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SUMMARY

In recent years, grid technology has emerged as an important tool for solving compute-intensive problems
within the scientific community and in industry. To further the development and adoption of this tech-
nology, researchers and practitioners from different disciplines have collaborated to produce standard
specifications for implementing large-scale, interoperable grid systems. The focus of this activity has been
the Open Grid Forum, but other standards development organizations have also produced specifications
that are used in grid systems. To date, these specifications have provided the basis for a growing number
of operational grid systems used in scientific and industrial applications. However, if the growth of grid
technology is to continue, it will be important that grid systems also provide high reliability. In particular,
it will be critical to ensure that grid systems are reliable as they continue to grow in scale, exhibit greater
dynamism, and become more heterogeneous in composition. Ensuring grid system reliability in turn re-
quires that the specifications used to build these systems fully support reliable grid services. This study
surveys work on grid reliability that has been done in recent years and reviews progress made toward
achieving these goals. The survey identifies important issues and problems that researchers are working
to overcome in order to develop reliability methods for large-scale, heterogeneous, dynamic environments.
The survey also illuminates reliability issues relating to standard specifications used in grid systems, iden-
tifying existing specifications that may need to be evolved and areas where new specifications are needed
to better support the reliability. Published in 2009 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years, grid technology has emerged as an important tool for solving compute-intensive
problems within the scientific community and in industry. To further the development and adoption
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of this technology, researchers and practitioners from different disciplines have collaborated to pro-
duce standard specifications for creating large-scale, interoperable grid systems. The focus of this
activity has been the Open Grid Forum (OGF) [1], but other standards development organizations
have also produced specifications, such as [2,3], that are used in grid systems. To fully transition
grid technology to operational use and to expand the range and scale of grid applications, grid
systems must exhibit high reliability; i.e. they must be able to continuously provide correct ser-
vice [4]. Moreover, it is important that the specifications used to build these systems fully support
reliable grid services. With the increase in use of grid technology, achieving these goals will be
made more difficult as grid systems become larger, more heterogeneous in composition, and more
dynamic.
Given the newness of grid technology, it is somewhat understandable that, initially, work on

grid systems reliability might be less extensive than efforts to develop basic capabilities. In recent
years, the body of work on grid reliability produced by researchers and practitioners in academe
and industry§ has increased steadily. This study surveys this work and reviews progress made.
The survey characterizes and distinguishes large-scale grid systems consisting of heterogeneous,
dynamic computing resources from other kinds of distributed systems. The survey identifies im-
portant issues that researchers are working to resolve in order to develop reliability methods for
such grid environments. In addition, the survey illuminates reliability issues relating to the standard
specifications used in grid systems, identifying existing specifications that may need to be evolved
to better support reliability and areas where new specifications are needed. The important topic of
metrics for measuring reliability in grid systems is also covered.
The survey shows that currently deployed commercial and research grid systems can and do

behave reliably at present levels of scale using available technology. However, efforts are in progress
to develop reliability methods for grid environments that are expected to have increased scale,
heterogeneity, and dynamism. These efforts have focused on the following distinct functional areas
of grid systems:

• Reliability of computational hardware, software, and data resources that comprise the grid and
provide the means to execute user applications;

• Reliability capabilities initiated by end users from within applications they submit to the grid
for execution;

• Reliability of infrastructure and management services that perform essential functions neces-
sary for grid systems to operate, such as resource allocation and scheduling; and

• Reliability of grid networks for messaging and data transport.

An important contribution of this paper is to show that while there has been substantial progress in
these functional areas, scalable reliability solutions for grid systems remain largely experimental. In
each area, different research problems exist that must yet be solved and key specifications need to
be developed or extended to better support reliability. The paper also shows that thus far ensuring
reliability has centered on providing fault tolerance—defined as the ability to ensure continuity

§Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental
procedure or concept adequately. Such identification is neither intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are
necessarily the best available for the purpose.
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of service in the presence of faults, or events that cause a system to operate erroneously [4]. The
emphasis on fault tolerance is partly due to the conditions in grid system environments, in which
failures are likely. It is also partly due to the existence of redundant resources in grid systems, which
allow substitution of properly functioning resources when failures occur. In contrast, there has been
less focus on developing testing methods to find and remove faults in grid systems. Similarly, there
has been less effort on creatingmetrics for measuring grid system reliability.With the gradual growth
in scale of grid systems, researchers are also beginning to realize the importance of system-level
approaches for improving reliability that considers techniques such as complex systems analysis.
To date, there has not yet been a comprehensive survey of work on grid reliability. Given the

importance of this topic for the progress of grid technology and the extent of recent efforts, it is an
appropriate time for such a survey to be conducted. The remainder of this paper describes reliability
research in the four functional areas identified above and discusses specific issues and problems
faced in each area. Section 2 characterizes large-scale, heterogeneous, dynamic grid computing
environments, and the challenges involved in ensuring reliability of grid systems. This section also
identifies other areas of distributed systems that provide a foundation for, and continue to influence,
work on grid reliability. Section 3 surveys research on improving reliability of grid computing
resources, including fault detection, recovery, and removal through testing. Section 4 discusses
work on providing fault tolerance from within user applications running in grid systems, focusing
on applications logically organized into workflows. Section 5 addresses reliability work in core
infrastructure and management services. Section 6 discusses reliability of grid networks. Section 7
discusses approaches for analysis of grid reliability from an overall system-level perspective includ-
ing reliability metrics. Section 8 summarizes findings and concludes. In the appendix, the references
used in this paper are categorized by subject area. Finally, it is necessary to briefly discuss the scope
of this study, which in addition to grid reliability, includes the closely related topic of availability,
or readiness to provide correct service [4]. Both belong to the larger topic of dependability, which
also comprises of safety, integrity, and maintainability [4]. Space limitations prevent covering these
other areas of dependability, or to include the critical and extensive subject of grid security. For the
same reason, computer hardware reliability and physical site integrity are also omitted.

2. THE CHALLENGE OF ENSURING RELIABILITY IN GRID SYSTEMS

In [5–7], a vision of grid systems was articulated, in which computing and data resources belonging
to many enterprisers are organized into a single, virtual computing entity that can be transparently
utilized to solve compute- and data-intensive problems. Subsequently, this vision has continued to
evolve as use of grid technology has grown within industry and science. To realize the long-term
goals of grid computing will require development of methods that ensure that grid services are
reliably provided under conditions of scale, heterogeneity, and dynamism (also sometimes called
dynamicity). Large scale in computing and data resources is already in evidence in some systems,
such as [8,9]. These systems contain in the order of 105 servers, making them large scale by today’s
reckoning (though systems with fewer servers and sufficiently heavy workload may also be seen as
large scale). Over time, as grid systems grow, the threshold for what is considered large scale will
shift upward. In addition to scale, coordination of grid system resource use will be made difficult
by the wide distribution and heterogeneous nature of computing, data, and network resources. Grid
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resources will belong to many different enterprisers that may have little knowledge of each other,
rather than to a single organization or small group of cooperating organizations. As such, they will
be managed in different administrative domains, rather than belonging to one, centrally managed
domain. Different domains are likely to have dissimilar access and security policies, while the
resources they manage will employ different processor architectures and operating systems. Further,
the environment in which these resources exist will be highly dynamic, due to the combined effects of
enterprises continuously joining and leaving the grid, administrative policy changes, and component
upgrades.
Even with standard interfaces and communications protocols in place, resource heterogeneity and

