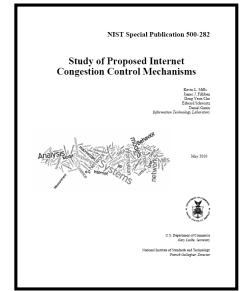


Predicting Global Failure Regimes in Complex Information Networks

Chris Dabrowski, Jim Filliben and Kevin Mills
July 12, 2012 SFI Workshop on Measurement of Complex Networks



- ➤ Overview of our Past & Ongoing Research with application to complex information networks, e.g., Internet, Clouds, Grids
- What is the problem and why is it hard?
- > Four Approaches we are investigating:
 - 1. Sensitivity Analysis + Correlation Analysis & Clustering
 - 2. Combine Markov Models, Graph Analysis & Perturbation Analysis
 - 3. Anti-Optimization + Genetic Algorithm
 - 4. Measuring Key System Properties such as Critical Slowing Down
- Example of Sensitivity Analysis + Correlation Analysis & Clustering applied to a TCP/IP Network Model – closely related to the theme of this topical event: Measurement of Complex Networks

Our Past Research: How can we understand the influence of distributed control algorithms on global system behavior and user experience?

- Mills, Filliben, Cho, Schwartz and Genin, <u>Study of Proposed</u>
 <u>Internet Congestion Control Mechanisms</u>, **NIST SP 500-282** (2010).
- Mills and Filliben, "Comparison of Two Dimension-Reduction Methods for Network Simulation Models", *Journal of NIST Research* 116-5, 771-783 (2011).
- Mills, Schwartz and Yuan, "How to Model a TCP/IP Network using only 20 Parameters", Proceedings of the Winter Simulation Conference (2010).
- Mills, Filliben, Cho and Schwartz, "Predicting Macroscopic Dynamics in Large Distributed Systems", *Proceedings of ASME* (2011).
- Mills, Filliben and Dabrowski, "An Efficient Sensitivity Analysis Method for Large Cloud Simulations", Proceedings of the 4th International Cloud Computing Conference, IEEE (2011).
- Mills, Filliben and Dabrowski, "Comparing VM-Placement Algorithms for On-Demand Clouds", Proceedings of IEEE CloudCom, 91-98 (2011).

For more see: http://www.nist.gov/itl/antd/emergent behavior.cfm

http://www.nist.gov/itl/antd/Congestion_Control_Study.cfm

Ongoing Research

NISTIR 7744

Fern Hunt

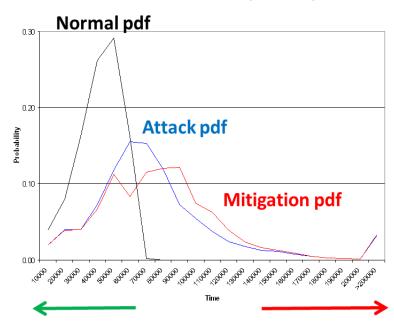
Improving the Efficiency of Markov Chain Analysis of Complex Distributed Systems

http://www.nist.gov/itl/antd/upload/NISTIR7744.

- ➤ Our Ongoing & Planned Research: How can we help to increase the reliability of complex information systems?
- Research Goals: (1) develop design-time methods that system engineers can use to detect existence and causes of costly failure regimes prior to system deployment and (2) develop run-time methods that system managers can use to detect onset of costly failure regimes in deployed systems, prior to collapse.
- Ongoing: investigating
 - a. Sensitivity Analysis + Correlation Analysis & Clustering
 - b. Markov Chain Modeling + Cut-Set Analysis + Perturbation Analysis (MCM+CSA+PA) (e.g., Dabrowski, Hunt and Morrison, "Improving the Efficiency of Markov Chain Analysis of Complex Distributed Systems", NIST IR 7744, 2010).
 - c. Anti-Optimization + Genetic Algorithm (AO+GA)
- Planned: investigate run-time methods based on approaches that may provide early warning signals for critical transitions in large systems (e.g., Scheffer et al., "Early-warning signals for critical transitions", NATURE, 461, 53-59, 2009).

