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A communication network, such as the
Internet, comprises a complex system
where cooperative phenomena may
emerge from interactions among various
traffic flows generated and forwarded
by individual nodes. To identify and
understand such phenomena, we model a
network as a two-dimensional cellular
automaton. We suspect such models can
promote better understanding of the
spatial-temporal evolution of network
congestion, and other emergent
phenomena in communication networks.
To search the behavior space of the
model, we study dynamic patterns
arising from interactions among traffic
flows routed across shared network
nodes, as we employ various configura-
tions of parameters and two different
congestion-control algorithms. In this
paper, we characterize correlation in
congestion behavior within the model
at different system sizes and time
granularities. As expected, we find that
long-range dependence (LRD) appears at
some time granularities, and that for a
given network size LRD decays as time

granularity increases. As network size
increases, we find that long-range
dependence exists at larger time scales.
To distinguish effects due to network
size from effects due to collective
phenomena, we compare congestion
behavior within networks of selected
sizes to congestion behavior within
comparably sized sub-areas in a larger
network. We find stronger long-range
dependence for sub-areas within the
larger network. This suggests the
importance of modeling networks of
sufficiently large size when studying the
effects of collective dynamics.
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1. Introduction

As the Internet expands in size (from millions to
billions of nodes) and in capabilities (from mainly file-
transfers and web traffic to an increasing proportion of
streaming multimedia traffic), network researchers
propose and investigate new protocols and control
algorithms to provide assured quality of service and
improved network utilization. In most cases, such
investigations are motivated and evaluated by small-
scale simulations and experiments while ignoring
effects from collective behavior that could emerge in a
large network. Emergent phenomena are often identi-
fied when the behavior of an entire system appears more

coherent and directed than the behavior of individual
parts of the system. Such phenomena arise in the study
of complex systems, where many parts interact with
each other and where the study of the behavior of
individual parts reveals little about system-wide
behavior [1]. Emergent phenomena might significantly
influence the performance of proposed new protocols
and control algorithms. We aim to identify and under-
stand the source and effects of emergent phenomena in
large networks. In this paper, we investigate specifically
congestion behavior in a network at various sizes and
time scales.
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Our work exists within an active field of investigation
where researchers attempt to understand and control the
dynamic behavior of existing networks. For example,
past work on the performance of congestion-control
algorithms for end nodes in the Internet [2] identified
important effects on system-wide congestion arising
from the retransmission behavior of individual nodes.
Recently, researchers have begun to investigate mathe-
matical approaches to characterize collective behavior in
large networks. For example, Liu et al. [3] propose
using stochastic differential equations to describe the
behavior of flows and queues, with passage to more
tractable systems of ordinary differential equations by
taking expectations. The coupled ordinary differential
equations can be solved numerically. Similar ap-
proaches, based on fluid-flow models, are also being
investigated through simulation [4]. Innovative ideas
such as these begin to probe the ability of abstract
mathematical techniques to characterize collective
behavior in large networks.

As an alternative to these more abstract mathematical
approaches, some researchers represent large networks
in terms of discrete-event simulations of individual
nodes deployed in specific topologies. Such models
attempt to capture the detailed behavior in individual
nodes to ensure that significant effects from protocols
and protocol interactions will not be overlooked by the
coarser granularity used to construct more abstract
models. The advantages of simulation models include
the ability to represent the time-varying behavior of a
network and to capture complex behavioral details,
which might have significant effects on global network
behavior. Further, it is always possible to construct
discrete-event models for specific protocol mechanisms,
while it might prove impossible to develop tractable
mathematical models for such mechanisms. Unfortu-
nately, detailed discrete-event simulation models
consume substantial CPU time, much of which may
be devoted to modeling behavior irrelevant to the
phenomena being investigated. Several researchers are
working on speeding up discrete-event simulations,
through parallelization and other techniques, in order to
enable realistic simulation of networks containing from
104 to 106 nodes [5, 6].

We suspect that an interesting space of informative
models may exist somewhere between manageable,
abstract mathematical models, and detailed, computa-
tionally intensive simulations. A growing interest in
the study of complex systems has led networking
researchers to consider applying a number of mathemat-
ical techniques from physics to characterize collective
dynamics in large networks [7-11]. One such technique
applies a cellular automaton (CA) [12, 13] to identify
and characterize emergent properties, such as conges-

tion, in networks [14]. We suspect such models can
promote better understanding of the spatial-temporal
evolution of network congestion, and other emergent
phenomena.