dynamism will likely lead to component interactions that result in faults and failures, which imperil
executing user applications. Some faults encountered in current grid systems may prove hard to
detect [10,11] or wreak havoc by propagating through the grid [12]. Long-running applications that
require many resources and must produce precise results are likely to be especially vulnerable [13].
Another potential source of faults will come from grid network services that transport large data sets.
To transfer large amounts of data, network services will need to coordinate many heterogeneous
network components and maintain stable high-bandwidth connections for long periods [14], which
also increases the chance of faults. Another complicating factor will be the asynchronous nature of
this environment, in which distributed components utilize independent clocks and messages may
be subject to unbounded delay. As a result, it will be more difficult for distributed components to
coordinate their computations or to know if a component has failed or is just responding slowly
[15]. The need to manage large numbers of computational, data, and network resources under such
conditions of scale, heterogeneity, and dynamism distinguishes grid systems from other types of
distributed systems. As others have argued [16], these differences motivate development of reliability
methods that are designed specifically for the conditions that prevail in grid environments.
Despite these distinguishing characteristics, methods for ensuring reliability of grid systems are

closely related to, and partly based on, reliability methods developed in other branches of distributed
systems research. Reliability work in other areas of distributed systems has a long and rich history,
as evidenced by past work on wide-area networks [17–19], high-performance cluster computing
[20–22], and distributed database systems [23]. Also important for grid systems is previous work on
quantitative estimation algorithms that measure reliability in distributed systems [24,25]. Peer-to-
peer networks also influence grid systems, but because this is also a new technology, reliability has
been less extensively researched [26]. Another emerging area likely to influence grid computing
is cloud computing, which provides simplified interfaces for accessing virtual mass computing
services that are tailored to narrowly defined application domains [27]. Though there has yet been a
little opportunity to explore if cloud system designs can foster reliability, on-demand cloud services
are now being offered with transparent fault tolerance [28]. Reliability methods from these areas of
distributed computing provide a basis for, and influence, grid reliability research. Where appropriate,
this study discusses these relationships.

3. RELIABILITY OF GRID RESOURCES

Because of its obvious importance, more effort has been directed toward ensuring the reliability of
computing resources that comprise grid systems than the other functional areas identified above.
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Grid resources include processor clusters, supercomputers, storage devices, and related hardware,
together with operating system and other software for managing these resources. Grid resources
also include software components that perform analysis functions such as data mining. Another
category of grid resources is data stores used in data and multimedia grids.
To date, developing methods to ensure reliability of grid resources in both research and commer-

cial systems have largely meant developing methods for fault tolerance. Fault tolerance consists
of: (1) detecting faults and failures in grid resources and (2) recovery to allow computations to con-
tinue. As with reliability in general, fault-tolerance methods used in today’s operational commercial
and science grid systems are based on distributed systems technology. When applied by capable
engineers, these methods can and do provide fault tolerance for systems at current scale in a single
enterprise [8]. However, in anticipation of the growth in grid systems, researchers are developing
fault-tolerance methods that extend current technology to operate in conditions of greater scale,
heterogeneity, and dynamism. Work on test methods for fault removal, though less extensive, is
also covered.

3.1. Detecting faults and failures in grid resources

Building on previous work on fault and failure detection for distributed systems [29–31], re-
searchers have investigated scalable fault detection methods for grid systems environments. Work
has also focused on fault isolation and diagnosis techniques for recognizing different types of
faults. Another area of concern involves hard-to-detect faults that are expected to occur in large-
scale, heterogeneous, dynamic grids. However, most failure detection methods developed so far
remain experimental.
Limitations of current methods for fault detection. Failure detectionmethods developed for current

distributed systems have generally not been regarded as suitable for large-scale, heterogeneous,
dynamic grid systems. One reason is that available network monitoring protocols and tools, such
as those based on SNMP [32], rely on detailed knowledge of network structure. Such information
is less likely to be available in large-scale, dynamic environments having multiple administrative
and security domains. Failure detection in grid systems can also be compromised by another well-
known problem that occurs in asynchronous distributed systems in which management functions
(including failure detection) are decentralized and subject to failure. In such systems, the work
of Fischer et al. [33] and Barborak and Malek [15] showed that it is impossible for a group of
distributed failure detectors to reach consensus deterministically on what resources have failed if
any component involved in the detection process also fails. Building on [15, 33], Chandra and
Toueg [34] first characterized failure detection in distributed systems in terms of properties of
completeness, the ability to detect all components that have failed, and accuracy, the ability to
avoid mistakes. Assuming an asynchronous distributed environment, they showed that a group of
failure detectors, some of which may fail or make errors, could reach consensus using deterministic
procedures, but at the cost of delaying fulfillment of the completeness property and achieving only
partial accuracy.
The work of [15,33,34] led to development of experimental failure detectors that sought to guar-

antee completeness, but were only probabilistically accurate [31]. These systems detected failure
deterministically, using heartbeat techniques in which resources regularly sent messages (heart-
beats) to other members of a heartbeat group. If heartbeats were absent, group members then used
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a consensus procedure to determine which members had failed. However in [31], failure detec-
tors that used this approach were shown not to scale in worst-case network load scenarios, while
alternative approaches that incorporated centralized monitoring were subject to message bottle-
necks and other anomalies that degraded performance. In [35], Hayashibara et al., looked at other
factors related to scalability. They concluded that failure detection methods used in current dis-
tributed systems would not be effective in the face of the message explosion, dynamic resource
composition, and variability of user applications that are expected in grid environments. Early
research grid systems also reflect the lack of scalable fault detection. Zanikolas and Sakellariou
[36] conducted a survey of 19 grid monitoring systems based on the OGF Grid Monitoring Ar-
chitecture [37]. This study concluded that most systems did not have the potential to scale their
monitoring functions, thus impeding scalability of fault detectors that relied on them. The lack of
failure detection methods suitable for grid environments has thus motivated the work described
below.
Research on scalable fault detection methods. An early distributed fault detector for the Globus

system [38] addressed issues of completeness and accuracy [34] by making estimates of the like-
lihood of resource failure. User applications could obtain these estimates and interpret them at
their own discretion. The approach was designed to improve efficiency and scalability of fault
detection by decoupling this function from the monitoring function. This work was followed by
other experimental failure detectors that built on [31,34], examples of which are discussed here. In
[39], a failure detector was proposed that sought to preserve completeness and achieve scalability
by organizing grid resources into heartbeat groups on the basis of the logical network topology
reflected in their Internet addresses. Leader nodes, or monitors to which resources sent heartbeats,
were made redundant for fault tolerance. The total number of heartbeats required to monitor all
resources was shown to scale with a computational complexity of O(n), where n is the number
of heartbeat groups. The viability of this approach was demonstrated in experiments in a testbed
which simulated 144 processor nodes. Horita et al. [40] proposed a scalable, self-organizing fault
detection system based on earlier work on using group membership protocols for fault detection
[31,41]. In this approach, each process was monitored by a small group (4 or 5) of randomly chosen
processes on remote nodes. The monitoring processes established a Transmission Control Protocol
(TCP) connection to the monitored process and periodically transmitted short messages to check if
the connection is alive. This resulted in creation of a virtual monitoring subnetwork within a grid,
consisting of heterogeneous resource types, through which notifications of connection failure could
be propagated. Experiments showed scalability for a system of three-node clusters (or grid sites)
that contained 300 resources. In [42], resources were organized into separate domains in which they
emitted heartbeats to a domain monitor; here, monitoring domains were structured hierarchically
for scalability.
Detecting different types of faults. An important aspect of providing completeness and accuracy is

recognizing different types of faults that lead to failures. Examples of fault-type taxonomies related
to grid system environments were described in [43–45]. Early work on a fault-handling framework
that could distinguish between different kinds of failures during simulated grid operations was
reported in [16]. This system also initiated recovery actions designed to remedy different fault
types. Jitsumoto et al. [46] developed a detector that differentiated between hardware, process,
and transmission faults. Here, users were allowed to preselect a recovery procedure to be invoked
in response to occurrence of a particular fault type. This approach was found to exhibit good
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performance in a 32-node cluster testbed. In [47], a method was proposed to detect and predict
different faults types using a fault classification scheme and data mining. In [48], a fault detection
and recovery method for transient process faults were reported. Here, an adaptive scheme was used
to periodically checkpoint (i.e. store the state of) replicated processes that executed in parallel.
Checkpointed process states were then compared with discover erroneous computations affected
by transient faults. Because this procedure was computationally intensive, the checkpoint interval
was dynamically varied in response to the observed frequency of faults to improve its efficiency.
Jin et al. [49] developed a hierarchical grid failure detector and failure handler that adapted to
changing user requirements and system conditions. Testbed experiments showed that this approach
scaled to up to 1000 components at two sites. Work on adaptive mechanisms for detecting different
fault types has also been done in the European Union Datagrid Project [50]. In [51], long-term
fault patterns were studied in a grid testbed provided by the Pacific Rim Application and Grid
Middleware Assembly.
Hard-to-detect faults. In scaled, heterogeneous grid environments, some types of faults may be

