Objective	GA Background	Sensitivity Analysis 000000000	Cloud Model	Acknowledgements

Determining Important Control Parameters of a Genetic Algorithm

Andrea Haines

NIST

Information Technology Laboratory Advisors: Kevin Mills & Jim Filliben 7 August 2012

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

∃ >

NIST

∃ >

Andrea Haines

Objective	GA Background	Sensitivity Analysis	Cloud Model	Acknowledgements
Outline				

• Objective

- Genetic Algorithm Background
- Part 1: Sensitivity Analysis
 - Problem Set
 - Experiment Design
 - Results

• Part 2: Exploring a Cloud Simulation's State Space for Failure Scenarios

Acknowledgements

- ∢ ∩ 🖓 🕨

Objective	GA Background	Sensitivity Analysis	Cloud Model	Acknowledgements
Objective				

The Big Picture

To use a classic Genetic Algorithm to search the large state space (6^{132}) of Koala, a cloud simulation, for settings that drive the model into behavioral directions that indicate system failure and/or degraded operations

How?


- A classic Genetic Algorithm was developed by Kevin Mills, using SLX (Extensible Simulation Language)
- Lacking prior definitive studies, we needed to determine the most important and best settings to use for 7 of the GA's control parameters
- Conducted a sensitivity analysis on the results of the GA on 60 optimization problems

Objective	GA Background	Sensitivity Analysis	Cloud Model	Acknowledgements
What is	a Genetic Alg	orithm?		
Initialize Randomly generate initial population Start	all Stop? No Selection	es Best F Individuals t select Result f t t ter ev	P = # of individuals = generation $#P(t) =$ population of or generation t = 0 nitialize $P(t)$ valuate $P(t)$ vhile (not termination	individuals
Cross	Bit Representation over	b	egin	
	Individual x 1011 10010111001 1110		t = t + 1	
	dividual x+1 0010 10111101001 1010		select $P(t)$ from $P(t)$	(t - 1)
	v Individual x 0010 10010111001 1010 ndividual x+1 1011 10111101001 1110		alter $P(t)$	
Muta		01110	()	
	Individual x 0000 10010111001 100	01 11 11	evaluate $P(t)$	
Newl	ndividual x+1 1001 10101100000 0010	ei	nd	

Andrea Haines

Determining Important Control Parameters of a Genetic Algorithm

Advantages of Genetic Algorithms

- Can search a large space
- Can work well when the search space is multimodal
- Can provide a "good" solution
- Can be useful for complex or loosely defined problems

(日) (同) (三) (三)

Andrea Haines

Determining Important Control Parameters of a Genetic Algorithm

э

2

NIST

Part 1: Sensitivity Analysis

Andrea Haines

Objective GA Background Sensitivity Analysis Cloud Model

Acknowledgements

7 Factors (Parameters) -4 levels (Settings)

	Level 1	Level 2	Level 3	Level 4
x ₁ Population Size	50	100	150	200
x ₂ Selection Method	SUS	T(.60)	T(.75)	T(.90)
x ₃ Elite Selection %	0	2	4	8
x ₄ Reboot Proportion	0	0.1	0.2	0.4
x₅ Crossover	0	1	2	3
x ₆ Mutation	Adap	0.001	0.0055	0.01
x ₇ Precision Scaling	1/2	1	2	4

Andrea Haines

Determining Important Control Parameters of a Genetic Algorithm

2

N 11 7 N 11 7 N 12 7 N 12 7

Objective

GA Background

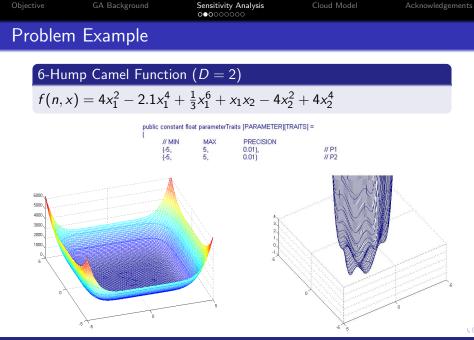
Sensitivity Analysis

Cloud Model

Acknowledgements

Partial Problem List

60 numerical optimization problems from literature The study started with 14 completed problems:

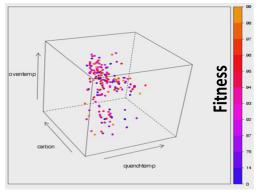

- AxisParallelHyperEllisoid (D = 15)
- AxisParallelHyperEllisoid
 (D = 30)
- **③** ChemicalReactor (D = 5)
- ChemicalYield (D = 2)
- DefectiveSprings (D = 3)
- Morris (D = 10)
- Morris (D = 20)
- QuarticWithNoNoise (D = 100)