In this paper, we use a two-dimensional CA to
investigate congestion behavior in networks of varying
size, and over varying time scales. The CA stimulates
collective dynamics in a network using abstract mathe-
matical representations of individual nodes. To search
the behavior space of our CA, we study dynamic
patterns arising from interactions among traffic flows
routed across shared network nodes, as we employ
various configurations of parameters and two different
congestion-control algorithms. We focus on the relation-
ship between network size and time scale. Specifically,
we characterize the correlation in congestion behavior
within the model at different system sizes and time
granularities. Among other things, our results suggest
the importance of modeling (or measuring) networks of
sufficiently large size when studying the nature of
collective dynamics. The paper is presented in five
sections. Section 2 outlines our motivation, provides
highlights of our methodology, and describes our
computational model, including input process, control
algorithms, and routing. We outline our experiments,
and show our simulation results in Sec. 3. Section 4
discusses the significance of our results. We discuss
possible future work in Sec. 5, and then present
concluding remarks in Sec. 6.

2. Motivation, Methodology, and Model

We seek to understand what will happen when many
network connections are active simultaneously. We
suspect that some collective effects may appear within
networks with a size beyond some determinable
threshold. Our concern is to understand the global
implications of such collective effects, rather than to
discern cause and effect relationships introduced by
specific control algorithms and associated protocols.

Research into emergent phenomena in physical
systems shows that collective effects tend to arise only
when many local interactions occur over a wide space,
such as might be possible in a large network where
dynamic behavior can be transmitted through the nodes.
The transmission of dynamic behavior can evolve into
correlated patterns. Alternatively, large networks can be
viewed as dissipative dynamic systems, where a driving
force (injecting packets) determines the strength of local
interactions. Increasing the driving force impels the
system toward stronger coupling among interactions. As
the driving force reaches a certain critical strength, we
can expect the interactions to merge into a coherent
behavior, which cannot be simply inferred from the

180



Volume 107, Number 2, March–April 2002
Journal of Research of the National Institute of Standards and Technology

individual behavior of components. The resulting coher-
ent behavior should be observed as spatial-temporal
dynamic patterns over the whole system. We think that
this view of system dynamics might prove applicable in
large communication networks, such as the Internet.
Further, it is possible that feedback control mechanisms,
as implemented in such networks, might play a pivotal
role in dynamically maintaining both coherence and
efficiency of system state by preventing resource
saturation due to extreme congestion.

2.1 Methodology

To investigate these ideas, we propose to model a
large network as a cellular automaton (CA), where the
behavior of each cell captures some important details
related to network protocols. Specifically, our model
maintains the individual identity of packets in order to
reproduce the “ripple effect” [3] seen in real network
connections. Our model also simulates feedback-control
regimes for each connection in order to respond to
variations in congestion over time and space. We provide
two alternative forms of feedback control: connection-
admission control (CAC) and feedback transmission-
control protocol (TCP). On the other hand, we resort to
some extreme simplifications, including a regular grid
topology composed of homogeneous links and nodes
(see Fig. 1), in order to achieve a sufficiently large
model with well-understood parameters. Further, to
ensure that no correlation arises from the input traffic
itself, we use homogeneous on-off Poisson processes to
model the behavior of traffic sources.

Our CA comprises a discrete, dynamic system com-
posed of a set of cells arranged in a regular, spatial
lattice. The state of a cell at a given time step depends
only on its own state and the states of its neighbors at the
previous time step. The cells update synchronously and
in parallel. Thus, the entire CA state advances in discrete
time steps. Global behavior results from multiple inter-
actions in the evolution of states in all the single cells.
As a result of the discrete time model, we can measure
the entire CA state, or any portion of interest, at each
time step. In our results, we include at least 2000 data
points in each time series that we analyze. For our
coarsest time granularity, where we aggregate 1000
time steps, this means that we must run the model for
two million time steps. Such measurements produce a
time series that can be graphed, and that can also be
analyzed using a wide range of suitable statistical
techniques.

