses, or until a 2 h 
termination period ends. After the first three retries, the 
cloud persistent terminator lengthens the retry period (to 
150 s) and then doubles it on each retry. If the termination 
period ends, the cloud persistent terminator ceases and 
notifies an administrator that manual intervention is needed 
to terminate the orphaned VMs and free their resources. 
When activated, the cluster persistent terminator also 
attempts three retries to the node controller (every 90 s), 
before increasing the retry interval in the manner described 
for the cloud persistent terminator. This process continues 
for a shorter period (900 s), since the retry encompasses 
only a single orphaned VM. Since persistent termination 
adds complexity to the cloud and cluster controllers, we 
elected to limit persistent termination to final termination 
requests. Because intermediate termination requests are 
excluded, failed intermediate terminations can result in the 
affected VMs persisting until a final termination request 
succeeds. We call such affected VMs temporary orphans.  

V. EXPERIMENT DESIGN  
In designing our experiment, we sought to address the 

following questions. How does VM leakage affect system 
performance when lost messages interfere with resource 
allocation (runInstances) and termination operations? Can 
orphan control methods mitigate performance degradation 
caused by VM leakage? What are the costs of orphan 
control and how do such costs increase as the rate of VM 
leakage increases? We modeled an attack scenario in which 
Trojan code is introduced into an open-source distribution 
for Web server software. The Trojan code modifies the Web 
server so that arriving and departing messages are discarded 
randomly with some probability. We assume that the 
maliciously modified Web server is deployed by all users, 
cloud controllers, cluster controllers, and node controllers. 

To understand effects from increasingly frequent message 
discards, we simulated our model under six, order-of-
magnitude, increases in message discard probability from a 
lowest probability (10-6) in which one in 106 messages is 
lost to a highest probability (10-1) in which one in 10 
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messages is lost. All messages, regardless of type or 
component of origin, are subject to possible loss. 

To assess the benefits of orphan control, we modeled the 
operation of the system at each of the six message loss rates 
(10-6 to 10-1), both with and without each of the two orphan 
control methods, creation orphan control and persistent 
termination, identified in Sec. IV. Holding the configuration 
parameters described in Sec. III constant, we executed 
Koala during 1000 simulated hours for each of 24 
combinations: on/off for two orphan control processes × six 
message loss rates. During the simulation, we measured 
system performance at 1 h intervals, as described below.  

VI. RESULTS AND DISCUSSION 
We counted the number of VMs held by both users and 

node controllers and the number of orphans created at the 
end of the 24 1000–hour simulations. With no orphan 
control, Fig. 1 shows that as message loss rate increases, a 
large gap opens between the number of VMs held by node 
controllers (over 11 000 at the highest loss rate) and the 
number held by users. When the message loss rate reaches 
10-2, the number held by users falls to nearly zero. In 
contrast, with creation orphan control and persistent 
termination operating, the gap stays relatively small until the 
highest message loss rate, where node controllers hold about 
14 000 VMs, while users hold only 6 000.  Figure 2 shows 
that without orphan control nearly all VMs held by node 
controllers become orphans at the two highest message loss 
rates. This means that the Trojan attack has led to creation 
of orphans that consume most of the simulated cloud’s 
computing resources, leaving none to allocate to incoming 
requests. Hence, due to leaked VMs, nearly total resource 
exhaustion occurs. Fig. 2 also shows that almost all of the 
leaked VMs arise from creation orphans. We say more 
about this below. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Number of VMs held by users and node controllers with (blue) 
and without (red) creation orphan control and persistent termination at the 
end of the1000-hour simulated period as the message loss rate increases. 

 
To measure the influence of VM leakage on cloud 

performance, we tracked the number of user requests 
submitted to the cloud and recorded the total proportion of 
users granted some VMs, along with the proportion that 

were full and partial grants. We also recorded the proportion 
of users not granted VMs, users who subsequently 
abandoned the request process. 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 2. Number of VMs held by node controllers and number of orphans 
at the end of the 1000-hour simulated interval as the rate of message loss 
increases. Counts are plotted for the case without persistent termination and 
creation orphan control. 
 

Figure 3(a) shows that without orphan control, the 
number of total grants (full and partial) drops sharply as the 
message loss rate passes 10-3. At the same time, the number 
of un-served users increases. At the highest message loss 
rate, 94.4 % of users are not served, while only 1.5 % of 
users receive grants. For the remaining 4.1 % of requests 
(not graphed), users are still engaged in the request cycle. 
On the other hand, with both orphan control processes 
operating, Fig. 3(b) shows the rate of total grants decreases 
only slightly until the highest message loss rate is reached, 
at which point a noticeable drop appears, as 5.7 % of users 
are not served, while 0.4 % are still actively requesting 
VMs. We conclude that, without orphan control, the 
collapse of system performance at higher message loss rates, 
as illustrated in Fig. 3(a), is attributable to resource 
exhaustion due to orphan VMs. This conclusion is 
supported by more detailed analysis below. 

