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Abstract- Market-based compute grids encompass service providers 
offering limited resources to potential users with varying quality of 
service demands and willingness to pay. Providers face problems of 
pricing and allocating resources to maximize revenue. Previous 
research proposed and analyzed a method for allocating resources 
based on joint optimization of access control and scheduling 
strategies. This paper proposes a tractable analytical model for joint 
optimization of job pricing and scheduling strategies with the 
objective of maximizing provider revenue. The paper provides initial 
results for the case of a single provider serving price-sensitive users 
whose utilities decay linearly with increasing service delay. The 
paper also shows that providers must combine both pricing and 
admission control to achieve maximum revenue. 
 

I INTRODUCTION 
merging Grid technologies pose a challenging problem of 
efficient resource allocation in complex, decentralized 
systems with strategically behaving users and service 

providers. In market-based compute grids efficient resource 
allocation can be achieved through a combination of demand 
pricing and resource management. While demand pricing 
matches average (long-term) demand with available resources, 
resource management ensures that the system can 
accommodate instantaneous (short-term) demand fluctuations.  
This paper, a continuation of previous work [1], considers 
market-based compute grids where providers attempt to 
maximize their profit through quality-of-service-dependent 
pricing and resource allocation.   

Researchers who investigate market-based compute grids 
typically model users willingness to pay (utility) as a reward 
for completing a job by a deadline and a decay rate, which 
defines the slope of a linearly decreasing function of the 
reward over time for late jobs [2]-[7]. As reward decays 
beyond zero, user utility becomes negative and a provider 
must pay a corresponding penalty. Many researchers devise 
heuristics for pricing, admission control and scheduling of 
jobs by service providers and then use simulation to evaluate 
performance of those heuristics when subjected to a mix of job 
classes. Each job class is defined by a deadline and associated 
reward, along with a decay rate for exceeding the deadline 
(and possibly a bound on the penalty for late jobs).   

Providers may increase revenue by controlling demand 
through pricing rather than through admission control. Game 

theory provides a natural analytical framework for modeling a 
market of providers and users. However, the presence of 
multiple providers, who compete for users on price and quality 
of service, greatly complicates analysis of the corresponding 
game. This paper proposes a tractable analytical model for 
joint optimization of job pricing and scheduling aimed at 
maximizing revenue given a single provider. We solve this 
model under the assumption that potential provider penalties 
are unbounded, and we analyze key model parameters. In this 
particular case the scheduling optimization problem can be 
solved explicitly, yielding priority scheduling with priorities 
determined by job urgency.  
 We assume that a user submits a service (job) request if the 
corresponding net utility, which is the user utility minus the 
price of the service, is positive. If net utility is negative, the 
user does not submit this job request. A user obtains maximum 
utility if a job completes by a specified deadline, and a 
discounted utility for a late job. Late jobs may require the 
provider to pay a penalty; thus, revenue for a job could be 
negative. Given limited resources, a provider maximizes its 
revenue through pricing and allocating resources. We assume 
the provider knows the price-demand curve, which is stable on 
the scale of individual job arrivals and departures. This 
assumption allows us to use steady-state formulas for queuing 
delays.  

Our analytical solution may be applied to determine 
maximum achievable provider revenue for a given mix of 
jobs, characterized by delay sensitivity, demand potential and 
price elasticity, assuming unbounded provider penalties. Our 
model can also be used to understand the operating limits of 
heuristics for pricing, admission control and scheduling, and to 
investigate the implication of varying job mixes. The major 
conclusion we derive from analysis of our model is the 
necessity to combine both pricing and admission control for 
adequate resource allocation. While pricing matches average 
demand with available resources on the “slow” timescale, 
admission control reacts to demand variations on the “fast” 
timescale. 

The paper is organized as follows. Section II introduces the 
user model, which assumes that each user attempts to 
maximize his net delay-sensitive utility. Section III describes 
the provider model, which assumes that a provider attempts to 
maximize earned revenue, where maximization is performed 
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over job pricing and scheduling. Section IV shows, for a 
particular case of linear user utilities, that the provider revenue 
maximization problem can be decomposed into finding 
optimal scheduling and optimal pricing, where the optimal 
scheduling, which turns out to be priority scheduling, can be 
determined explicitly. Section V provides some numerical 
results derived from the model. Section VI compares the 
effects of pricing and admission control on provider revenue. 
Finally, Section VIII summarizes results and outlines 
directions for future research. 