Our main approach to analyze time-series employs
power-spectral analysis [24]. We envision the system
state as a signal generated over time by the system.
Power-spectrum graphs describe the frequency depen-

dence in the signal. The power spectrum is the Fourier
transform of the autocorrelation function of a time
series. Of particular interest to us is the appearance of
1/f noise, which provides a clear indication of some sort
of collective effect, or cooperative phenomenon, present
in the process that generates the signal [22]. “1/f noise”
is a type of noise whose power spectrum as a function
of frequency (f ) behaves like: P (f ) = 1/f a, where a is
between 0 and 2. Such noise is often associated with the
presence of a complex system, defined as a system that
exhibits large variability in its behavior due to strong
dynamic interactions among its parts. In contrast to a
complex system, an ordered system exhibits regular be-
havior due to deterministic interactions among its parts,
and a disordered system exhibits behavior that can be
characterized on a statistical basis because its parts in-
teract rarely [22]. In fact, the presence of 1/f noise is
often cited in the literature as an indication of emergent
phenomena. Further, the power spectrum of 1/f noise
exhibits ample energy in low frequency components.
This suggests the dominant autocorrelation in the signal
exists over the long term, which also indicates long-
range dependence.

2.2 Modeling a Network With Cellular Automata

The computational model used here represents a net-
work as a CA lattice with L�L cells (Fig. 1) in which
each cell corresponds to a node with four nearest
neighbors (we interconnect boundary nodes, as neces-
sary). Other researchers have proposed similar network
models [8, 9, 15, 16]. In our model, each node,
which can store and forward packets traveling between

Fig. 1. The 2-D CA model with system size L = 10.
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source-destination pairs, maintains a queue of unlimited
length, where arriving packets are stored until they can
be processed. Each node can act both as a source and
destination for traffic. In effect, each cell in our model
can be thought to represent a host that sends and receives
traffic and a router that forwards traffic. The queue
length at each node represents the state of the cell.
Figure 2 provides a schematic diagram of the node-
specific behavior of each CA cell at each time step.

2.3 Node as a Cell

At each time step, each node: (1) evaluates the
traffic-generation restrictions and congestion-control
status and, if indicated, places a new data packet at the
end of its own queue, (2) selects a packet from the front
of its queue (if a packet is present), (3) selects the next
hop (unless the packet has reached its destination node),
and (4) forwards the packet to the end of the queue
within the next-hop node. If the packet at the front of
the queue has reached its destination, then the node
consumes the packet. However, if the consumed packet
is an incoming request for which a reply is indicated,
then the node will place a reply packet at the end of its
queue. Different choices are possible to model the input
process, the congestion-control algorithm, and the
routing. A discussion of each of these issues follows.

2.3.1 Input Process

In this paper, each node models traffic generation by
“on/off” periods, which alternate between wake and
sleep. When awake, and if the congestion-control state
permits, the node adds a data packet to the end of its
queue during each time step. At the beginning of each
“on” period, a node randomly selects (uniform distribu-
tion) a destination node from among all other nodes in
the lattice. Each packet generated during the same “on”
period has the same destination address. When sleeping,
the node generates no new data packets. On/off periods
provide a convenient model of user behavior. In the
simulation reported here, the wake and sleep period
durations for each source are taken to be exponentially
distributed with parameters �on and �off. Thus, the
transitions between state “on” and state “off” form a
memoryless (i.e., uncorrelated) process. While we do
not assert that real users exhibit memoryless behavior,
we aim to investigate long-memory behavior that results
from collective interactions; therefore, we must elimi-
nate correlations in the behavior of individual traffic
sources. The input processes of different nodes are
taken to be independent from each other.

2.3.2 Congestion-Control Algorithms

Our model contains the possibility of three choices
for congestion-control algorithm: (1) open-loop, (2)
connection-admission control (CAC), and (3) feedback
transmission control protocol (TCP). Only one of these
algorithms can be used for a given experiment. In the
case of the open-loop algorithm, we can change the
average durations of state “on” and state “off” to control
the network workload. There is no feedback in this case.
An open-loop approach does not model reality very well
because the goal of a network is to transmit packets
between source-destination pairs while attempting to
assure some minimally acceptable quality of service.
Even for best-effort service (i.e., where the network
provides no guarantees about service quality) [2], a user
will not wait indefinitely in the face of long packet-
transmission times that occur in a very congested net-
work. So feedback control is important for networks,
and we model two different approaches.