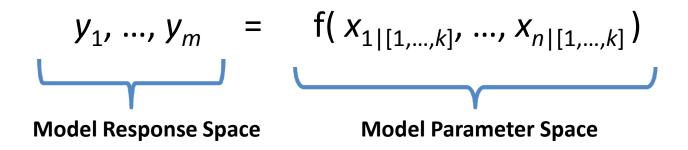
National Institute of Standards and Technology What Is the Problem?

Problem: Given a complex information network (represented using a simulation model), how can one identify conditions that could cause global system behavior to degenerate, leading to costly system outages?


National Institute of Standards and Technology Why is it Hard? - Reason 1

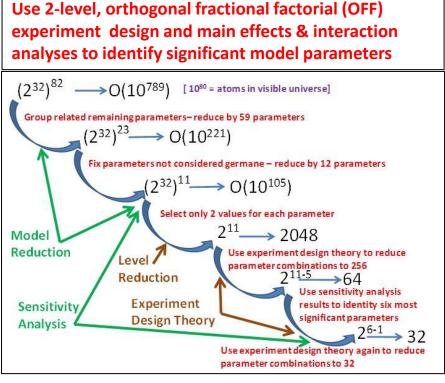
Determining causality is difficult – in a complex system, global behavior is not easily predictable, even if behavior of the components is understood completely

For example, unexpected collapse in the mitigation probability density function of job completion times in a computing grid was unexplainable without more detailed data and analysis.


See: K. Mills and C. Dabrowski, "Investigating Global Behavior in Computing Grids", <u>Self-Organizing Systems</u>, Lecture Notes in Computer Science, Volume 4124 ISBN 978-3-540-37658-3, pp. 120-136.

July 12, 2012 SFI Workshop

Size of the search space!!

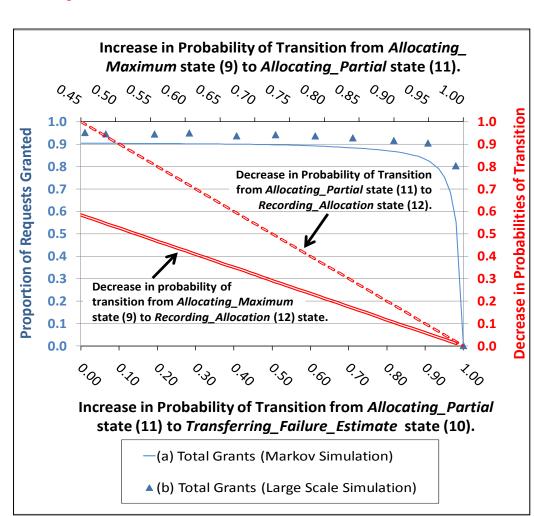


For example, the NIST *Koala* simulator of IaaS Clouds has about n = 125 parameters with average k = 6.6 values each, which leads to a model **parameter space** of ~ $\mathbf{10^{100}}$ (note that the visible universe has ~ $\mathbf{10^{80}}$ atoms) and the *Koala* response space ranges from m = 8 to m = 200, depending on the specific responses chosen for analysis (typically $m \approx 45$).

Sensitivity Analysis + CAC

- Sensitivity Analysis: Determine which parameters most significantly influence model behavior. Reduces parameter search space and identifies conditions under which alternate control algorithms should be compared.
- Correlation Analysis & Clustering: Determine response dimension of a model.