difficult to find. Kola et al. [13] reported work on ‘silent’ fault types that typically do not indicate
their presence immediately after they occur. Work has also been reported on using consensus-
based algorithms to detect Byzantine faults. Byzantine faults cannot easily be traced to failed
links, processes, and messages. They originate, for example, when equipment periodically or
randomly malfunctions due to aging, sabotage or external damage, or is subjected to transient
events such as electromagnetic interference. In [10,11], the results of identical, simultaneously
executing computations were compared to detect components affected by Byzantine faults. Fi-
nally, in large, heterogeneous distributed systems, faults may originate at one component and
propagate to others, potentially creating dangerous cascading effects. Thus far, with the excep-
tion of [12,52], methods for isolating faults that propagate through grid systems have been little
studied. Because hard-to-detect faults and cascading failures can lower user confidence, contin-
uing efforts to develop scalable methods for isolation and detection of these types of faults are
essential.

3.2. Research in recovery methods for grid resources

As in distributed systems generally, recovery methods in grid systems rely on exploitation of re-
dundancy. There are two forms of redundancy to consider. Temporal redundancy involves repeated
attempts to restart failed resources or services. Spatial redundancy attempts to take advantage of
multiple copies of computing resources. Both temporal and spatial redundancy is used in grids.
However, because grid systems inherently provide redundant computing resources, spatial redun-
dancy has been a focus of fault-tolerance research and is therefore the main topic of this section.
Three techniques that emphasize spatial redundancy exist: (1) checkpointing, or periodically saving
the state of a process running on a computing resource so that, in the event of resource failure,
it can resume on a different resource; (2) replication, or maintaining a sufficient number of repli-
cas, or copies, of a process executing in parallel on different resources so that at least one replica
succeeds; and (3) rescheduling, or finding different resources to rerun failed tasks. Note that (1)
and (3) involve operations that repeat over time and are therefore temporally redundant as well.
This section also reviews work on data replication, which uses spatial redundancy to provide fault
tolerance in data grids.
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3.2.1. Checkpoint and recovery

Taking checkpoints is the process of periodically saving the state of a running process to durable
storage. Checkpointing allows a process that fails to be restarted from the point its state was last
saved, or its checkpoint. If the host processor has not failed, temporal redundancy can be used
to roll back and restart the process on the same platform. As in other systems, this method is
widely used in grids [16,46,49]. Otherwise, if the host has failed, the process may be migrated,
or transferred, to a different execution environment where it can be restarted from a checkpoint
(a technique also referred to as failover). This section begins by discussing checkpoint and process
migration methods used in commercial and science grid systems that are based on methods used
in high-performance cluster computing. This is followed by discussion of new methods being
developed or adapted for scaled grid environments, together with related issues that need to be
resolved. Most notable is the issue of finding efficient methods for checkpointing many concurrent,
intercommunicating processes, so that in the event of failure, they can resume from a common saved
state [22]. Checkpointing can be initiated either from within grid systems or within applications.
This section considers the former. Section 4 discusses application checkpointing.
Checkpointing and recovery in current grid systems. Checkpoint and process migration meth-

ods have been long used in high-performance computing environments and a substantial body of
work on this subject precedes grid computing [21,22]. Many currently deployed grid systems that
manage computing clusters and run parallel processes employ methods based on high-performance
cluster computing. Examples are commercial grid products assembled from cluster computing
components such as [53–58]. These systems also provide recovery for server managers, or cluster
head nodes, that manage concurrently executing processes. For instance, Reference [57] provides
a fault-tolerant grid infrastructure for server managers and node clusters. If the manager fails,
another node takes over the management function, while failure of a compute node results in
restart of the checkpointed processes on another node. Despite repeated failures, individual clusters
preserve a logical structure in which a manager continues to supervise the remaining compute
nodes.
Research grids and grids used for science applications that manage clusters also employ check-

point and process migration techniques based on high-performance computing. Early efforts in using
checkpoint or process migration in large cluster environments were reported in the Legion [59],
Cactus [60,61], and in Condor [62]. In the HA-OSCAR research grid system [63], fault tolerance
in cluster head nodes was improved by taking checkpoints of job-queue information and regularly
updating a backup server. If the primary server failed, the backup could access up-to-date job-
queue information. Testbed experiments demonstrated faster restart of in-progress jobs using this
approach.
Research in checkpointing methods. An important research issue for grid systems is the ability

to provide efficient and scalable checkpointing of concurrent, intercommunicating processes whose
states must be synchronized to ensure consistent recovery. Synchronization is required, because
as these processes exchange messages, they cause changes to each other’s internal states. If a
checkpoint is taken when a message between two processes is in transit, the resulting saved states
may be inconsistent. Three checkpointing strategies were described for concurrent processes in [22].
In coordinated checkpointing, processes synchronize checkpoints to ensure their saved states are
consistent with each other, so that the overall combined, saved state is also consistent. Taking
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coordinated checkpoints requires correctly accounting for messages that are in transit when the
checkpoint operation is initiated. In contrast, in uncoordinated checkpointing, processes schedule
checkpoints independently at different times and do not account for messages. Here, attempts by
processes that exchange messages to roll back and recover a previous common, consistent state may
be subject to a repeating domino effect. The domino effect occurs when rollback of one process
causes processes to which it had earlier sent messages to also roll back. If these processes also sent
messages earlier, additional processes that received the messages may also then also have to roll
back. As the effect continues, the processes involved resemble falling dominos as they repeatedly
cause other processes to roll back. A third strategy, communication-induced checkpointing attempts
to coordinate only selected critical checkpoints, but is thought to be inadequate for large-scale
environments [64].
Coordinated checkpointing has thus far received the most attention as a recovery mechanism

for concurrent, intercommunicating processes. The study by Elnozahy et al. [22] found that in
a distributed systems environment, coordinated checkpointing procedures that blocked (halted)
processes during the synchronized checkpointing operation degraded performance, while procedures
that did not employ blocking exhibited better performance but complicated recovery. Much of the
work on coordinated checkpointing has been done in connection with use of the Message Passing
Interface (MPI) [65], a key specification for enabling communication between concurrent processes.
Coordinated checkpointing has been implemented in MPI in [46,64,66–69]. For example in [67,68],
Yeom et al., proposed a fault-tolerant version of MPI, MPICH-GF, for grid systems that employed
coordinated checkpoints with blocking. As in [22], Buntinas et al. [70] compared MPI-based,
blocking, and non-blocking coordinated checkpoint protocols for efficiency in a grid testbed of
over 500 processors at 9 sites in a wide-area network. The results indicated that blocking incurred
higher overhead than the non-blocking protocol, while the scalability of bothmethods appeared to be
uncertain for larger systems. Given the interest in integrating coordinated checkpointing with MPI,
this specification should be reviewed to determine if extensions of this kind are needed to provide
greater fault tolerance for grid systems. In addition, it will be important to determine the extent
to which checkpointing methods can scale when the number of concurrent, intercommunicating
processes exceeds levels reported in [70].
Message logging and process migration. As an alternative to coordinated checkpointing, un-

coordinated checkpointing may be combined with message logging to achieve process state syn-
chronization and avoid the domino effect. In logging, information about messages is logged, or
stored, on stable media and later replayed to recover a lost state [71]. During recovery of a failed
process, messages that occurred after a checkpoint are replayed to recreate a pre-failure state that
is consistent with the states of other concurrent processes, rather than initiating rollbacks to find
a consistent state. The effectiveness of different logging methods was surveyed in [22]. Use of
uncoordinated checkpointing in combination with logging in MPI systems was reported in [64] and
found to be less efficient than coordinated checkpointing in a 32-node cluster [72]. However, these
two techniques have not yet been compared in grid environments under scaled or heterogeneous
conditions.
Additional approaches to improving checkpointing in grid systems are possible. These include

increasing fault tolerance by replicating checkpointed data on distributed repositories [73] and
improving efficiency by determining optimal checkpoint intervals [74]. Finally, an important issue
for recovery in grid systems is the migration of checkpointed processes to platforms with dissimilar
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execution environments and different administrative or security domains. Here, preliminary work
[75,76] also precedes the emergence of grids. For grid systems, the problem was investigated in
[77,78] and work in this area is likely to continue. As with checkpointing, the scalability of process
migration methods in large, heterogeneous environments requires further investigation.