In one approach, we use a connection-admission
control (CAC) algorithm. CAC requires a source to send
a probe packet at the beginning of each “on” state. Upon
receiving this probe packet, the destination node returns
a probe-reply packet to the source. Upon receiving the
probe-reply packet, the source node determines the
round-trip time, RTT, and then normalizes RTT with
respect to the distance between the source and destina-
tion. If the normalized RTT, Nrtt, falls below a threshold,

Fig. 2. General processing within a node at each time step.

182



Volume 107, Number 2, March–April 2002
Journal of Research of the National Institute of Standards and Technology

Drtt, then the source sends a data packet at each time
step during the “on” state. If the Nrtt exceeds Drtt, then
the source sends another probe packet. Upon receiving
the probe-reply, the source repeats its RTT assessment.

While the CAC algorithm tests congestion state along
the source-destination path prior to injecting a data-
packet flow, the flows themselves exhibit fixed inter-
packet spacing. Inter-packet spacing within a single
TCP flow, however, has been observed to exhibit its own
distinguishing variability, which appears as structured
behavior on a short time scale. Such variability in TCP
flows is likely attributable to the feedback-control
mechanisms of TCP [17, 18], though this remains a
topic of ongoing study. Other studies have demonstrated
that TCP results in interesting dynamics at small time
scales [19, 20]. To account for the significant behavior
of feedback control, we included within our model a
modified version of TCP.

Our TCP model includes some limiting assumptions.
Each node contains an unlimited buffer, so no packets
will be lost and retransmitted. Instead we only model the
effect that congestion losses would have on TCP flow-
control mechanisms. We do this by comparing the
normalized RTT, Nrtt, for each received acknowledg-
ment (ACK) against a threshold, Drtt. We also ensure
that the receiver’s advertised flow-control window
[2] does not constrain the sending rate. Our modified
TCP model does include a slow-start and congestion-
avoidance algorithm, which is described as follows.

For every ACK, if the Nrtt exceeds the Drtt, then we
set the slow-start threshold to 1/2 the congestion window
and set the congestion window to one. Otherwise, if the
congestion window is below the slow-start threshold, we
increment the congestion window by one. Once the
congestion window exceeds the slow-start threshold, we
increment the congestion window by the inverse of the
congestion window. This procedure simulates the
effects of the transition in TCP between the congestion
phase, the slow-start phase and the congestion-
avoidance phase. At each time step, a source node
injects a data packet, up to the limits of its congestion
window.

2.3.3 Routing

As with input processes and congestion-control
algorithms, we can choose different routing strategies
for our model. For our experiments, the objective of
routing is to minimize the delay for each packet by
forwarding it along the shortest path between source-
destination pairs. To select the proper next-hop along
which to forward a packet, the forwarding node com-
putes (using the approach of Fuks and Lawniczak [15])

the distance from each of its four neighboring nodes
to the packet’s destination node. Then the packet is
forwarded to the neighboring node nearest to the
destination. When multiple neighboring nodes prove
equidistant from the destination, then one of the candi-
date nodes is selected randomly with uniform probabil-
ity. After placing the packet at the end of the queue in
the selected node, the model increments a throughput
counter associated with the corresponding outgoing
link.

3. Simulation Results

In this section, we study the behavioral properties of
our model under two congestion-control algorithms. An
important parameter in our algorithms is Drtt, which
can be used to control the quality of service in packet-
delivery time, and also the network load. We performed
some simulations to assess the effect of Drtt, and
observed that, for a fixed network size and fixed �on

and �off, packet delivery time and network congestion
increases with Drtt up to some bound. Further, for
several fixed values of Drtt, we observed that the
distribution of packet-delivery times seem to follow a
lognormal distribution, as observed elsewhere [16, 21].
From these results (not fully described here) we decided
to set Drtt at 50 time steps, a value that permitted
congestion to build up within the network, and thus
enabled us to study the collective behavior of our
congestion-control algorithms. Unless otherwise indi-
cated, all simulations discussed here were run with
�on = 100, �off = 500, Drtt = 50, and with the TCP con-
gestion-control algorithm. We begin by considering the
effects of time scale on queue sizes in an individual
node.