Use correlation analyunique behavior dim	-		_	entity		
Company of the compan	Response Dimension	SA1-small (9 dimensions)	SA1-large (8 dimensions)	SA2-small (10 dimensions)	SA2-large (9 dimensions)	
Compute correlation coefficient (r) for all response pairs	Cloud-wide Demand/Supply	y1, y2, y3 , y5, y6, y8, y9, y10, y13, y23, y24,	y1, y2, y3 , y5, y6, y7, y8, y9, y10, y13, y23,	y1, y2 , y3, y5, y6, y8, y9, y10, y11, y13, y14.	y1, y2, y3, y5, y6, y8, y9,	
Examine frequency distribution	Ratio	y25, y29, y30, y32, y34, y36, y38	y34, y25, y29, y30, y32, y33, y34, y36, y38	y15, y23, y24, y25, y38	y 23 , y 24, y 25, y 38	
for all $ r $ to determine threshold for correlation pairs	Cloud-wide Resource Usage	y10, y11, y12, y13, y14, y15	y10, y11, y12, y13, y14, y15	y10 , y11, y12, y13, y14, y15	y10 , y11, y12, y13, y14, y15	
to retain; $ r > 0.65$, here Create clusters of mutually	Variance in Cluster Load	y16, y17, y18, y19,y20, y21, V26 , y27	y16, y17, y18, y19,y20, y21, V26 , y27	y16, y18, y19, y20, y21, y26, y27 y17 (Mem.	y16, y17, y18, y19 ,y20, y21 y26, y27	
correlated pairs; each cluster represents one dimension	Mix of VM	y34, y35 (WS)	<i>y31</i> (Ms)	Util) y12, y14, y15, y30, y31, y33,	y14, y15, y30, y31 , y33,	
Select one response from each	Types	V31 (MS)	yor (ms)	y34, y35, y36	y34, y35 y15, y36 (DS	
cluster to represent the	Number of VMs	y29, y37	y37	y29, y37	y29	
dimension; we selected	User Arrival Rate	y4	y4	y4	y4 , y37	
response with largest mean correlation that was not in	Reallocation Rate	y7 , y22	y7. y22	y7 (cluster)	у7, у 22	
another cluster*	Variance in Choice of Cluster	y28	y28	y28	y28	


See: Mills, Filliben and Dabrowski, "An Efficient Sensitivity Analysis Method for Large Cloud Simulations", *Proceedings of the 4th International Cloud Computing Conference*, IEEE (2011) **and** Mills and Filliben, "Comparison of Two Dimension-Reduction Methods for Network Simulation Models", *Journal of NIST Research* **116-5**, 771-783 (2011).

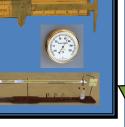
July 12, 2012 SFI Workshop

Using simulated failure scenarios in a Markov chain model to predict failures in a Cloud

Example: Markov simulation and perturbation of <u>a minimal s-t cut set</u> of a Markov chain graph:

- Corresponds to software failure scenario involving multiple faults/attacks.
- Simulation identifies threshold beyond which increased failure incidence causes drastic performance collapse
- → <u>Verified in target system being</u> <u>modeled (i.e., Koala, a large-scale</u> <u>simulation of a Cloud)</u>

MULTIDIMENSIONAL ANALYSIS TECHNIQUES


Principal Components Analysis, Clustering, ...

GENETIC ALGORITHM

Recombination & Mutation

Selection based on Anti-Fitness

Growing Collection of Tuples

{Generation, Individual, Fitness, Parameter 1 value,....Parameter N value} {Generation, Individual, Fitness, Parameter 1 value,....Parameter N value}

{Generation, Individual, Fitness, Parameter 1 value,....Parameter N value}

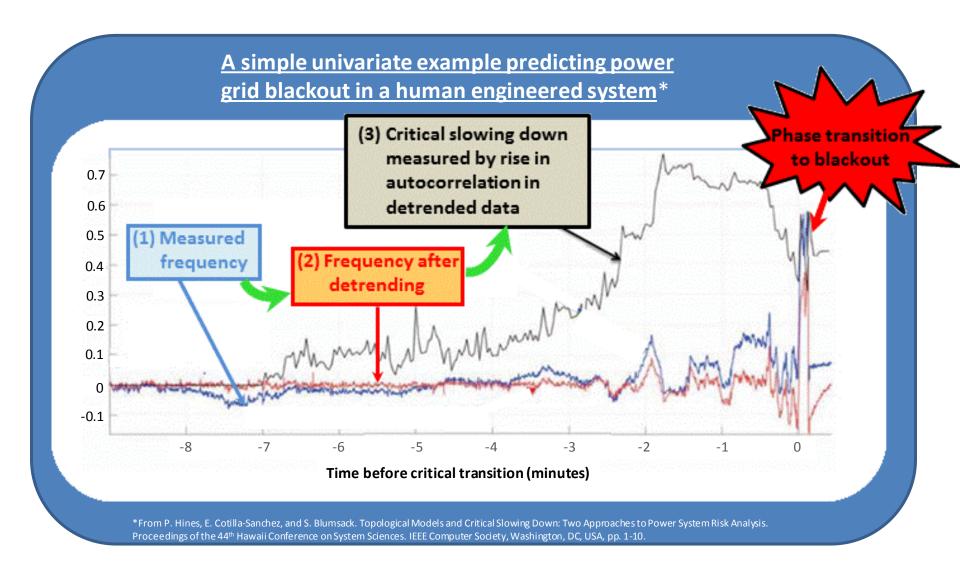
Anti-Fitness Reports

MODEL SIMULATORS

List of parameters and for each parameter a MIN, MAX and precision.