II USER MODEL 
We model users as job submitters, where each job includes an 
expressed willingness to pay that consists of two parts: base 
value and delay-dependent decay, which can be seen as 
diminished value for jobs completed late. Thus, we model jobs 
as being delay sensitive.  

     We assume that there are S  classes of jobs, where all 
jobs of each class Ss ,..,1=  have the same pattern of delay 
sensitivity. Delay sensitivity of a job of class s  is 
characterized by the non-increasing utility function )(τsu  of 

the queuing delayτ . Function )(τsu  has a form shown in 
Figure 1 and is often used [2]-[7] in grid computing research.   
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Figure 1.  Generic utility function 

 
Utility function )(τsu  can be interpreted as the user 
willingness to pay.   

We assume that utility functions )(τsu  of all jobs of the 

same class Ss ,..,1=  have the same cut-off and break-even 
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parameter βττ )( min* −=+u  represents the user budget, 

while parameter βττ )( *max −=−u  represents user 
dissatisfaction when the job is not completed. Piecewise linear 
utility function (1) represents willingness to pay as a base 
value ( +u ) for completing a job on time (by minτ ) with a 
decreasing value for late jobs, up to some bound ( −− u ).  
     We can simplify (1) to a linear utility function,  

             βτττβττ )();,()( ** −== s

def

ss uu                          (2) 

as depicted in Fig. 2, where +
su0  represents base value for 

completing a job of class s without queuing delay and β  
represents the rate of decay in job value due to queuing delay. 
Linear utility function (2) ignores the offset ( minτ ) and 
removes the penalty bound ( −− u ). We will see that these 
restrictions simplify the analysis. If desired, the offset can be 
reintroduced later when using numerical methods. 
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Figure 2. Linear utility function 
 

Given queuing delay timeτ , we assume that a provider 
charges a job of class Ss ,..,1=  amount 

                        sss qp )()( * τττ −=                                      (3) 

where ssss qpp *
0 )0( τ==  is the base price for the job and 

sq  is a price reduction rate with increase in the queuing delay 

incurred by the job. Note that when 0)( <τsp  the user is 
reimbursed for poor service. A user will submit job 

sJj ,..,1=  of class Ss ,..,1=  to a provider only when 
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+≤ ss up 00 . Thus, the service provider can control demand by 

varying base prices Ssp s ,..,1,0 = . 

III PROVIDER MODEL: PRICING AND SCHEDULING 
A service provider can maximize revenue by controlling 
demand through pricing and by controlling relative job 
queuing delays through scheduling of jobs of various classes. 
The problem of finding optimal price and a related schedule 
for these jobs is nontrivial. In this section we show how 
solving two interrelated optimization problems (determining 
optimal price and a related, optimal schedule) allows a service 
provider to maximize revenue. 
     We assume the service provider uses a pricing scheme (3), 
which can be rewritten as follows: 
                        sss pp 0

* )1()( τττ −=                                (4) 

where base prices sp0  are intended to maximize revenue.  We 
consider the following demand function [8]:  
                            spAp soss

αλ −=)(                                    (5) 

where sA  is demand potential and 1>sα  is price elasticity. 
For telecommunication data traffic [8], price elasticity has 
been measured to be ]7.1,3.1[∈α . We also assume that jobs 

of class s  arrive according to a Poisson process of rate sλ . 

We assume an 1// GM  service model: all accepted requests 
are serviced by a single server of capacity C , with service 
time for requests of class s  being a random variable with 
probability distribution )(tBs  with moments 

∫= )()()( tdBtb s
ii

s . 

     The provider employs pricing and scheduling, as shown in 
Fig. 4. Since a completed job sJj ,..,1=  of class Ss ,..,1=  

brings revenue (4), given queuing time jsττ = , the average 
provider revenue is 
              ∑ −=

s
sssss TppR )1)(( *

00 τλ ,                          (6) 

where the average queuing delay for a job of class s  is 
][ ss ET τ= . Expression (6) represents the sum over all job 

classes of the base price for jobs in a class minus the decay in 
value determined by the expected queuing delay for jobs in the 
class, weighted by the proportional arrival rate for jobs in the 
class. The goal of the provider is to maximize the average total 
revenue 
                           R

schedulingpricing
maxmax                                          (7) 

where the average total revenue is given by (6). 
The case of a linear utility function (2) is comparatively 

simple because (a) average utility is equal to the utility of the 
average queuing delay, and (b) optimization problem (7) can 
be solved explicitly yielding the optimal scheduling. Indeed, in 
this case optimization problem (7) can be rewritten as follows: 
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Fig. 4 depicts decomposition of optimization problem (7) into 
problem (8) for optimal pricing and problem (9) for optimal 
scheduling. 
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Figure 4.  Pricing and Scheduling 