3.2.2. Grid resource replication

In grid resource replication, multiple grid resources simultaneously perform an identical compu-
tation and maintain identical state. The goal of replication is to ensure that at least one replica is
always able to complete the computation in the event others fail. In some cases, one replica may be
designated as a primary copy for purposes of external interaction, whereas others assume the role
of backups. This section reviews resource replication methods developed for improving fault toler-
ance in large-scale grid systems. Two aspects of research in resource replication are considered: (1)
algorithms for determining optimal (or near-optimal) placement of replicas in order to increase fault
tolerance and (2) methods for synchronizing replica states to ensure their consistency. Both remain
research problems, for which proposed solutions have been evaluated in limited-scale testbeds or
in simulations. Under scaled conditions, replica synchronization can incur high overhead costs, and
a comprehensive understanding is lacking of tradeoffs between increasing fault tolerance through
replication versus synchronization overhead. Another issue is when to use checkpoint and process
migration instead of resource replication and vice versa. This issue is considered in [46], but is
generally not well understood. Overall, replication methods have been studied less than check-
pointing and recovery. Yet, given the significant opportunities presented by resource redundancy in
large-scale grid systems, replication warrants more investigation.
Replica selection and placement methods. An early attempt to evaluate fault tolerance and scal-

ability properties of adaptive algorithms for replica placement services in dynamic, distributed
systems was reported in [79]. Weissman and Lee [80] proposed a replica management system that
dynamically allocates replicated resources on the basis of user demand. If individual replicas failed,
this system then allowed user resource requests to be transparently rerouted. Testbed experiments
demonstrated that response time scaled well for over 1000 requests at three sites. The Scalable
Replication Infrastructure using Resilient Autonomic Meshes research system [81] was designed
to improve resource availability and fault tolerance in grids and other distributed environments.
Here, computing resources were members of networks, or meshes, which could be searched to
find nodes on which grid processes could be replicated. Search of large meshes was made more
efficient through organization of computing resources in a spanning tree structure and through
intermediate caching of query results for reuse. The spanning tree automatically re-configured as
nodes were added or removed, allowing the system to scale in response to changing conditions. Par-
ticipating resources operated securely and anonymously, allowing the mesh to incorporate multiple
administrative domains.
More recently, other replication schemes have been proposed. Through experiments, most have

demonstrated limited scalability (involving 102 processing resources, or less). Valcarenghi and
Piero [82] described a service replication approach in which replicas were located in proximity
to each other to form service islands in a grid network. Different replica configurations were
evaluated using a Mixed Integer Linear Programming model to determine which configuration of
islands exhibits higher fault tolerance. Simulation showed that the approach could enable recovery of
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a high percentage of long-distance connections to remote services, while minimizing the number of
replicas needed and thus simplifying replica management. In [83], dynamic process replication was
used to provide fault tolerance and enable fulfillment of service level agreements (SLAs) [84] in a
grid system developed by a telecommunications company. Similarly in other systems that use SLAs,
such as in commercial cloud computing, resource replication has been used to provide transparent
fault tolerance [28].Within the e-Demand project, Townend et al. [85] proposed a replicationmethod
that detected faulty computations among multiple, inter-communicating tasks in a grid. Genaud and
Rattanapoka [86] developed a mechanism for MPI-based grid environments that used replication to
increase fault tolerance of parallel computations and demonstrated scalability in a testbed having
up to 128 processors. Other methods for replicating computations on resources have been proposed
[87,88] and demonstrated experimentally.
Replica synchronization. The research literature indicates that less work has been done on efficient

and scalable methods for synchronization of replica states. One method [82], based on selective
replica placement, has been described above (see Section 3.2.2). In [89], this issue was investigated
for service replicas that exhibit non-deterministic behavior and use asynchronous messaging. Here,
the researchers proposed an optimized version of the Paxos algorithm [90] for synchronizing replicas
in distributed environments and demonstrated efficiency in a wide-area testbed with four sites and
up to 128 clients submitting transactions. In earlier work [91], a more traditional primary-backup
approach was used to investigate replication of grid services that were implemented using Open
Grid Services Infrastructure (OGSI) [92] and the Globus toolkit [93]. In [91], use of this strategy
resulted in higher service availability in local area environments. However, the study found that
significant overhead costs were imposed by OGSI notification when used to synchronize states of
service replicas that behaved non-deterministically. The study showed that synchronization overhead
could be eliminated by restarting failed tasks on replicated resources reserved for this purpose. To
date, this work has not been repeated with successor specifications to OGSI. Dasgupta et al. [94]
proposed a resource allocation framework in which redundant backup resources could be reserved
for use in case the primary resource failed. Simulation showed circumstances where this approach
improved efficiency of system resource allocation. If the potential of replication to provide fault
tolerance is to be realized on a large scale, additional work on efficient and scalable synchronization
methods will be necessary.

3.2.3. Rescheduling failed tasks

In addition to process migration and replication, a failed task can be dynamically rescheduled on
different resources. This method uses existing grid resource allocation services for rescheduling,
thus eliminating the overhead of checkpointing or replica synchronization. In [95,96], a prototype
rescheduling mechanism was developed and tested in a production environment containing over
500 heterogeneous computing resources at 13 sites. Similarly in [97], a prototype was created
that efficiently rescheduled failed jobs in a testbed with over 2000 heterogeneous platforms at 25
sites. Rescheduling appears to be a viable fault-tolerance tool to consider under some circumstances.
However, reschedulingmay not be appropriate for long-running processes andmay adversely impact
other processes that are executing concurrently with, or are dependent on, a rescheduled process.
Nevertheless, the limited success seen so far indicates that rescheduling merits consideration as a
fault-tolerance method.
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3.2.4. Data replication

Replication of data sets has been a research topic of long standing in large-scale grid systems and has
also been implemented commercially, as for example [98,99]. In [8], use of large-scale replicated
data stores to promote fault tolerance across heterogeneous storage platforms at multiple sites
was reported, while [28] described commercially available mass data storage services that employ
replication to achieve fault tolerance. Redundant arrays of inexpensive disks, used to improve fault
tolerance in distributed storage systems [100], have been adapted for data grids [101], including
commercial examples [102,103]. However, scalable solutions that work in heterogeneous, dynamic
grid environments are not yet commonplace. Within the research community, most experimental
data replication methods have been developed to improve performance, with fewer efforts focusing
on fault tolerance.
Early research on data grids demonstrated the potential benefits of data replication for perfor-

mance, data availability, and fault tolerance [104–106]. Subsequently, other studies emphasized
performance improvements obtained through data replication, including [107–109]. Studies that
have focused more on fault tolerance include [110], where a quorum-based protocol was described
for managing replicated data. Here, experimental results demonstrated fault tolerance by showing
that data retrieval can succeed when as many as 75% of replicas failed. Lei et al. [111] used reli-
ability metrics to evaluate three data replica placement optimization algorithms for improved data
reliability. This study used simulations, in which up to 200 files were accessed by 105 jobs that
required 3–20 files each.
A number of researchers investigated using decentralizing data replication management services

to improve fault tolerance in data grids. In [112], Chervenak et al., described a decentralized replica
location service for the Globus toolkit [93] that was designed to be scalable and fault tolerant. Here,
distributed, redundant indexes maintained information on data replicas in a consistent manner.
Experimental testbed results documented improved performance for over 103 data operations per
second. In [113], this work was extended to test performance using scientific data sets in wide-area
environments and was later implemented in production science grids. In related work, Ripeanu
and Foster [114] described a decentralized replica location service that was intended to achieve
robustness through a redundant, distributed replica management service. However, experiments
focused on system performance rather than fault tolerance. Zhang et al. [115] proposed an algorithm
for dynamically locating data replica servers within a grid to optimize performance and improve
fault tolerance, though scalability issues were not examined. Following the example of [113], more
research on fault-tolerant data grids needs to be extended to large-scale environments. In addition,
few of the studies discussed above addressed heterogeneous or dynamic environments.

