
Comparison of Two Dimension-Reduction Methods for Network Simulation Models

Kevin Mills (ANTD) & Jim Filliben (SED) Complex Systems Study Group NIST SED/ANTD Seminar 9/22/11 222/A326

millsjjfsedtalk092211.pptx

Comparison of Two Dimension-Reduction Methods for Network Simulation Models

Kevin Mills (ANTD) & Jim Filliben (SED) Complex Systems Study Group NIST SED/ANTD Seminar 9/22/11 222/A326

millsjjfsedtalk092211.pptx

Motivation for this Talk

- 1. Generate useful internet MesoNet modeling conclusions & insight
- Show stat framework/approach & methodology + beginning-to-"end" demo
- 3. Show dimension reduction dependency on Design of Experiment & Sensitivity Analysis

Outline

- CxS: Complex System IMS Project
- Goal Problem Solution
- Stat Framework
- Overview of Candidate *MesoNet* Factors & Responses
- Experiment Design
- Sensitivity Analysis
- Dimension Reduction
 - via Correlation Analysis with Clustering
 - via Principal Components Analysis
- Comparison of Dimension Reduction Techniques
- Conclusions

IMS Project: Measurement Science for Complex Information System

http://www.nist.gov/itl/antd/emergent_behavior.cfm

This project aims to develop and evaluate a coherent set of methods to understand behavior in complex information systems, such as the Internet, computational grids and computing clouds.

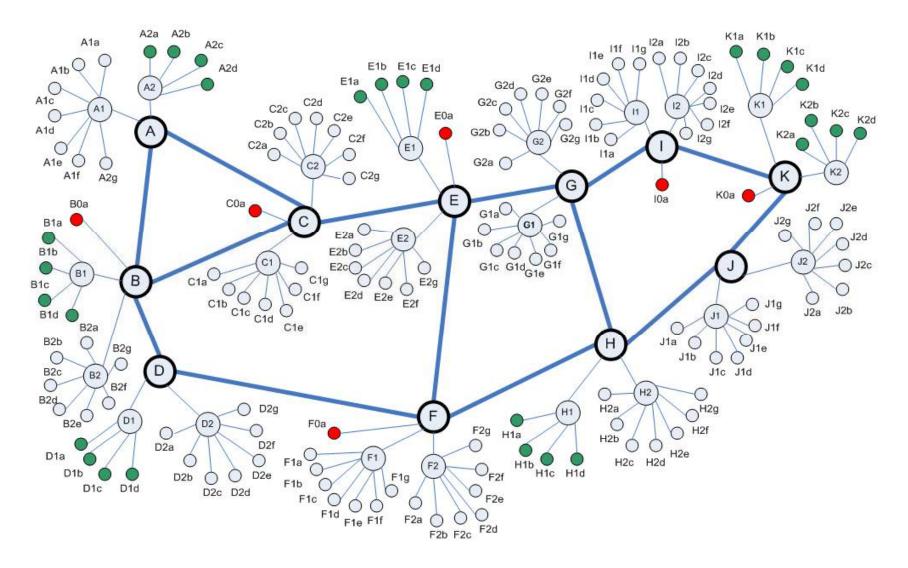
Such large distributed systems exhibit global behavior arising from independent decisions made by many simultaneous actors, which <u>adapt</u> their behavior based on local measurements of system state.

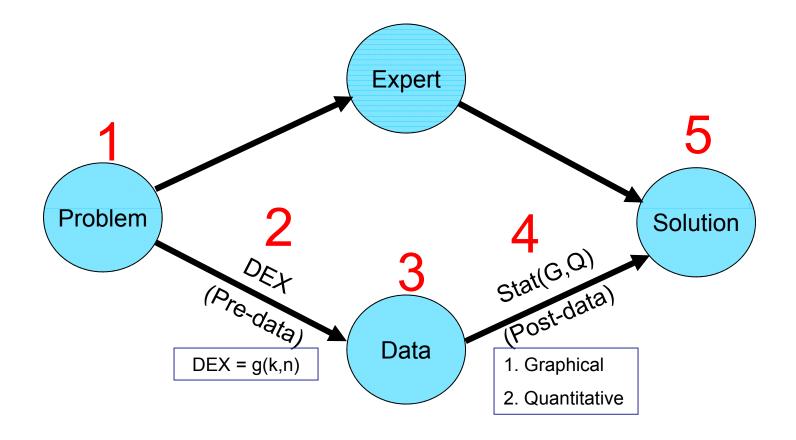
Actor adaptations <u>shift</u> the global system state, influencing subsequent measurements, leading to <u>further adaptations</u>.