- QuarticWithNormalNoise (D = 100)
- QuarticWithUniformNoise (D = 100)
- SchafferF6 (D = 2)
- ShekelM5 (D = 4)
- ShekelM7 (D = 4)
- ShekelM10 (D = 4)

<ロ> <同> <同> < 回> < 回>

Determining Important Control Parameters of a Genetic Algorithm

э


Andrea Haines

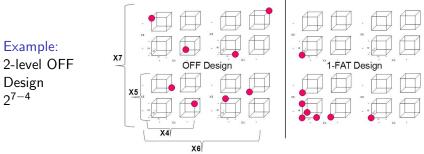
NIST

 Objective
 GA Background
 Sensitivity Analysis
 Cloud Model
 Acknowledgements

 OO<OOOOOO</td>
 OO<OOOOOO</td>
 OO
 OO
 OO

5D Animation – Defective Springs Problem (D = 3)

A Genetic Algorithm searching for an optimal combination of oven temperature, quench temperature and carbon concentration in a production process, where fitness is measured as the percentage of non-defective springs produced

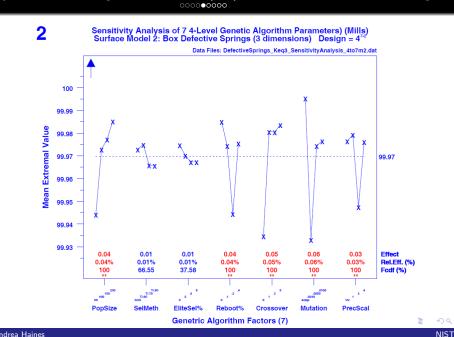

Visualization by Sandy Ressler (NIST Math Division)

Andrea Haines

Objective GA Background Sensitivity Analysis Cloud Model Acknowledgements

Experiment Design (I = 4, k = 7, n = 1024)

- 4⁷⁻² Orthogonal Fractional Factorial (OFF) Design
- Each parameter setting level is used 1024/4 = 256 times
- $60 \times 1024 = 61440$ runs, instead of $60 \times 16384 = 983040$



Benefits of OFF Design:

- Superior coverage & robustness when compared with 1-Factor-at-a-Time
- Minimizes variation in effect estimates (□) (□) (□) (□) (□) (□)

NIST

Andrea Haines

Sensitivity Analysis

Cloud Model

Andrea Haines

jective		G	A Backgrou	nd	Sensitiv 00000	vity Analysis ●●○○○		Cloud Mod	el	Acknowledgements
	2		Sensitiv Surface	ity Analysi Model 2: E				Parameters ions) Desig SensitivityAnalysi		t
		100 -	14	6	7	3	2		5	Most Important Parameter
	nal Value	99.99 - - 99.98 - - 99.97 -	×	××	X	* *	××××	xx	× ×	99.97
	Mean Extremal Value	99.96 —		ХX	XX					
	Me	99.95 - 99.94 - 99.93 -	×			×	×		×	
			0.04 0.04%	0.01 0.01%	0.01 0.01%	0.04 0.04%	0.05 0.05%	0.06	0.03 0.03%	Effect Rel.Eff. (%)

100

A

2

.

Reboot%

Genetric Algorithm Factors (7)

100

2

Crossover

3

100

.0100 .0055 .0010 Adap

Mutation

Fcdf (%)

1.2.2

2

NIST

100

PrecScal

1/2 1

1 L P 1 DP P 1 E P

Andrea Haines

Determining Important Control Parameters of a Genetic Algorithm

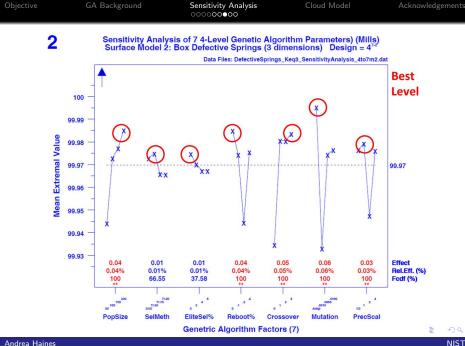
100

100 100 200

PopSize

66.55

T/.90 T/.75 T/.60 SUS


SelMeth

37.58

0 2

EliteSel%

.