3.3. Fault removal in software through testing and code certification

Software component testing to find and remove potential faults is a traditional method for improving
component reliability. Components that have passed tests can then be certified as having achieved a
level of reliability. Methods for testing and certifying grid components have received less attention
from researchers than fault-tolerance methods. Nevertheless, the argument for software testing to
remove faults as a precondition to fault tolerance is strong. The economic importance of adequate
testing methods and tools is discussed in [116,117].
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To date, experimental methods and tools have been developed that can be used to discover
defects in grid system software. One such method is fault injection, also used earlier in distributed
systems [118–120], as well as in software systems in general [121–123]. Looker et al. [124]
reported preliminary work on use of fault injection to identify malfunctioning distributed software
components. In [125], the work in [124] was extended to generate fault-injection tests using an
ontology-based approach. Similarly, Reinecke et al. [126] used fault injection to analyze restart
oracles in distributed systems. Hoarau and Tixeuil [127] studied the use of fault injection to discover
grid system components that were susceptible to process failure faults. Monnet and Bertier [128]
also developed a fault-injection tool to test the ability of fault detectors to find independent and
correlated failures in scaled grid environments.
Beyond fault injection, other testing techniques have been explored. In [129], preliminary work

was reported on designing methods for assessing the impact of periodic upgrades on the depend-
ability of distributed commercial off-the-shelf software (COTS) product components. Song and col-
leagues [130,131] analyzed a well-known COTS, using component dependency graphs to identify
crucial hub components through which a large portion of system messages flowed. Hub compo-
nents with faults are more likely to adversely impact operation of a system and therefore should
be prioritized for testing. Bitonti et al. [132] described a tool for sending test probes to legacy
code components that were integrated into the Globus Monitoring and Discovery Service (MDS4)
[93]. In [133], a patterned series of query and file-transfer test probes were used to measure robust-
ness and stability of Globus-based grid systems. A different approach was taken in the ConCert
project [134], where certifying compilers were used to produce machine code for execution on
grid resources. The code contained checkable certificates that could be used to automatically verify
code properties when the code was deployed. Initially used to verify code safety, the approach also
showed promise for detecting faulty or malicious code [135].
These efforts represent a start toward developing testing technology for grids. An important step

toward developing methods and tools for systematic testing is to first obtain a better understanding
of cost–benefits of testing grid components. Such a study could be used to determine how grid
system functions should be prioritized for testing and certification, what kind of tests would be
most cost effective (component tests, integration tests, interaction tests, etc.), and how tests should
be administered. Here, previous research in fault prediction in software components [136–139]
provides a basis for developing procedures to identify likely areas to test in grid systems. In
addition, an approach such as [134,135] could allow testing of already deployed components in a
grid system that must be continuously online.

4. RELIABILITY PROVIDED BY GRID APPLICATIONS AND WORKFLOWS

Section 3 described fault-tolerance capabilities that may be provided to grid resources from within
the grid. However in many cases, the grid system may provide these capabilities inconsistently
or not at all. Therefore, from the application’s point of view, there may be no guarantee that
resources available in a grid will be reliable. For this reason, users are often motivated to design
their applications with built-in fault tolerance. This is especially true if the application consists of
multiple tasks organized into a workflow. In this case, workflow design languages and tools are used
to specify the task execution order and the data flow between tasks. Once the workflow is defined,
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discovery and resource allocation services are used to assign grid resources to the workflow tasks.
A workflow management service may then be used to supervise workflow execution. The workflow
may be designed to have built-in fault tolerance. For example, a workflow manager may schedule
tasks redundantly on replicated resources or, during execution, may dynamically reschedule tasks
so that the workflow computation can continue if a task fails.
Fault tolerance in workflow management systems has been a research topic prior to the advent of

grid systems [140–144]. As is the case with workflow management tools generally, grid workflow
tools do not yet have well-developed fault-tolerance capabilities. Today, there is no standard speci-
fication for grid workflow design and management that allows definition of built-in fault-tolerance
capabilities. As a step in this direction, the OGF is defining a checkpointing and recovery service
for individual processes that can be initiated from a user application [145]. In what follows, current
research on fault-tolerance capabilities for grid workflows is described. Then, the important issue
is addressed of coordinating fault tolerance provided by workflows with fault-tolerance capabilities
originating within the grid.

4.1. Fault-tolerance capabilities originating from within grid workflows

In recent years, there has been a significant amount of research on developing languages and tools for
design and management of workflows in web service-based grid environments. From the standpoint
of grid systems, these workflow languages and tools can be divided into: (1) those developed
specifically for grid systems and (2) those developed for more generic distributed environments
based on web service standards. Though tools in the second category do not provide grid-specific
features, they have been used for grid applications.
Fault-tolerant capabilities provided by research workflow languages and tools for grid systems

were described by Hwang and Kesselman in [146]. These capabilities facilitated recovery by ma-
nipulating the workflow structure to minimize the impact of real-time failures. Recovery actions
could be specified in the workflow definition or initiated independently by the workflow manager.
These included rescheduling failed tasks on slower but more reliable resources, replicating tasks
on multiple resources, and executing user-defined exception-handling procedures. Yu and Buyya
[147] surveyed 13 research workflow management tools for grid systems and identified tools that
supported the workflow recovery actions described in [146]. These included References [148–155],
and also Xiang et al. [48] proposed an adaptive checkpoint and recovery scheme for grid workflows
(see Section 3.1). However, Yu and Buyya found overall that ‘most fault handling techniques have
not been developed or implemented in many grid workflow systems’.
General-purpose languages for defining and managing workflows do not provide fault-tolerant

capabilities targeted for grid environments. Nonetheless, the Business Process Execution Language
for Web Services (BPEL4WS) [156] standard does provide extensive workflow-level mechanisms
for fault handling, using traditional throw and catch semantics. Many researchers have composed
grid workflows using early versions of BPEL4WS, such as [157–159]. In [160] it was observed
that use of BPEL4WS fault handling to recover one failed workflow process required restart of all
other concurrently executing processes, which would be highly disadvantageous in a grid work-
flow. In response, Tartanoglu et al. [160] proposed a specification language and related mecha-
nisms to overcome this problem. Wasserman and Emmerich [161] conducted a study of failure
in scientific grid workflows that were composed with an early version of BPEL4WS. They also
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concluded that available methods for ensuring reliability in workflows were inadequate. Other
standard specifications for coordinating distributed computations also address fault tolerance in
a general web service context, such as [162,163]. Finally, the recent emergence of Web 2.0 net-
work services [164,165] has made available a set of software components for constructing grid
workflows. Because it is new, Web 2.0 has not yet been investigated from the standpoint of grid
reliability.