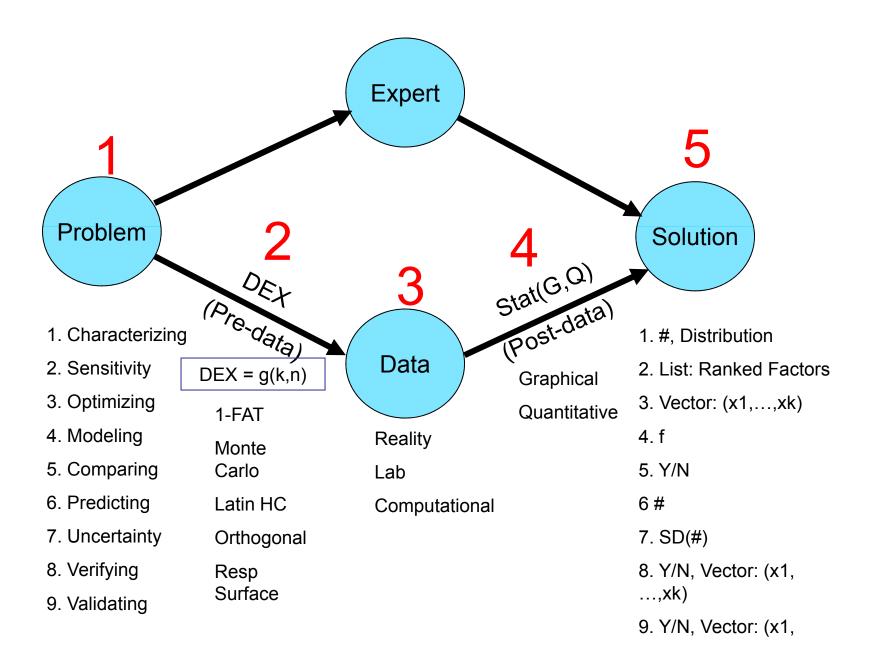
This continuous cycle of measurement and adaptation drives a timevarying global behavior.

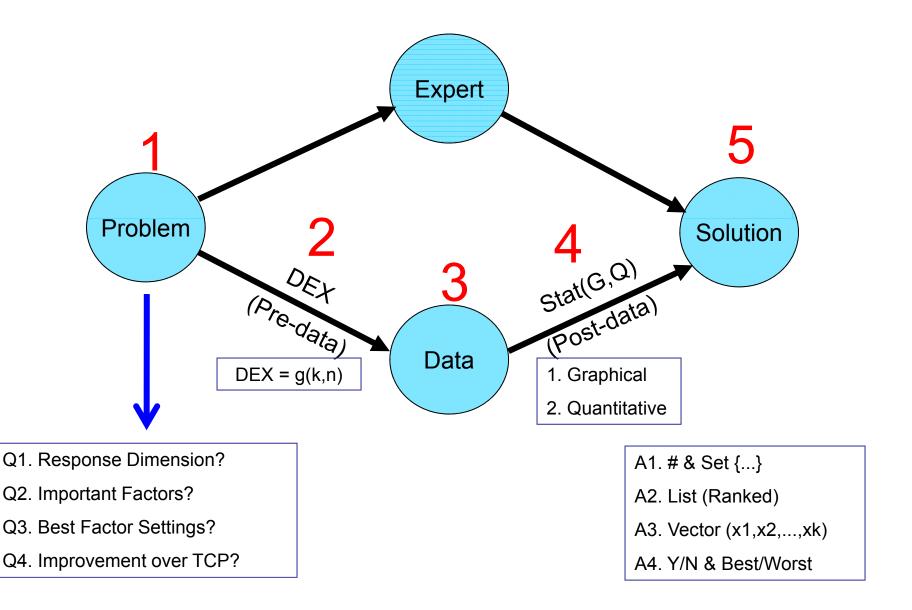
For this reason, proposed changes in actor <u>decision algorithms</u> must be examined/<u>understood</u> at large spatiotemporal scale in order to <u>predict (</u> and control) system behavior.