Andrea Haines

Objective	GA Background	Sensitivity Analysis ○○○○○○●○	Cloud Model	Acknowledgements
Data S	ummary			

<u> </u>			2	ш	le	2
			м	. 10	ж	
		-	81.41		-	
: 2	4.4	E-M M-H				
: 2						
	20.04	95.28	#4.74 (0.75		40.27	17.4
1.2	Ξ	11.44	1.0		17.40	2
1 112				41.72	100	
1 114						10
						1
111						1
						12
	10.34			88.22	63	74
12	10.75	11.50				
			71			E
			12.44			
1.12						ä
95.38						
100						1
-						14
1.0				0.0		1
	201	212	82.74	100	-	
		4.75	41.75	41.75	41.75	м
01.00	244	86.NL	34.24	25.88	36.42	
	27	17	10.01			
-		8.21	6.71		96.13	1
13	24.00	A.M.	41.12			
10.0	1.0		17.0	44.73	10.01	1
01.42	104	10.00	-	-	-	a
		1.44				
	UAD.					*
8.0		1.00	11.44	7.4	100	5
	-					ĥ
81,28		11,14				
10.0	31	1.79	6.0			
100	-	100	-	-		11.1

Best Level on Individual Functions*

イロン イロン イヨン イヨン

Factor	p<0.01	Level 1	Level 2	Level 3	Level 4
Population Size (x ₁)	41 (68%)	0 (0%)	3 (4%)	13 (19%)	53 (76.8%)
Selection Method (x ₂)	32 (53%)	39 (53%)	6(8%)	15 (20%)	14 (18.9%)
Elite Selection % (x ₃)	32 (53%)	14 (18%)	12(16%)	21 (28%)	29(38.2%)
Reboot Proportion (x ₄)	42 (70%)	30 (45%)	4(6%)	4(6%)	29(43.3%)
Crossover (x ₅)	53 (88%)	2 (3%)	14 (20%)	7 (10%)	46 (66.7%)
Mutation (x_6)	50 (83%)	40 (63%)	4(6%)	12 (19%)	8(12.5%)
Precision Scaling (x ₇)	25 (42%)	25 (40%)	17 (27%)	5 (8%)	16(25.4%)

*Percentages summed for the levels (1-4) sometimes exceeds 100 because there was no significant difference between the means

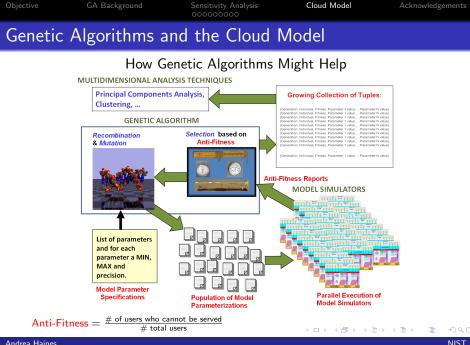
2

Objective	GA Background	Sensitivity Analysis ○○○○○○○●	Cloud Model	Acknowledgements
^ 1				

\boldsymbol{c}	
(onc	lucione
A OTIC	lusions
00110	

Ranl	< Factors	Best Level (Setting)	p<0.01
1	Crossover (x ₅)	4 (3 points)	88%
1	Mutation (x ₆)	1 (Adaptive)	83%
2	Reboot Proportion $(x_4)^a$	1 (0) or 4(0.4)	70%
2	Population Size (x_1)	4 (200)	68%
3	Selection Method $(x_2)^b$	1 (SUS)	53%
	Elite Selection (x_3)	4 (8%)	53%
4	Precision Scaling (x7) ^c	1 (1/2 as fine)	42%

- a. When the selection threshold (pressure) is too low, tournament selection has an inferior performance
- b. Rebooting the population too frequently (after 0.1 or 0.2 of the generations) is not as good as not rebooting at all
- c. Reducing the precision of the parameters can give good answers, likely by reducing the size of the search space


Andrea Haines

Objective	Sensitivity Analysis 00000000	Cloud Model	Acknowledgements

Part 2: Exploring the Koala State Space for Failure Scenarios

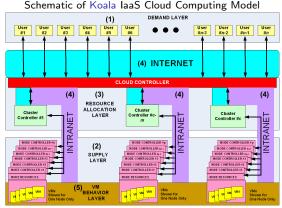
The Big Picture (In Progress)

To use the optimized classic Genetic Algorithm to search the large state space (6^{132}) of Koala, a cloud simulation, for settings that drive the model into behavioral directions that indicate system failure and/or degraded operations

Andrea Haines

Objective

GA Background


Sensitivity Analysis

Cloud Model

Acknowledgements

Koala – Cloud Model

Koala attempts to allocate virtual machines that are requested by users onto physical nodes provided by a cloud

Chris Dabrowski & Kevin Mills (Networking Division) creators of Koala

Summary of Koala Parameters Model Element Total # User 36 Cloud Controller 32 Cluster Controller 17 Node Controller 22 Internet/Intranet 25

(日) (同) (三) (三)

132

э

Andrea Haines

Objective

Sensitivity Analysis

Cloud Model

. .