4.2. Coordinating workflow and grid resource fault-tolerance strategies

The preceding discussions identified two sources for providing fault tolerance in grid systems:
fault-tolerance capabilities provided from within the grid system and capabilities provided from a
grid application or workflow. Grid system designers, users, administrators, and operators need to
consider when to use each approach in order to prevent unnecessary redundancy. Grid applications
and workflows may not need to provide fault tolerance if the grid resources allocated to their tasks
already provide these capabilities. For instance, a grid workflow need not prescribe recovery actions
for a set of concurrent processes if the grid resources hosting these processes perform coordinated
checkpointing. However, if grid resources are known not to provide fault tolerance, it may be
prudent for applications to ensure these capabilities themselves. In commercial grid environments,
one can envision users and service providers negotiating how fault tolerance is to be provided as
part of creating a SLA [84]. To enable this coordination will require standardized conventions for
describing and negotiating fault-tolerance capabilities, a topic for future research.

5. SUPPORTING GRID INFRASTRUCTURE AND RESOURCE MANAGEMENT

Infrastructure and management services are essential services for managing operation of the grid.
They include services for monitoring status of resources and discovery of grid resources through
directories or other facilities. They also include services for scheduling use of grid resources,
managing execution of user applications on resources, grid usage and accounting services, security
(authentication, authorization, encryption, etc.), and others. As with grid resources, the reliability
of infrastructure and management services can be improved by applying fault-tolerance methods
described in Section 3. However, in contrast to grid resources, infrastructure and management
services have a wider scope, and their function is central to the operation of the grid. Therefore,
ensuring reliability of these services is critical, and thus in this study, fault tolerance of infrastructure
and management services is treated as a separate area of research. However, this area has received
less attention than it merits. For example, few of the grid resource management systems surveyed
in [166] were reported to have built-in fault-tolerant capabilities. This section reviews research
directed toward making infrastructure and management services more fault tolerant.
Work on fault-tolerant data replica management services [111–114] has been described above

(see Section 3.2.4). The OGF Grid Monitoring Architecture document [37] describes generic re-
quirements for the grid monitoring function, including fault tolerance, security, scalability, and
interoperability across heterogeneous grid resources. While many grid monitoring systems sur-
veyed in [36] were shown to lack fault tolerance, a few experimental systems have been developed
that attempt to realize this goal. In [167], a hierarchically based grid monitoring design was used to
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improve fault tolerance; while in [168] monitored data were replicated at multiple nodes. In [169],
registries containing information about monitored resources were replicated for fault-tolerance pur-
poses. In [170], a fault-tolerant service discovery system was described that is built on top of the
Jini Service Discovery protocol [171]. This approach exploited the inherent redundancy of Jini
lookup services to build a distributed, hierarchical index of grid resources, in which index nodes
were replicated and geographically distributed. The number of steps needed to access a node in
the hierarchy was shown to scale in relation to the number of index nodes with a complexity of
O(log n), where n is the number of index nodes. Experimental testbed results documented system
performance, but did not address fault tolerance. Another important function in grid systems is
co-allocation, or co-scheduling, of tasks that must run concurrently on different resources. In [172],
a co-allocation service was proposed that achieved fault tolerance by using distributed, redundant
transaction coordinators, and the Paxos consensus algorithm [90,173]. In [174], redundancy tech-
niques were described that improved survivability and resistance to attack of secure communications
services in the Cactus system [60].
Finally, reliability metrics have an especially important role in connection with infrastructure

and management services. Because these services manage grid resources, they provide a conve-
nient means for applying metrics to measure the reliability of grid resources and, thus indirectly,
the grid itself. In [175], grid resource allocation was supported by a scheme for measuring reli-
ability, or trust, of compute nodes in a desktop grid system using Dempster–Shafer uncertainty
theory [176]. In [88], quantitative reliability ratings for computing resources were used to guide
resource allocation and scheduling. In [111], data availability metrics were used for evaluating
algorithms for optimizing data replication. In [177], a framework for evaluating quality of ser-
vice provided by a grid system was described that defined metrics for service accessibility and
availability.

6. GRID CONNECTION AND TRANSPORT RELIABILITY

The OGF informational document [14] sets forth requirements for grid network systems. Among
the most important are high network availability and reliable, rapid transport of bulk data (over
1 Gigabit per second). Because grid applications often require data transport capabilities of this size
for extended durations, connections between user application and grid resource sites must be reliable
and stable for long periods. Another key requirement is reliable multicast transmission of large data
sets to multiple remote computing resources. Here again, connections must be maintained for
extended periods and data delivery must be ensured in the face of faults among lower-level network
components.
The need to maintain connections for long periods requires use of a large number of network

components. This in turn increases the probability of failures that necessitate rerouting connections
through functioning components. For these reasons, ensuring reliable transport in large-scale grid
networks is critical. The section first discusses standards for reliable connectivity and data transport
that are coming into use in grid environments and related work on strengthening their fault-tolerance
features. Then, the section examines methods being investigated for ensuring reliable connectivity
and data transport in grid networks. Two are of special interest: overlay (or virtual) networks and
dedicated networks. Finally, reliable multicast transmission in grid systems is addressed.
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6.1. Specifications for reliable connection and transport

To date, there are three main specifications for point-to-point unicast communications used in grid
environments: two specifications for reliable connection and message exchange and the GridFTP
specification for bulk data transfer. TCP provides general purpose, fault tolerant, point-to-point
connectivity in network systems and is employed for connection establishment in grid environments.
In this role, TCP is used in combination with other transport protocols. In [178], an OGF survey
of available TCP alternatives found that no alternative, by itself, fully met the requirements of grid
networks.
Web Services Reliable Messaging (WS-ReliableMessaging) [179] was developed by a group of

vendors to define a protocol for guaranteed message delivery. The specification provides procedures
for transferring a sequence of messages between remote components. WS Reliable Messaging also
specifies requirements for tracking the status of messages sent between components, guaranteed
message ordering, and elimination of duplicate messages—in order to guarantee at-most-once mes-
sage delivery. A second specification,WS-Reliability, [180] was also created by a vendor group and
provides similar capabilities. In [181], a comparison of the two reliable messaging specifications
concluded that WS-ReliableMessaging provides more flexible features for re-initiating erroneous
transmissions and more extensive capabilities for reporting faults that occur during transmission. Ini-
tial efforts to implementWS-ReliableMessaging [181,182] and WS-Reliability have not yet yielded
information on the comparative effectiveness of these specifications in production environments.
Subsequent standardization of WS-ReliableMessaging [179] by OASIS [2] indicates growing use
of this specification.
Grid File Transfer Protocol (GridFTP) [183] is a specification developed by the Globus Alliance

and OGF. GridFTP extends the FTP protocol [184] to permit point-to-point transfer of large, ‘bulk’
data over a wide-area network. Widely used in grid systems for scientific applications, GridFTP
transfers large files by taking advantage of ‘long fat’ communication channels to create multiple
TCP data streams that significantly improve aggregate throughput. GridFTP utilizes fault-tolerance
mechanisms provided by TCP and employs a checksum technique to detect data loss during transfer.
In [185], GridFTP was found to be highly reliable and scalable in comparison with other bulk data
transfer protocols. However, a known problem in GridFTP is that failure of a client necessitates
restart of data transmission, a disadvantage when transferring large data sets. This is overcome by
fault-tolerance mechanisms described below.