Model Parameter Specifications

July 12, 2012 SFI Workshop


Population of Model Parameterizations

Parallel Execution of Model Simulators

Critical Slowing Down

SA+CAC Example

Sensitivity Analysis + Correlation Analysis & Clustering applied to a TCP/IP Network Model

(using an 11-parameter subset of a 20-parameter model*)

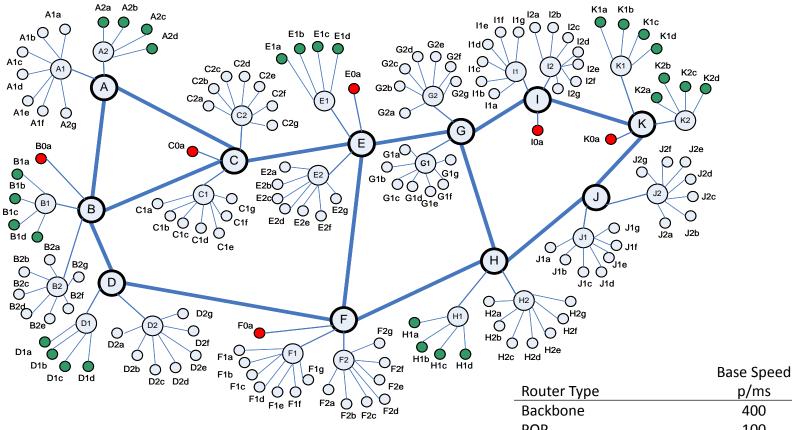
Questions: (1) What responses characterize system behavior?

(2) What factors drive system behavior?

$$y_1, ..., y_m = f(x_{1|[1,...,k]}, ..., x_{n|[1,...,k]})$$

Model Response Space

Model Parameter Space


In the example that follows, m = 22, n = 11 and k = 2

The approach is general: as we have demonstrated on a TCP/IP model with m=45, n=20 and k=2 and on a Cloud Computing model with m=38, n=11 and k=2 and with m=45, n=20 and k=2

^{*}For a discussion of the full 20-parameter TCP/IP model see: Mills, Schwartz and Yuan, "How to Model a TCP/IP Network using only 20 Parameters", *Proceedings of the Winter Simulation Conference* (2010).

Simulated Topology

Backbone of Topology based on Internet 2 (including propagation delays & routing paths)

Backbone	400
POP	100
Typical Access	10
Fast Access	20
Directly Connected Access	100

National Institute of Standards and Technology 11-Parameter Subset

	Factor	Name	Plus (+1) Setting	Minus (-1) Setting
	x1	Propagation Delay Multiplier	2	1
Network Factors	x2 ^[1]	Network Speed Multiplier	1	2
ractors	х3	Buffer Sizing Algorithm	RTTxC	RTTxC/SQRT(n)
	x4	Average File Size	100 packets	50 packets
User Factors	x5	Average Think Time	5000 ms	2000 ms
ractors	x6 ^[1]	Probability User Downloads 10x File	0.01	0.02
	x7 ^[1]	Probability of a Fast Host Connection	0.2	0.4
Source &	x8	Multiplier for Number of Sources & Receivers per Access Router	3	2
Receiver Factors	x9	Distribution Pattern of Sources	P2P	WEB
	x10	Distribution Pattern of Receivers	P2P	WEB
Protocol Factors	x11	Initial TCP Slow-Start Threshold	1.07x10 ⁹ packets	43 packets

^[1] Unfortunately, we coded these settings backwards from the usual convention of higher value for the Plus setting, so care must be taken when interpreting the results for these factors – mainly the network speed factor. Sorry.