IV DECOMPOSITION: PRICING AND SCHEDULING 
Kleinrock [9] shows that, for the class of non-preemptive, 
work-conserving scheduling disciplines, the solution to 
optimization problem (9) is given by priority scheduling where 
priorities are assigned according to values: 

Pricing Mechanism 

Scheduler 

Server 

Class 1 Class s Class S
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                    Ssbpf sss

def

s ,..,1,)( )1(*
0 == τ                     (10) 

Assuming that job classes are arranged in the following order: 
                        Sfff ≤≤≤ ..21 ,                                      (11) 
the optimal scheduling discipline assigns priority to job class 

Si ,..,2=  over job class Sj ,..,1=  if ji > .   
The corresponding optimal average waiting times are 
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server utilization by a job class Ss ,..,1=  is  

                          )1(
sss bλρ =                                                (14) 

and server utilization by job classes Ssi ,..,=  is 
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 For the optimal scheduling discipline, the average total 
revenue (6) becomes 
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where the base revenue rate (assuming that capacity is so high 
that the queuing delay is negligible) from class s  is 
                       )()( 0000 sssss pppR λ=                              (17) 
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 In the case of a single job class, 1=S , provider revenue 
(16) becomes 
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and thus, optimization problem (18) takes the following form: 
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subject to α1)1(
0 )(Abp > , where 
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and 
                            αρ −= 0
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Optimization problem (20)-(22) has unique 
solution: ),,,( *

00 τθαApp optopt = , which can be easily 
determined numerically. 
 Consider a particular case of jobs with low delay 
sensitivity: ∞→*τ . Analysis shows that in this case the 
optimal price is: 
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the corresponding optimal utilization (24) is 
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 Expressions (23)-(24) are instructive. If jobs are 
completely insensitive to delay, then the optimal price 
maximizing the provider revenue is determined by the 
condition that the provider is completely utilized: 1)( =opρ .  
Combining this equation with (22) we obtain the first term in 
expression (23) for the optimal 

price: ( ) α

ττ 1)1(*
0 *)( Abpopt =∞= . Optimal price (23) 

increases with decrease in the job delay sensitivity *1 τ  as 
21*)1( τ , which results in server underutilization by a margin 

of 
21*)1(~ τ  and job delays of the order of 21*)(~ τ . 

 

V NUMERICAL RESULTS: SINGLE CLASS  
This section provides some initial numerical results. Due to 
limited space we consider only a case of a single job class. 
Figure 5 shows provider revenue as a function of the demand 
potential for fixed pricing without admission control and for 
several cases of delay sensitivity. 

 
Figure 5.  Revenue: Fixed Pricing without Admission Control 
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 As admitted demand increases, provider revenue is a 
subject to two opposing trends: on the one hand revenue 
increases due to more jobs admitted, but on the other hand 
revenue decreases due to increase in the “delay penalty”.  The 
first trend is dominant for light demand while the second trend 
becomes dominant for heavy demand. Accordingly, as 
demand increases, the provider revenue first increases, then 
peaks, and after that decreases. The location of the peak 
depends on the delay sensitivity of users. 

Figure 6 plots provider revenue as a function of the 
demand potential for fixed pricing and optimal admission 
control (described elsewhere [1]) as a function of the demand 
potential. The optimal admission control kicks in for 
sufficiently large demand, when revenue without admission 
control (see Figure 5) peaks and starts deteriorating due to the 
delay penalty. Optimal admission control rejects excessive 
demand to ensure that the revenue is kept at the maximum. 
The lower the users delay sensitivity the higher the maximum 
revenue available to the provider. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 6. Revenue: Fixed Pricing with Admission Control 
 

Figure 7 shows provider revenue for optimal pricing 
without admission control as a function of demand potential. 
Here, price elasticity is fixed at 5.1=α . As demand 
increases, the provider is able to raise the price and extract 
more revenue. As demand potential increases, the provider can 
charge a higher price, while still generating sufficient 
customers to increase revenue. 