Packet-switched networks, which route messages
hop-by-hop over multiple intermediate links and routers
between sources and destinations, can be viewed as a
mesh of single-server queues, where each queue acts as
a memory element. For purposes of illustration, Fig. 3
shows the time series of the queue length, Nr, for a
typical node of the CA lattice at three time granularities
T = 1, 10, and 100, where T defines the interval with
which we sample the system state. (The abscissas on all
our graphs depict the number of sample intervals, t, so
the total number of CA time steps represented in any
particular graph is equal to T�t ). At the shortest
sample interval, T = 1, the queue length changes
smoothly because the memory introduces a correlation.
As expected, as the sample interval T increases, the
memory becomes weaker and the correlative structure
is diminished. Since each queue exists within a network
of queues, we expect correlation in queue size to be

183



Volume 107, Number 2, March–April 2002
Journal of Research of the National Institute of Standards and Technology

influenced by memories of neighboring queues. This
influence appears as a kind of spatial-temporal informa-
tion, which is difficult to discern by observing a single
queue. Before we consider a more suitable metric to
measure spatial-temporal memory, we discuss another
measure of interest, the output process of an individual
node, as an alternative to queue size.

Let �out denote the number of data packets received
by a node, during a time interval T, where the node is
the data packet’s destination. Measures of �out appear to
reflect more the influence of spatial-temporal informa-
tion than is the case for measures of queue size, Nr .
Figure 4, which shows a time series of �out for one node
at three time granularities T = 40, 100, and 500,
supports this observation. Here, while autocorrelation
decreases as T increases, the rate of decrease appears
more gradual than is the case with queue sizes (Fig. 3).
In our view, �out reflects more information about its
time interval and about nearby space because it is an
aggregate value, accumulated over the sample interval,
rather than a snapshot of system state at one time
instant. To gain more insight into our observations, we
compute the power spectrum Sout(f ) of �out.

Figure 5 shows the power spectra for selected combi-
nations of time granularity and system size. In general,
each curve shows a flat line at lower frequencies,
followed by a negatively sloped line commencing at
higher frequencies. The negatively sloped portion of
each curve exhibits the appearance of 1/f noise. In our
interpretation of these curves, the larger the negatively
sloped region of a curve (or the shorter the flat region),
the more 1/f -like the curve. Further, the more a curve
appears 1/f -like, the greater the long-range dependence
in the signal. For example, comparing the two curves in
Fig. 5(a), we find that long-range dependence decays as
the time granularity increases from T = 80 to T = 400.
We also find that for the same time granularity
(T = 400), a larger network size shows a greater long-
range dependence (compare Fig. 5(a) T = 400 against
Fig. 5(c) T = 400). The presence of 1/f noise, which is
characterized by correlations extending over a wide
range of time scales (long-range dependence), provides
a clear indication of some sort of collective effect.
Moreover, using our interpretation, the graphs in Fig. 5
show that long-range dependence decays as T increases
for the same system size, L, and that long-range depen-

Fig. 3. Time series of queue length (Nr ) at three time granularities T = 1, 10, and 100.
The total time shown on this, and similar graphs, is equal to T�t, the sample interval
size (T ) multiplied by the number of sample intervals (t ).
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dence holds for the same time granularity as system size
increases. This suggests that congestion dissipates more
slowly as network size increases, that is, a larger net-
work seems to have a more pronounced correlative
structure. We believe such behavior occurs because net-
work traffic experienced at a node consists of transient
packet flows transiting across a mixture of short and
long distances, and modulated by adaptive congestion-
control algorithms.