16 Responses Characterizing Macroscopic Network Behavior

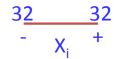
Response	Name	Definition			
у1	# Sending Flows	Active Flows – flows attempting to transfer data			
y2	% Sources Sending	Proportion of potential flows that were active: Active Flows/All Sources			
у3	# Packets Entering	Data packets entering the network per measurement interval			
y4	# Packets Exiting	Data packets leaving the network per measurement interval			
y5	Loss Rate	Loss Rate: y4/(y3+y4)			
у6	# Flow Completions	Flows Completed per measurement interval			
у7	Flow Completion Rate	Flow-Completion Rate: y6/(y6+y1)			
y8	# Connection Failures	Connection Failures per measurement interval Global Behavior			
y 9	Connection Failure Rate	Connection-Failure Rate: y8/(y8+y1)			
y10	Retransmission Rate	Retransmission Rate			
y11	Average Congestion Window	Congestion Window per Flow			
y12	# Window Increases	Window Increases per Flow per measurement interval			
y13	# NAKs	Negative Acknowledgments per Flow per measurement interval			
y14	# Timeouts	Timeouts per Flow per measurement interval			
y15	Average Round-Trip Time	Smoothed Round-Trip Time			
y16	Queuing Delay	Relative queuing delay: y15/(x1x41)			

+ 6 Responses Characterizing Instantaneous Throughput for Active Flows by Class

Response	Definition
y17	Average Throughput for Active DD Flows
y18	Average Throughput for Active DF Flows
y19	Average Throughput for Active DN Flows
y20	Average Throughput for Active FF Flows
y21	Average Throughput for Active FN Flows
y22	Average Throughput for Active NN Flows

User Experience

OFF Experiment Design

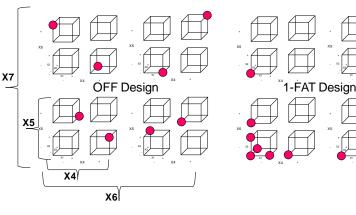


+1 +1+1 +1 +1

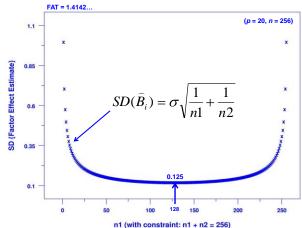
(

Template for a 2-Level 2¹¹⁻⁵ Orthogonal Fractional Factorial (OFF) experiment design specifying the combination of parameter level settings for 64 simulation runs