CxS Project

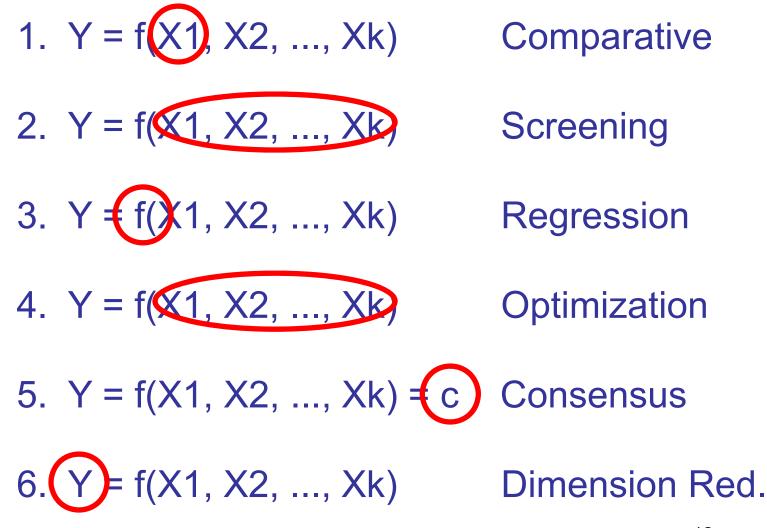

What is the problem? No one understands how to measure, predict or control macroscopic behavior in complex information systems: (1) threatening our nation's security and (2) costing billions of dollars.


"[Despite] society's profound dependence on networks, fundamental knowledge about them is primitive. [G]lobal communication ... networks have quite advanced technological implementations but their behavior under stress still cannot be predicted reliably.... There is no science today that offers the fundamental knowledge necessary to <u>design</u> large complex networks [so] that their behaviors can be predicted prior to building them." (above quote from <u>Network Science 2006</u>, a National Research Council report)


Project Goal – Problem – Solution


- Goal <u>understand</u> internet congestion and compare proposed Internet congestion control algorithms under a wide range of controlled, repeatable conditions, as simulated by selecting combinations of parameter values for *MesoNet*, a 11- to 20parameter network simulator.
- Problem how to determine which <u>MesoNet core responses</u> to analyze when characterizing model behavior.
- Solution apply <u>experiment design</u> techniques to generate an affordable but representative data sample, and carry out the subsequent response variable evaluation via <u>three</u> data analysis approaches:
 - 1. sensitivity analysis
 - 2. correlation analysis with clustering &
 - 3. principal components analysis

Abilene Network (3-Tier MesoNet Topology)



The Starting Point: Generic Model System Behavior Y = f(X1, X2, ..., Xk)

The Starting Point: Generic Model System Behavior Y = f(X1, X2, ..., Xk)

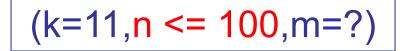
The Starting Point: Generic Model (Part 2)

System Behavior Y = f(X1, X2, ..., Xk)

System Behavior $Y_i = f_i(X1, X2, ..., Xk)$ (i = 1, 2,..., m)

Factor Groups Affecting System Behavior

- 1. Network Factors
- 2. User Factors
- 3. Source & Receiver Factors
- 4. Protocol Factors


Factors X_i Affecting System Behavior $Y_i = f(X1, X2, ..., Xk)$

	x1	Propagation delay			
Network Factors	x2	Network speed			
1 801013	x3	Buffer sizing			
	x4	Average file size for web pages			
User Factors	x5	verage think time between web clicks			
1 801013	x6	Probability a user opts to transfer a larger file			
	x7	Probability a source or receiver is on a fast host			
Source & Receiver	x8	Scaling factor for number of sources & receivers			
Factors	x9	Distribution of sources			
	x10	Distribution of receivers			
Protocol Factors	x11	Initial TCP slow-start threshold			

Affordable Number of Runs n = ? n <= 100

4 Ways to Reduce DEX Full Factorial Design n:
1. Reduce # Factors (but scope reduced)
2. Reduce Number of Levels (=> 2?)
3. Reduce Number of Reps
4. Fractional Factorial Design

Affordable Number of Runs n = ? n <= 100

4 Ways to Reduce DEX Full Factorial Design n:
1. Reduce # Factors (but scope reduced)
2. Reduce Number of Levels (2?)
3. Reduce Number or Reps
4. Fractional Factorial Design

(k=11,n <= 100,m=?)