To investigate this behavior more directly, we devel-
oped a technique to monitor the congestion present in
aggregate among all nodes in our network model. Our
technique maps the three-dimensional (3-D) structure
(L�L�Nr ) of the network state onto a two-dimen-
sional (2-D) binary pattern. To achieve such a mapping,
we set a threshold parameter Y against which to compare
the state (i.e., the queue length) of every node. If the
queue length of the node r is less than or equal to Y, then
the state value br of the binary network is set equal to
zero, otherwise one. In this way, the network state can be
mapped from three dimensions onto a 2-D grid, as
shown for example in Fig. 6 where black blocks repre-
sent congested nodes (for Y = 5), and white blocks
depict congestion-free nodes. Using such a 2-D map
proves more convenient then a 3-D map when visualiz-
ing the evolution of network state. Such maps provide a
more readily comprehensible view of the spatial correla-
tion of network congestion. As time progresses, the

congestion state of a node in a large network depends
more on the congestion state of its neighboring
area. This idea was first proposed by researchers who
modeled the propagation of congestion between
neighboring routers based on contact processes with a
Cayley tree [10]. Using the 2-D grid, we can determine
the number of congested nodes (y ) in our model at any
time granularity T, and then record y as a time-series
representing the system state for any number of sample
intervals t. In Fig. 7 we show a time series of congested
nodes for a system size L = 16 at three time granulari-
ties: T = 10, 100, and 1000. As the figure shows, we
find generally that as the time granularity, T, increases,
the number of congested nodes, y, changes less
smoothly. This suggests that congested nodes exhibit
stronger interdependence at smaller time scales.

To explore the relationship among time scale,
network size, and congestion, we plot several power
spectra in Fig. 8 at various network sizes and time
granularities. Figures 8(a)-(c) illustrate that increasing
the time granularity for the same network size leads to
a reduced appearance of 1/f -like noise. For example,
comparing the two curves in Fig. 8(a) (network size
L = 8), we find some autocorrelation in the curve T = 50
but the curve for T = 400 appears almost flat, suggesting
little autocorrelation in the signal. Comparing this curve
for T = 400 against the curve for the same time granular-
ity but at network size L = 32, shown in Fig. 8(c), we

Fig. 4. Time series of �out at three time granularities T = 40, 100, and 500.
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find that as the network size increases from L = 8 to
L = 32 the long-range dependence increases for a given
time granularity. To us, these results suggest that collec-
tive behavior in a larger network causes more profound
influence on network congestion and on predictability.
If true, these factors might prove meaningful for the
design of congestion-control and traffic-engineering
mechanisms in networks.

We suspect that 1/f noise arises from the collective
effect of many interacting network flows, independent
of specific details associated with network protocols.
Furthermore, as indicated by Fig. 8, the collective effect
appears to strengthen as system size increases, but to
diminish as time granularity increases. At very large
time scales, the evidence of collective effect does not
appear; instead, the power spectra tend toward white-
ness as the sample interval (T ) exceeds some size.
These observations suggest that some time-granularity
threshold might exist within which the network can be
viewed as a coherent whole (that is, a time granularity
where the network congestion signal exhibits the most
pronounced 1/f -like appearance). We can refer to this
granularity as the coherent time scale. As shown by
Fig. 8, the larger the network, the greater the coherent
time scale, because 1/f -like noise appears at larger
sample intervals. On the other hand, our results also
suggest some difference in the evolution of congestion
between large and small networks. In our spectral

Fig. 6. 2-D map of congested network nodes.

Fig. 5. Power spectrum Sout of �out with (a) L = 8 for T = 80 and 400,
(b) L = 16 for T = 200 and 600, and (c) L = 32 for T = 400 and 1000.
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analyses, a larger network, such as L = 32 in Fig. 8(c),
retains a more 1/f -like appearance at larger time scales
than does a smaller network. On the contrary, as plotted
in Fig. 8(a), the 1/f -like appearance in the congestion
signal appears to decay faster as T increases in the
smaller network (L = 8). To us, these results confirm
that a congestion-control system or a traffic-manage-
ment regime has more time available (a larger coherent
time scale) to respond to congestion in a larger network,
because the congestion diminishes rather more slowly
than in smaller networks. Of course, the management of
a large network also requires more time. The effective-
ness of control methods may fall off gradually once their
reaction time exceeds a certain threshold. Discussion
regarding the influence of these findings on concrete
network management techniques is beyond the content
of this paper.

Considering the collective dynamics of a network and
the relationship between network size and time granu-
larity, we find that for a given network size one
must expect more volatility in congestion as the sample
interval increases. We have compared our TCP and CAC

congestion-control algorithms against cases where the
network does not control congestion. These latter
experiments, not reported in this paper, modulate
congestion by varying the intensity of source traffic.
Across all of our experiments, we find that long-range
dependence emerges at different time scales, seeming to
depend not only on network size but also on traffic
intensity and congestion-control algorithm.