6.2. Research in fault-tolerant grid networks

The goal of the specifications discussed above is to describe protocols for attaining reliable connec-
tivity and data transport. To achieve this goal requires that the underlying network implementation
itself be fault tolerant and highly available. This in turn first requires the ability to assess the
reliability of the network state. Initial reliability metrics for grid networks were specified by the
OGF [186] and by Lowekamp et al. [187] for this purpose. To achieve fault tolerance and ensure
high network availability, researchers have investigated use of overlay, or virtual, networks as well
as networks dedicated to grid systems use.
In [188,189], a messaging infrastructure was described for supporting communication and large-

scale data transfer in grid systems. The infrastructure employed redundant distributed intermediate

Published in 2009 by John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2009)
DOI: 10.1002/cpe



C. DABROWSKI

brokers to form a virtual software overlay network, theNaradaBrokering system, for managing large
data streams. The infrastructure supported multiple protocols including UDP, TCP and parallel TCP,
Simple Object Access Protocol (SOAP) messaging [190], as well as web service specifications for
addressing [191] and event notification [192]. The infrastructure implemented both WS-Reliable
Messaging and WS-Reliability to facilitate ordered, guaranteed, at-most once delivery of messages
and events. The overlay network of redundant brokers and links provided fault tolerance in the
face of broker failure, failure or disconnect of communicating services, and link failure. Flexible
reconfiguration of the broker topology [193] through operations specified in WS-Management [194]
enhanced scalability of the network. The viability of this approach was shown in the implementation
of prototype grid applications involving streaming audio and video data and in the use of the
broker network to implement a recovery mechanism for GridFTP [195]. The Globus toolkit [93]
also includes a service for fault-tolerant transfer of data by GridFTP through an intermediate
distributed DBMS that performs a function analogous to the broker network in [188, 189]. A
solution to this problem was also proposed in [196], who demonstrated a service for bulk data
transfer between heterogeneous storage systems that use dissimilar data access protocols. This
service relied on redundant data transfer across intermediate hops to improve fault tolerance. In
[197], improved reliability of parallel connections was demonstrated using prototype tools for
detecting and recovering from connection failures.
The OGF informational document [14] identified efficient routing as a key to achieving high

availability in networks that serve grid systems. Routing involves using a traffic engineering func-
tion [198] to select paths through a network that maximizes data flow within available bandwidth.
Effective routing mechanisms are important for dynamically rerouting grid data flows around failed
network components, and therefore, identifying routing mechanisms that perform well in grid envi-
ronments is an important research topic. This is especially so because both current interior gateway
protocols, such as the combined Open Shortest Path First, Intermediate System to Intermediate
System (OSPF/IS-IS) [199,200], and exterior gateway protocols, such as the Border Gateway Pro-
tocol (BGP) [201], are regarded as insufficient by some [14,82]. A possible approach to improved
routing in grid networks, discussed in [14], involves creating virtual overlay networks on top of
existing physical networks using the Multi-Protocol Label Switching [202,203] standard. Clapp
et al. [204] also proposed a dynamic grid networking layer that provided automatic bandwidth
on demand. An important issue for grid overlay networks is the interaction between the overlay
and underlying network resources, since the reliability of the overlay depends on the reliability of
these resources. For example, the overlay network may wish to be notified of underlying resource
failure in order to take appropriate recovery actions or request allocation of additional resources for
rerouting purposes. Thus, from a reliability standpoint, understanding interactions between overlays
and the supporting network layers is an area where more work is needed.
Given the research on promoting fault tolerance at different logical network layers represented

by such systems as the NaradaBrokering system [188] (high layer) and overlay networks (lower
layer), an interesting question to consider is whether a combined solution is possible that leverages
multiple overlays at different logical network levels. For instance, would mapping a software overlay
represented by a broker network over lower-level virtual paths belonging to an overlay network
lead to improved availability in a grid network? Similarly, would fault tolerance be enhanced by
mapping long-distance connections between the service islands described in [82] onto an overlay
network? Questions such as these may be future topics of research. More generally, additional work
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on overlay networks is needed to determine how best to deploy these solutions in grid environments.
It is important to know how management of overlay networks might differ for grid applications,
particularly with respect to fault tolerance. Finally, it is necessary to investigate the use of dedicated
grid networks in which network resources are used exclusively by a grid, rather than shared in a
public network. Given the heavy demands of grid data transport, some have chosen to form dedicated
networks. An example of this is the interlinking of the TeraGrid research grid [205] using optical
network backplane [206]. However, to date, dedicated networks have been used largely for grids
with a limited number of participants. An important question to answer is whether this solution
will scale in very large grids with dynamic membership.

6.3. Reliable multicasting of large data sets

Multicast, or point-to-multipoint, transmission of large data sets in grid environments is a highly
critical capability. For instance, scientific grid systems may require transmission of instrument or
simulation data originating at one site to multiple, remote storage sites. One well-known example
of the use of multicasting in grid applications is the Access Grid [207], where large audio and video
data sets are regularly broadcast to many participants. However, in [207] and in other grid networks
[188], only best-effort multicast is used, which provides high throughput and low end-to-end delay,
but does not provide guaranteed delivery.
Reliable multicast protocols have been the subject of research for years, both within grid set-

tings and for more general purpose use [208–213]. The Nack-oriented reliable multicast (NORM)
protocol is currently being developed as an IETF standard [213]. In [214], a series of trials were
conducted in a wide-area grid network testbed to compare performance of NORM, the Multicast
Dissemination Protocol (MDP) [215], and a variant of TCP extended for multicasting. The results
revealed that NORM and MDP had significant design problems, bottlenecks, and limitations that
hampered throughput. These protocols were also determined to be less robust than TCP in real-
world production networks.
Other multicast solutions also have been proposed. For instance, use of hierarchical multicast

trees in [216] provided good performance for multicast groups consisting of up to 100 members in
a simulated wide-area network, but did not provide guaranteed delivery. In [217], experiments were
reported on using the Tree-based Reliable Multicast (TRAM) protocol [218] to multicast across a
10-node, heterogeneous compute grid. Despite these and other efforts, no multicast protocol has
been yet identified that provides delivery of large data sets that is reliable, scalable, and meet the
performance requirements of large-scale grid systems. Nevertheless, a survey of available multicast
techniques in [210] indicated the potential for such a protocol, and efforts to develop a standard
reliable multicast protocol that is scalable and efficient continue [219].

7. RELIABILITY CONCERNS FROM AN OVERALL SYSTEM PERSPECTIVE

This section discusses approaches to grid system reliability which are based on an overall system-
wide view, rather than focusing on individual functional areas or component types. The overall
perspective facilitates insight into system-level processes that might not be obtained by analyzing
individual components, sites, or subsystems. There are three approaches to overall system reliability
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to consider. The first views the grid from an architectural standpoint. An architectural approach
seeks to analyze the design or structure of the grid to improve the overall reliability by, for instance,
identifying architectural alternatives than foster fault tolerance. A second approach involves using
quantitative methods and algorithms to measure overall grid system reliability. The third approach
involves viewing the grid as a complex system, in which the individual behaviors of large numbers
of components may collectively lead to an emergent global behavior that cannot be predicted from
behavior of individual components. If the resulting global behavior degrades the overall performance
of the grid system, this effectively constitutes a fault situation.

7.1. Grid reliability from an architectural perspective

A grid system architecture describes the structure of a grid system, which consists of nodes¶ and
their interconnections. Nodes, or sites, contain grid resources and related software components. A
grid architecture can be viewed as a high-level design of a grid system. To date, few researchers
have investigated how differences in architecture might affect system reliability. Grid architectures
may be distinguished in several ways that might impact reliability. Architectures may be differ-
entiated by different topologies of sites. For instance, a hierarchical architecture contrasts with a
decentralized architecture. In the former, sites are organized into a logical tree, while the latter
has no central point of control that could also become a point of failure. Architectures can also be
distinguished by number and location of sites or by the distribution of resources across sites; i.e.
a few sites with many resources versus many sites having few resources. Distribution of resources
across sites could impact resource availability if a site becomes unreachable. Architectures can
be differentiated by the number and location of infrastructure and management services on nodes
within the grid system, which may also influence reliability if single points of failure or bottlenecks
develop. Another distinguishing factor is the logical structure of software components that imple-
ment infrastructure and management services. Both the distribution of these services and the design
of the software system that implements them may affect their ability to reliably carry out manage-
ment functions. To date, few researchers have used architectural concepts to analyze grid reliability.
An exception is [130,131] which, as described in Section 3.3, proposed a method for identifying
central ‘hub’ software components that are more likely to impact overall system reliability. In [220],
a grid system architecture based on the Open Grid Service Architecture (OGSA) [7] was proposed
to enhance reliability. The influence of architecture on grid reliability was also investigated in
[189,221]. Given the importance of architecture considerations, these initial efforts should be ex-
panded, so that ultimately it is possible to develop guidelines for design of fault-tolerant grid system
architectures.