GA-generated Koala Parameters (6¹³²)

	Sample Koala Chromosome Map							
ID#	PARAMETER	MIN	МАХ	PRECISION	#VALUES	LOW_BIT	HIGH_BIT	#BITS
1	P_largeNumberOfUserTypes	C	7	1	. 8	1	. 3	3 3
2	P_probabilityNodeNERA	1E-06	0.1	0.01	10	4	7	4
3	P_averageDelayUntilCrash	3600	14400	3600	4	8	9	2
4	P_smallClusterSizeFraction	0.05	0.25	0.05	5	10	12	3
5	P_RelocationOrphanControlOn	C	1	1	2	13	13	1
6	P_orphanDetectionTime	3600	10800	1800	5	14	16	3
7	P_MaxPendingRequests	1	10	1	. 10	17	20	4 (
8	P_minNodeFailureDuration	1800	7200	1800	4	21	. 22	2 2
9	P_maximumInterSiteDelayPerHop	0.1	1	0.1	. 10	23	26	i 4
10	P_minimumSiteCoordinate	-8000	-2000	2000	4	27	28	3 2
11	P_modeClusterCommunicationCutDuration	21600	36000	7200	3	29	30	2
		•	•				•	•
•	,	•						
•	•	•	•	•	•	•	•	· ·
127	P_averageNodeStartupDelay	60	300	60	5	325	327	3
128	P_AdministratorActive	C	1	1	. 2	328	328	3 1
129	P_intraSiteExtraDelayprobability	C	0.5	0.1	. 6	329	331	3
130	P_maximumBootTime	300	900	120	6	332	334	3
131	P_nodesPerCluster	200	2000	200	10	335	338	3 4
132	P_averageThinkTime	900	1800	300	4	339	340	2

Andrea Haines

NIST

2

・ロト ・回ト ・ヨト ・ヨト

Objective	GA Background	Sensitivity Analysis 00000000	Cloud Model	Acknowledgements
Summary	of the Sum	mer		

- Part 1: Sensitivity Analysis
 - Implemented and tested 46 optimization problems
 - Analyzed data from all 60 problems
 - Determined the ranking for the 7 GA parameters and their best settings
- Part 2: Koala Cloud Model
 - Compiled list of 132 parameters and specified ranges and precisions
 - Reflected changes into GA controller and generated a chromosome map
 - Wrote code to convert chromosome map into Koala parameters

(日) (同) (三) (三)

Objective	GA Background	Sensitivity Analysis	Cloud Model	Acknowledgements
Acknow	ledgements			

- Kevin Mills
- Jim Filliben
- The SURF program and the SURF directors

2

Objective	GA Background	Sensitivity Analysis	Cloud Model	Acknowledgements
		00000000		

Questions?

・ロト ・回ト ・ヨト ・ヨト

2

NIST

Andrea Haines

Objective	GA Background	Sensitivity Analysis	Cloud Model	Acknowledgements
Other F	Problems			

- (b) Ackley (D = 10)
- Image Beale (D = 2)
- Bohachevsky (D=2)
- \square Branin (D = 2)
- Camel 3-hump (D = 2)
- Output Carnel 6-hump (D = 2)

- **2** Colville (D = 4)
- Corana (D = 4)
- Dekkers and Aarts (D = 2)
- Easom (D = 2)
- Gear (D = 4)
- Goldstein-Price (D = 2)
- Ø Griewank
 - (D = 2)

- Sriewank (D = 10)
- Hartman (D = 3)
- Hartman (D = 6)
- 4 Hosaki (D = 2)
- Kowalik (D = 4)

(日) (同) (日) (日)

Determining Important Control Parameters of a Genetic Algorithm

э

Objective	GA Background	Sensitivity Analysis	Cloud Model	Acknowledgements
Other P	roblems			

- 3 Levy (D = 15)
- 3 Levy (D = 30)
- **1** Levy (D = 60)
- McCormick (D=2)
- Michalewitz (D = 15)
- Michalewitz(D = 30)
- Michalewitz (D = 60)

- Multimod (D = 30)
 Neumaier3 (D = 10)
 Paviani (D = 10)
 Perm (D = 10)
 Periodic
 - (*D* = 2)
- 🚳 Plateau
 - (D = 5)

- Over the second seco
- Salomon (D = 10)
- Schwefel3 (D = 3)
- Shubert (D = 2)

(日) (同) (三) (三)

Determining Important Control Parameters of a Genetic Algorithm

э

 Objective
 GA Background
 Sensitivity Analysis 00000000
 Cloud Model
 Acknowledgements

Other Problems

- Sinusoidal (D = 10)
- SphereModel (D = 15)
- SphereModel

- (D = 60)
- Step (D = 15)
- Step (D = 30)
- Step (D = 60)

- Watson
 - (D = 6)
- Solution Zakharov(D = 15)

<ロ> <四> <四> <日> <日> <日</p>

æ

NIST

Zettl (D = 2)

Andrea Haines