One particular phenomenon observed in our current
experiments might provide some useful insight for
researchers attempting to explore behavior in communi-
cation networks. Our results suggest that the congestion
response of a sub-area in a larger network may have
different features compared with a smaller network
with the same size as the sub-area. For example, Fig. 9
illustrates a binary network pattern with L = 32 and
indicates two sub-areas with sizes l = 8 and 16. Each
sub-area appears as an interconnected or interwoven
part of the larger network; thus, these sub-areas play
an indispensable role in global emergence, where
collective behavior pertains to the system as a whole.
Extracting such sub-areas, by isolating them from the

Fig. 7. Time series of the number of congested nodes, y, with congestion
threshold, Y = 5, at three different time scales: T = 10, 100, and 1000.
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original network into a smaller network with system size
L = l, ignores various relationships or interdependencies,
and may lead to inaccurate analysis regarding some
aspects of dynamic behavior in a large network. We
demonstrate this effect in Fig. 10.

Figure 10(a) compares the power spectrum of the
number of congested nodes, y, at a comparable time
granularity, T = 200, for a network of size L = 8 against
a sub-area of comparable size, l = 8, from within a
larger network with size L = 32. Figure 10(b) provides
a similar comparison, except that the time granularity is
increased to T = 400, and the network size and sub-area
size are increased to L = 16 and l = 16, respectively.
These figures suggest that sub-areas exhibit stronger
dependence with respect to congestion than networks of
the same size and time scale. For this reason, network
researchers interested in the behavior of networks of a
certain size L would be well advised to investigate such
networks as sub-areas of size l = L within a larger
network. Further, these results also suggest that network
researchers should strive to investigate the effects of
network congestion and cross traffic within topologies
exhibiting sufficiently large scale. The global conges-
tion behavior of a network can look quite different
depending upon whether a set of identical nodes is
arranged in a small or large network. This might repre-
sent a caution for researchers who rely on detailed,
discrete-event simulations, because simulation models
can take substantial computing resources and memory
as the size of the topology increases. Yet, a sizeable
topology appears necessary in order to approximate the
effects of congestion within even a restricted sub-area.

4. Discussion

We aim to understand collective dynamics in large
networks, where cause-effect relationships might not
be inferred readily from the behavior of individual
nodes. Our current results suggest how such collective
dynamics might arise and evolve. We start with a
disordered network, where the nodes act in a random
way (based on a memoryless input process), and where
any propagating influence will be dispersed and dissi-
pated quickly. Initially, we saw that nodes were only
interacting locally. Such locality of interaction follows
from the basic continuity of physical processes: for any
influence to pass from one region to another it must first
pass through all intermediate regions. During the time
that the process propagates through the intervening
regions, it will be disturbed by all the fluctuations

Fig. 8. Power spectrum of Sy (f ) of y with (a) L = 8 for T = 50 and
400; (b) L= 16 for T = 200 and 600; and (c) L =32 for T = 400 and
1000.
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taking place within those regions. As a result, in the
network’s original disordered state, distant parts of the
network do not influence each other: they appear
independent. Over time, as feedback control mecha-
nisms adapt to changes in network congestion in all
directions, a discernable structure increases gradually
and then continues to evolve. Eventually, the discernable
structure expands into a global order. These effects
depend upon the size of the network, appearing more
strongly over greater time scales as network size
increases.

No approach to simulation can describe the behaviors
of the real Internet completely. Given the state-of-the-
art, it is currently within reach to develop good temporal
models to study performance at a single node or in a
small network (i.e., to represent a smaller part of a
larger network). We believe we have shown that it would
be desirable, and perhaps feasible, to devise models to
study the spatial-temporal performance of a large net-
work as a whole. To achieve such an outcome requires
that simplifications be made. While our modeling
method seems an extreme simplification, especially in
terms of the regular topology, the homogeneous links
and nodes, and the routing of traffic, we do maintain the
individual identity of packets and we believe that our
model captures important details, such as feedback con-
gestion control, that might be missed in other network
simulations. Our model enables us to explore collective

dynamics in reasonably large networks, up to 1024
nodes so far. Our model also drives 2-D and 3-D anima-
tions (not described in this paper) that give an intuitive
view of network behavior over time and against key
parameters.