These results do not mean that our orphan control 
procedures free a cloud of all the effects of VM leakage. 
Figure 3(b) also shows that even with orphan control, the 
proportion of full grants decreases and the proportion of 
partial grants increases at the highest message loss rate, to 
the point that partial grants are more likely. This change can 
be related to Fig. 1, which shows that node controllers hold 
more VMs than users at the highest loss rate, even with 
orphan control. This gap occurs because we chose to limit 
persistent termination to only final termination requests. 
Thus, when earlier intermediate termination requests from 
users fail, the related VMs continue to occupy cloud 
resources as temporary orphans until a final termination is 
issued and succeeds. Though these temporary orphans do 
not exhaust resources, Fig. 1 shows that, at the highest loss 
rate, temporary orphans still occupy a significant portion of 
VM resources. Thus, the cloud is less able to fully satisfy 
requests and must issue more partial grants.  
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Figure 3. Disposition of user requests (a) without orphan control and (b) 
with creation orphan control and persistent termination. 
 

Recall that in Fig. 2 nearly all VM leakage is due to 
creation orphans (only four are termination orphans). 
Without orphan control, the dominance of creation orphans 
occurs for two reasons. First, RunInstances requests occur 
before TerminateInstances requests. Second, Eucalyptus 
treats each RunInstances request (including each retry) as a 
new and separate allocation request rather than as a retry of 
a previous request. Hence each user re-request is an added 
opportunity for creation orphans. Thus, at high loss rates, 
creation orphans quickly (in the first 100 hours) exhaust 
nearly all of the cloud’s resources, leaving few opportunities 
for termination orphans to occur. 

To design appropriate orphan control strategies, it is 
important to determine the extent to which both creation 
orphan control and persistent termination are needed. To 
answer this question, we conducted trials in which only one 
of the two orphan control methods was active (graphs 
omitted). With only persistent termination active, a total 
system performance collapse occurs that is similar to what 
appears in Fig. 3(a). When only creation orphan control is 
active, the performance decline is partial, but still crippling 
(48.1 % of all users are not served at the highest loss rate). 
In this latter case, over time, accumulation of termination 
orphans leads to significant VM leakage. 

Hence, we conclude that both creation orphan control and 
persistent termination are needed. Otherwise, unless an 
administrator finds and removes orphans, the cloud moves 
toward a frozen state, where all VMs are orphans, and so 
incoming user requests cannot be satisfied. We leave it to 

the reader to speculate the difficulties involved in perusing 
system logs throughout thousands of nodes in a cloud and 
manually finding and removing termination orphans. 
Further, in the absence of usage billing, there appears to be 
no obvious manual process to discover creation orphans. 
Even with usage billing, creation orphans cannot be 
identified until users raise objections after receiving their 
bill for VMs of which they were unaware. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. User requests received by cloud controller and NERA responses 
as the message loss rate increases, with (blue) and without (red) creation 
orphan control and persistent termination. 

 
To further understand the impact on system performance, 

we observed the number of user RunInstances requests 
received by the cloud and the number of NERA responses, 
as message loss rate increased. Our analysis supports the 
conclusions reached above. Figure 4 shows that without 
orphan control, at the highest loss rate, a threefold increase 
occurs in the number of requests, nearly all of which result 
in NERAs. This reflects the cloud controller’s inability to 
find a cluster to accommodate incoming requests, as cluster 
resources are almost fully exhausted by orphans. The rise in 
the number of requests reflects the resultant thrashing 
caused by user retries. With creation orphan control and 
persistent termination active, Fig. 4 shows that increasing 
loss rate leads to only a modest rise in requests, most of 
which are granted. Elsewhere [27], we provide additional 
analysis at the cluster level, which supports these findings. 
    Finally, we counted the total number of messages sent 
across all layers in the cloud system as the message loss rate 
increases. Without orphan control, the overall number of 
messages increased from about 2.6E+07 at the lowest loss 
rate to about 6.4E+07 at the highest rate. This reflects 
increased effort expended as users retry requests, causing 
the cloud to make failed allocation attempts, as VM leakage 
drains needed resources. With orphan control, the overall 
number of messages increased only to 4.5E+07 at the 
highest loss rate, with only about 0.44 % of these messages 
related to orphan control.  

VII. CONCLUSIONS 
We addressed the potential problem of resource leakage 

in cloud systems and introduced the concepts of VM 
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leakage and orphan VMs. We demonstrated that VM 
leakage is a potentially serious vulnerability that can lead to 
resource exhaustion in clouds.  Using a scenario, in which a 
Trojan attack introduces malicious code modifications into 
one part of an open-source cloud implementation, we 
showed how this vulnerability can be exploited to cause 
serious performance degradations in a simulated cloud 
system. To remedy this problem, we also provided examples 
of orphan control processes that could be used to detect and 
eliminate orphaned VMs. Our experiment results show that 
adding orphan control methods allows an open-source cloud 
to sustain a higher level of resource availability during 
malicious attacks. Our work has illustrated that VM leakage 
is a potential problem that must be considered in the design 
of cloud systems, if these systems are to be reliable. The 
results of our experiments indicate that the scale of the 
problem precludes manual discovery and removal of VM 
orphans by system administrators—and that automated 
means are needed. In the future, it will be necessary to 
investigate other orphan control methods and to evaluate 
their performance and accuracy. It will also be desirable to 
extend this work to obtain a more general understanding the 
potential for VM leakage in different kinds of cloud systems 
operating under a wide range of conditions.  
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