Balance

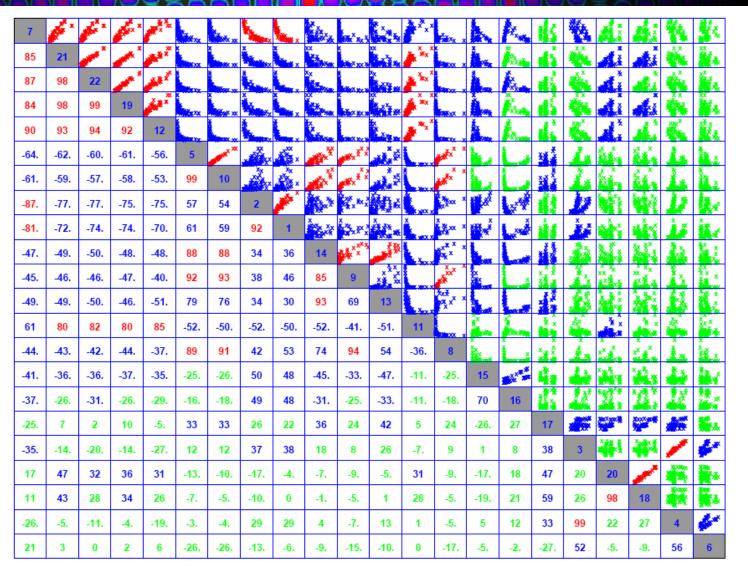


Orthogonality

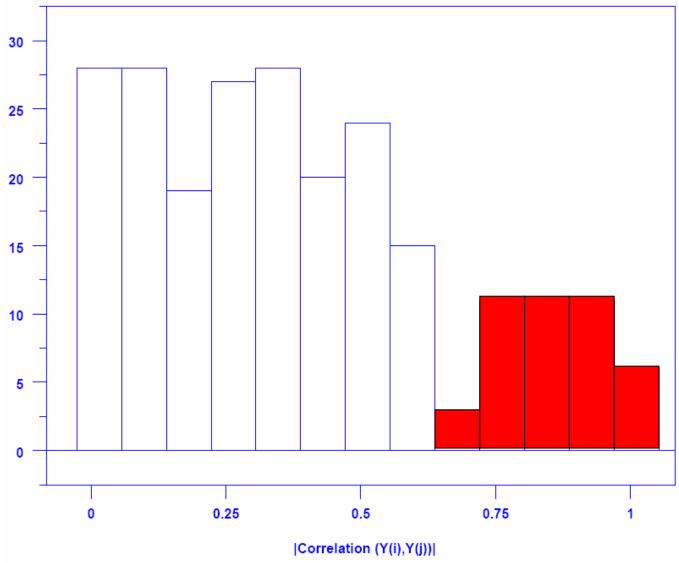


OFF Benefit #1:

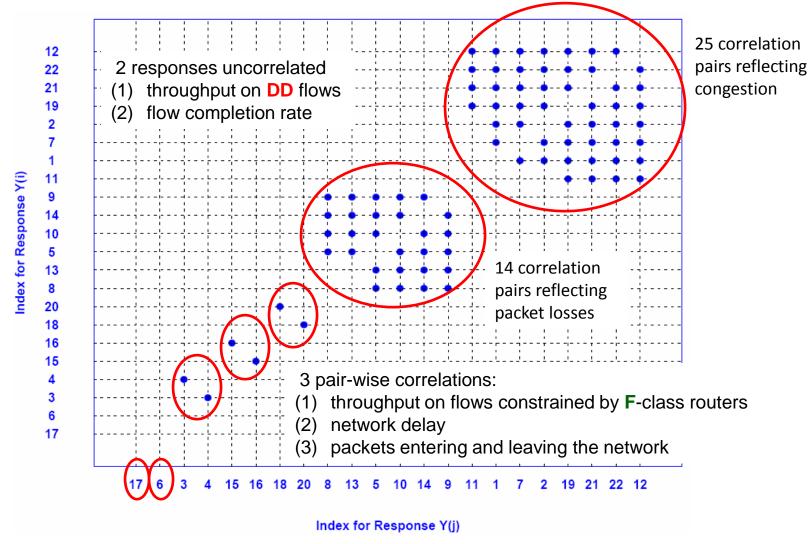
Superior Coverage & Robustness as compared with 1-Factor-at-a-Time Designs



OFF Design Benefit #2: Minimizes Variation in Effect Estimates


Pairwise Corr Matrix

Each response observed under the same 64 combinations of parameter settings

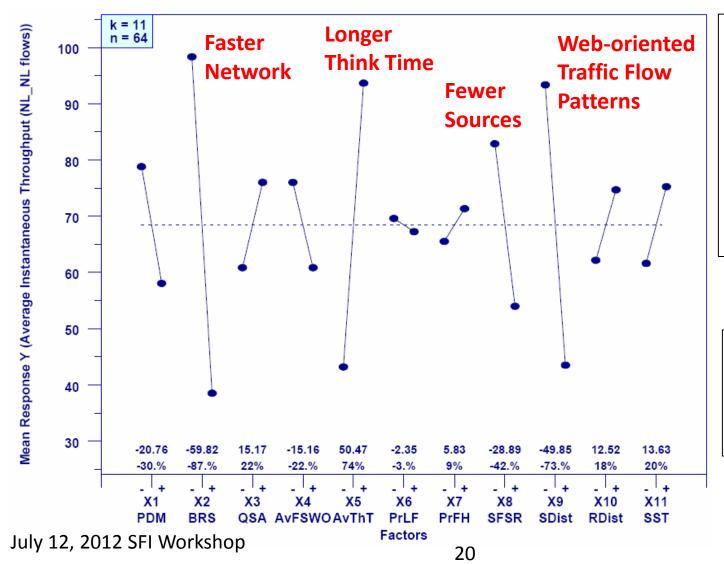


Red $80 \ge |r| \times 100 \le 100$ Blue $30 \ge |r| \times 100 < 80$ Green $|r| \times 100 < 30$

Select a threshold for |r| such that correlations above that threshold will be further considered

Question 1: What responses characterize system behavior?