7.2. Methods for quantitative assessment of grid system reliability

Methods for quantitatively measuring and optimizing the overall reliability of distributed systems
have long been a research topic (see [24,25,222] for overviews). It was noted early that quantitative

¶This concept is distinguishable from a reference model architecture, such as the OGSA [7].
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assessments of system reliability depend on architectural considerations, since computing reliability
of arbitrarily structured distributed systems was shown to be intractable [223]. More recently, Xie
et al. [222] described a method that uses known component failure rates to measure the overall
reliability of a grid system. The method considered a system model consisting of a set of nodes,
links, grid resources, and a resource management system. A set of workflow tasks was allocated
to grid resources on particular nodes. Given that each of these model components has a known
failure rate, the reliability of a grid system could be estimated by the probability that a set of user
applications, executing on the grid as workflows, will complete. In subsequent work, Dai et al. [224]
revised this approach into a layered hierarchal grid model, where reliability analysis considered
the probability of different kinds of failures at each layer. The analysis incorporated Markov chain
modeling of resource request queues in which blocking and time-out failures occur. In related work,
Dai and Levitin [225] presented a model for measuring reliability of a set of grid components that
share common communications links and are controlled by the same resource manager. Using this
model as a basis, an algorithm for optimizing resource allocation was presented in [226]. In [227],
an algorithm for computing reliability of grid systems having a star architecture was described.
Developing quantitative metrics for evaluating operational, mission-critical grid systems will be
critical for adoption and use of grid technology. However, work on grid systems metrics is only in
the initial stages.

7.3. Grid reliability from the complex systems perspective

Complex systems are large collections of interconnected components whose interactions can lead to
emergent global behaviors that may not be predicable from individual component behaviors. From
the standpoint of grid reliability, the study of grid systems as complex systems seeks to develop
analytical methods that reveal emergent global states in which performance is impaired to a de-
gree that constitutes a system-wide fault state. In some cases, component interactions may lead to
undesirable global states even though individual components have functioned as intended. Under-
standing the causes of emergent behavior provides a basis for developing decentralized methods of
control that leads to desirable global states when implemented by components across a grid. How-
ever, developing tractable methods to understand causes of emergent behavior presents a challenge
because of grid system scale, heterogeneity, and dynamism.
Work toward developing simulation tools to study dynamics of grid systems was reported in [228].

Other simulation studies demonstrated the advantages of viewing a grid as a complex system. In
[229], it was shown through simulation that when resource allocation operations are randomly
subjected to malicious spoofing on a global scale, a plausible response intended to isolate spoofed
service providers can actually lead to further degradation of global system performance. In [230],
it was found a decentralized grid compute economy produced good global resource allocations
during periods of excess demand and responded well to sudden overloads caused by temporary
provider failure. Related work in [231] demonstrated in more detail the feasibility of using grid
standard specifications to produce viable resource allocations in a grid compute economy. These
examples show that complex systems methods can be used to understand global behavior in grid
systems, and thus provide a basis for improving system reliability. As with architectural analysis
and quantitative measurement, the importance of this work is likely to increase as the scale of grid
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systems increases. Societal investment in research to develop analysis methods that are based on
overall systems perspectives is therefore a necessity.

8. FINDINGS AND CONCLUSIONS

This study has surveyed the progress in making grid systems more reliable. The study has described
how grid systems are characterized by conditions of large scale, heterogeneity, and dynamism.
These factors distinguish grid systems from other kinds of distributed systems and pose significant
challenges to ensuring reliability.
The study has found that, to date, efforts to make grid systems more reliable have centered

on developing methods for fault tolerance. Efforts toward improving fault tolerance have focused
on distinct functional areas of grid computing, including computational hardware and software
resources, user applications and workflows, infrastructure and management services, and grid net-
works. Generally, work has progressed differently in these areas, and in each area, different problems
remain to be solved. For grid resources, new fault detection methods have been proposed, but the
problem of ensuring completeness and accuracy in scaled environments still requires more work.
Progress has been made in checkpointing and recovery methods, but here, scalability also needs
further investigation. Resource replication shows promise as a fault-tolerance method for large-
scale environments. However, this area has thus far been the subject of less effort than is warranted,
given the fault-tolerance potential provided by the innate redundancy of grid resources. Similarly,
dynamic rescheduling has not been sufficiently investigated as a fault-tolerance technique. Over-
all, fault-tolerance methods for grid resources remain in the research stage and have been largely
unproven in large-scale, production environments. Still less work has occurred on test methods
for fault prevention. Here, a comprehensive study is needed on the cost effectiveness of testing in
order to better understand requirements for testing grid components in heterogeneous and dynamic
environments. As in the case of test methods, fault-tolerance methods for grid applications and
workflows, as well as for infrastructure and management services, need additional focus. With
regard to grid networks, there has been notable progress in ensuring reliable connectivity and bulk
data transport. Significant efforts have also been devoted to improving fault tolerance through the
use of overlay networks and dedicated networks. However, questions remain about the use of these
methods under conditions of scale, heterogeneity, and dynamism.
The study found a number of key specifications that need to be further examined to determine if

they should be extended to support reliability. In some cases, needed specifications are incomplete,
such as for reliable multicasting and application checkpoint and recovery. Comprehensive guidelines
are needed for implementing fault tolerance in grid environments. Guidelines are needed for such
areas as specifying when fault tolerance should be provided by workflow management systems,
ensuring reliability of core infrastructure and management services, and designing fault-tolerant
grid system architectures. Similarly, while progress has been made in developing metrics for grid
networks, there has been much less work on metrics for other functional areas of grid computing.
Without measurement methods for all phases of grid operations, it will not be possible to measure
the reliability of large-scale grid systems. In the area of new grid-related technologies, the recent
emergence of Web 2.0 network services [164,165] and its potential use in grid systems has not
yet been investigated from the standpoint of grid reliability. Similarly, there has not been sufficient
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time to examine whether cloud computing [27] may yield reliability benefits that could be applied
in grid systems.
In conclusion, developing reliability methods for large-scale, heterogeneous, dynamic grid sys-

tems remain a challenge that must be met if the vision of future grid systems is to be fully realized.
At present levels of scale, fault-tolerance methods adapted from other areas of distributed com-
puting can provide reliability to grid systems used in individual enterprises or in small groups of
cooperating organizations. However, as grid systems grow in scale, heterogeneity, and dynamism,
existing methods will have to be adapted and new methods will need to be developed. Similarly,
grid system growth will require new reliability measurement and test methods. This work will
have to proceed with full appreciation of the distinguishing circumstances of grid environments.
These circumstances also indicate that increased emphasis will need to be placed on analysis of
grid systems from an overall systems perspective. In particular, understanding grids as complex
systems will become increasingly necessary, because scale and dynamism are more likely to facili-
tate undesirable emergent behaviors that cannot be predicted, or prevented, by analyzing individual
component behavior. Given that ensuring reliability is critical to the continued advancement of grid
technology, it is important that work in all areas of grid reliability continues and is expanded, and
that promising experimental methods continue to be evolved for deployment in future production
environments.

APPENDIX A

Table AI lists references provided in this paper by the major topical areas of grid system reliability
each reference addresses. Some references pertain to more than one area.

Table AI. References listed by major topical area of grid system reliability.

Fault tolerance of grid resources
Fault detection [10–13,15,16,29–52]
Checkpointing and process migration [16,21,22,46,49,53–78]
Resource replication [28,46,79–94]
Rescheduling [95–97].
Data replication [8,28,93,98–115]
Testing and certification of grid resources

[93,116–139]
Reliability of grid applications and workflows

[48,84,140–165]
Infrastructure and management services

[36,37,60,88,90,111–114,166–177]
Grid connection and transport reliability
Reliability specifications [2,178–185]
Fault tolerance methods [14,82,93,186–206]
Reliable multicasting [188,207–219]
Overall system perspective
Architecture [7,130,131,189,220,221]
Measurement methods [24,25,222–227]
Complex systems [228–231]
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