5. Future Work

The results reported in this paper, as well as else-
where [8, 9, 14-16], encourage us to continue our
investigations into the collective dynamics of large
networks. We foresee three directions in our immediate
future plans. First, we need to incorporate into our
network model additional traffic sources and control
mechanisms related to providing quality of service. As
more and more high-speed access links are added to the
Internet, the nature of traffic can be expected to change,
perhaps leading to an increasing quantity of streaming
multimedia traffic and large file transfers, as well as
increases in traffic from various interactive group games
and from instant messaging applications. In addition, the
pattern of source-destination pairs may evolve as users
begin to move toward increased peer-to-peer communi-
cations. In addition to changing traffic patterns among
network nodes, evolving Internet use might alter the
balance between TCP and non-TCP traffic. Such
changes will increase the criticality of deploying
mechanisms to provide quality of service. While

Fig. 9. A binary pattern of network congestion in a network of size, L = 32, and identifying two
sub-areas with sizes l = 8 and l = 16.
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researchers have provided an understanding of the
properties of various quality-of-service mechanisms on
a local scale, the effects of such mechanisms have not
been studied on a global scale in large networks.

Second, we must increase the size of our model in
order to improve our ability to identify and understand
emergent phenomena, and especially congestion
dynamics, at Internet scale. The current work reports
a maximum network of 1024 nodes (L�L = 32�32=
1024) and 4096 links (four links per node). Using
MATLAB, we were able to model a network of this size;
however, to execute the behavior of the network for two
million time steps requires 10 days of CPU time on a
750 MHz Pentium III with 128 MB of memory. We
intend to recode our model using C or C++ in an effort
to achieve a network size on the order of 16 000 nodes
and 64 000 links. Such an increase in size should enable
us to enhance our ability to identify and understand
emergent phenomena. To reach our ultimate intended

network size, on the order of 105 to 106 nodes and links,
we might require a parallel processing system. Such
systems appear well suited to cellular automata [23].

With a network model of sufficient size, we can
undertake a systematic search to identify, understand,
and perhaps explain, significant emergent phenomena in
large networks. This represents our third avenue for
future work. In this case, we must develop theories
regarding the most likely emergent phenomena, and
then test those theories with a systematic set of experi-
ments. From this work, we might well provide guidance
to researchers seeking to measure Internet behavior on
a global scale. In particular, we might identify specific
phenomena and related measurement data that could be
collected by experimenters in order to confirm or
refute the presence of emergent phenomena within the
Internet.

6. Conclusions

When attempting to analyze network behavior by
examining the behavior of constituent components,
researchers can develop the misconception that uncer-
tainty regarding network congestion and resource
consumption increases with network size. We argue that
the opposite holds. We find that correlation in conges-
tion among network nodes can be expected to persist at
larger time granularities as system size increases, and
we also find network size and time granularity to be two
closely related aspects of the spatial-temporal dynamics
of a network. This suggests that as network size
increases, the collective behavior of a network might
well become more predictable. Such predictability
arises from global emergence, where chain reactions
move through the whole system. As the system becomes
larger, the correlated interactions persist. As we show,
such collective behavior cannot be realized from the
analysis of individual network components.

Although in this paper we do consider two simplified
congestion-control algorithms, we must still evaluate the
collective dynamics of large networks that include
additional mechanisms, such as differentiated services
and routing updates. However, more important
challenges revolve around issues of scale. We need to
scale the network model up to a million nodes, so that
we can investigate multi-scale, spatial-temporal dynam-
ics. This suggests a need to employ a parallel program-
ming environment to study multiple-timescale traffic
patterns and network performance, and to identify and
understand even more interesting phenomena arising
only in sufficiently large networks. We believe that
simulating networks at an appropriately large size is key
for researchers to gain insight regarding behaviors that
might emerge within the Internet.

Fig. 10. Power spectra Sy (f ) of number of congested nodes, y, with
(a) L = 8 compared against sub-area, size l = 8, in a network of size
L = 32 for T = 200 and (b) L = 16 compared against sub-area, size
l = 16, in a network of size L = 32 for T = 400.
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