Answer: As shown below, measuring only 7 of the 22


responses suffices to characterize behavior

Representative	
Response	Dimension and a Characterizing Measurement
y4	D1 - network throughput in packets/sec measured by average number of packets output per measurement interval
y6	D2 - network throughput in flows/sec measured by average number of flows completed per measurement interval
y10	D3 - packet loss measured by average retransmission rate
y15	D4 - network delay measured by average smoothed round-trip time
y17	D5 - throughput in packets/sec for the most advantaged users measured by average instantaneous throughput for DD flows
y20	D6 - throughput in packets/sec for 2 nd most advantaged users measured by average instantaneous throughput for FF flows
y22	D7 - network congestion measured by average instantaneous throughput for NN flows

National Institute of Standards and Technology Main Effects Analyses

For each response, compare mean at 32 Plus settings with mean at 32 Minus settings and conduct *t*-test to determine statistical significance (response here is TP on NN flows)

Four factors

lead to
higher
throughput
for typical users;
inverse settings
lead to lower
throughput

The other seven factors have little effect on this response

National Institute of Summary of Main Effects Standards and Technology Summary of Main Effects

This chart reveals much

about model behavior

		x 1	x2	x 3	x4	x5	х6	x7	x8	x9	x10	x11
y4	Packet TP		_**		+**	_**			+*	+*		
у6	Flow TP		_**		_**	_**			+*	+*		
y10	Packet Loss		+**	_**	+*	_*			+*	+*		
y15	Delay	+**	+*	+**	+*	_*			+*	+*		
y17	DD TP	_**			+**							
y20	FF TP	_**	_**		+*	+*			_*	+**		
y22	NN TP	_*	_**			+*			_*	_**		
Ψ	Net Effect	50	79	29	64	57	0	0	43	50	0	0

- * p < 0.05 and ** p < 0.01
- means minus value caused response increase
- + means plus value cause response increase
- please remember that network speed x2 was miscoded, so means higher speed and + lower

$$\Psi = 100 (|\{y \mid p < 0.01\}| + \frac{1}{2} |\{y \mid p < 0.05\}|) / |\{y\}|$$

National Institute of Standards and Technology 6 Factors In Tyce Behavior National Institute of Standards and Technology

Question 2: What factors drive system behavior?

Answer: Network speed mainly followed by file size, then by user duty cycle,

propagation delay and source distribution, and finally by number of sources.

Relative	
Influence	Factors
1	Network Speed
2	File Size
3	User Duty Cycle Propagation Delay Distribution of Sources
4	Number of Sources
5	Buffer Sizing
6	Proportion of Hosts with Fast Attachments Probability of 10x File Sizes Receiver Distribution Initial Slow-Start Threshold

The information generated here can be used in two ways:

- Compare model behavior to experiences of operational networks, as a validation step.
- 2. Select parameter combinations to explore when asking what if questions, such as what if TCP were replaced by any of 7 competing congestion control algorithms?

For more information see: Mills, Filliben, Cho and Schwartz, "Predicting Macroscopic Dynamics in Large Distributed Systems", *Proceedings of ASME* (2011)

July 12, 2012 SFI Workshop

Brief Recap

- ➤ Reviewed our Past & Ongoing Research with application to complex information networks, e.g., Internet, Clouds, Grids
- Defined the problem underlying our ongoing research and identified two reasons why the problem is difficult
- > Described 4 approaches to address the problem:
 - 1. Sensitivity Analysis + Correlation Analysis & Clustering
 - 2. Combine Markov Models, Graph Analysis & Perturbation Analysis
 - 3. Anti-Optimization + Genetic Algorithm
 - 4. Measuring Key System Properties such as Critical Slowing Down
- ➤ Discussed an example of Sensitivity Analysis + Correlation Analysis & Clustering applied to a TCP/IP network model

Suggestions? Ideas?

Contact information about studying Complex Information Systems: {cdabrowski, jfilliben, kmills@nist.gov}

Contact information about Information Visualization: sressler@nist.gov

For more information see: http://www.nist.gov/itl/antd/emergent_behavior.cfm
and/or http://www.nist.gov/itl/cloud/index.cfm