Figure 8 compares provider revenue in all three cases: 
fixed pricing without admission control, fixed pricing with 
optimal admission control, and optimal pricing without 
admission control. Here, delay sensitivity is fixed at 

)1(* 3b=τ  and price elasticity is fixed at 5.1=α . As 
Figure 8 demonstrates, optimal admission control prevents 
deterioration of the provider revenue but does not take 
advantage of the possibility of increasing revenue by raising 
price. Thus, it may appear that optimal pricing eliminates the 
need for admission control. In the next section, however, we 
argue that in practical situations admission control may be 

necessary even when a provider is capable of price 
optimization. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.  Revenue: Optimal Pricing without Admission Control 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.  Revenue: Impact of Pricing and Admission Control 

VI. DISCUSSION: PRICING VS. ADMISSION CONTROL  
Figure 9 shows provider revenue as a function of price for 
three different values of price elasticity and fixed demand 
potential. The general shape of the curves is the same. As 
price decreases, provider revenue is a subjected to two 
opposing trends: on the one hand, revenue increases due to 
increased demand (since demand elasticity 1>α ), and on the 
other hand, revenue decreases due to increases in the delay 
penalty, which arises as increased demand raises provider 
utilization. However, as Figure 9 demonstrates, the second 
trend is much sharper, and thus even slight underestimation of 
the provider price from the optimal value causes a sharp 
deterioration in provider revenue or even causes a provider to 
pay penalties due to sharp increases in the job delays. 

This high sensitivity of provider revenue to pricing 
presents a serious problem since the optimal price depends on 
the price-demand curve, which may be a subject to statistical 
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uncertainty and variability. Also, it may be difficult or even 
impossible, e.g., due to regulations, to vary pricing sufficiently 
fast to control delays. Admission control could alleviate this 
problem by reducing sensitivity of provider revenue to pricing 
non-optimality at the expense of some loss in revenue. Also, 
admission control operates on a sufficiently fast timescale to 
be able to control delays.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.  Revenue Sensitivity to Price  
  
 This suggests that a combination of pricing and admission 
control should be used. While pricing operates on a 
comparatively slow timescale, estimating the average price-
demand curve and tracking the optimal price, admission 
control operates on a comparatively fast timescale, consistent 
with the tolerable delays. Admission control can absorb 
variations in demand that arise from the time lag in varying 
and disseminating prices. In practical situations, both pricing 
and admission control should operate jointly and adaptively 
depending on the average and instantaneous demand as well as 
queue sizes. 

 VII CONCLUSION AND FUTURE RESEARCH 
Market-based compute grids encompass service providers 
offering limited resources to potential users with varying 
quality of service demands and utility (willingness to pay). 
Researchers typically model utility as a reward for completing 
a job by a deadline and a decay rate, which defines the slope 
of a linearly decreasing function of the reward over time if a 
job is late. As reward decays beyond zero, user utility becomes 
negative and a provider must pay a corresponding penalty. 
Under such conditions, providers face difficult job pricing, 
admission and scheduling decisions. 
 While previous research [2-7], typically, investigated 
various heuristics, this paper has proposed a tractable 
analytical model for joint optimization of job pricing and 
scheduling strategies aimed at maximizing provider revenue. 
We solved this model under the assumption that potential 
provider penalties are unbounded, and we analyzed key model 
parameters. We demonstrated how the model could be used to 
compute optimal pricing under a complex mix of jobs. Our 
model could be used to understand the operating limits of 
proposed heuristics for pricing, admission control and 
scheduling, and could also be used to investigate the 

implication of varying job mixes and workloads.  Our results 
suggest that combination of pricing, operating on a slow 
timescale, and admission control, operating on a fast 
timescale, will be required for revenue maximization in 
practical applications.  

Further work remains to investigate and develop such 
combined schemes, which should be closed-loop, 
measurement-based strategies. Though our optimization 
framework is applicable for an arbitrary number of service 
classes, solving the corresponding optimization problem for a 
case of more than one class may present a difficulty. Indeed, 
optimal priority scheduling (10)-(11) solving optimization 
problem (9) depends on the optimal pricing obtained by 
solving problem (8). Thus, attempt to decompose original 
optimization problem (7) into optimization problems (8) and 
(9) may result in an unstable, non-convergent process, which 
indicates that the optimal job scheduling lies outside the class 
of priority scheduling disciplines. We are currently modifying 
the decomposition procedure to include dynamic priority 
scheduling disciplines.  We plan to develop an optimization 
framework, which will yield an optimal combination of 
pricing and admission control. We also plan to validate our 
optimization results using simulation and also against 
available data [10] on current web services. 
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