Affordable Number of Runs n = ?

Additional Desirable Feature of the Design: Good Estimates for (at least) the Main Effects & 2-Term Interactions (Resolution) 11 + 11-choose-2 = 11 + 55 = 66 $(66+1) = 67 \rightarrow 64 \rightarrow 2^6 \rightarrow 2^{11-5}$

Final Design: 2¹¹⁻⁵ Orthogonal 2-Level Fractional Factorial Design (k=11,n=64)

(k=11,n=64,m=?)

MesoNet Factors (k=11) & Levels (2)

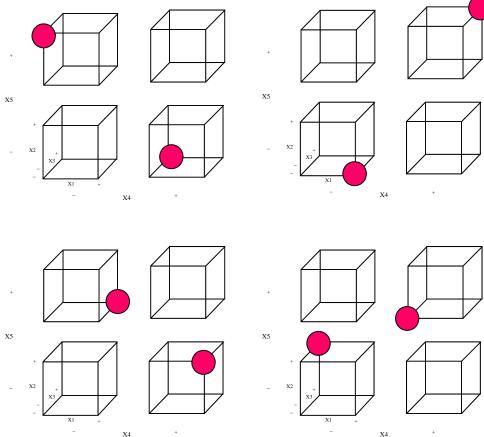
Category	Factor	Code	Definition	Level 1: -	Level 2: +
	x1	PDM	Propagation delay	1	2
Network	x2	BRS (s)	Network speed	800 p/ms	400 p/ms
Factors	х3	QSA	Buffer sizing	<i>RTTxC</i> /SQRT(<i>n</i>)	RTTxC
	x4	AvFSWO	Average file size for web pages	50 packets	100 packets
User Factors	x5	AvThT	Average think time between web clicks	2000 ms	5000 ms
	x6	PrLF	Probability a user opts to transfer a larger file	0.02	0.01
	x7	PrFH	Probability a source or receiver is on a fast host	0.4	0.2
Source & Receiver	x8	SFSR	Scaling factor for number of sources & receivers	2	3
Factors	x9	SDist	Distribution of sources	WEB	P2P
	x10	RDist	Distribution of receivers	WEB	P2P
Protocol Factors	x11	SST	Initial TCP slow-start threshold	43 packets	1.07x10 ⁹ packets

 2^{11-5} Orthogonal Fractional Factorial Design (k = 11, n = 64)

Generators: X7 = X3*X4*X5 X8 = X1*X2*X3*X4 X9 = X1*X2*X6 X10 = X2*X4*X5*X6 X11 = X1*X4*X5*X6

Resolution IV

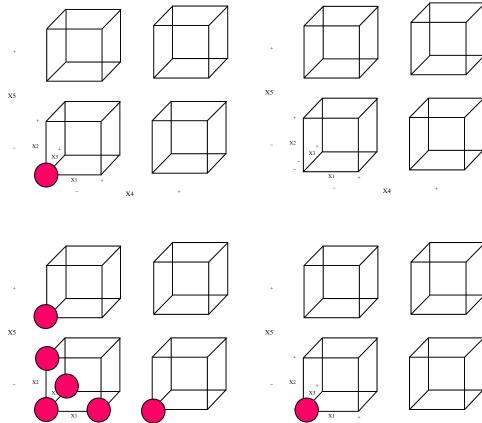
Reference: Box, Hunter, & Hunter, "Statistics for Experimenters", 2nd Edition, 2005, Wiley, p. 272


Index	X1	X2	Х3	X4	X5	X6	X7	X8	X9	X10	X11
1	-1	-1	-1	-1	-1	-1	-1	+1	-1	+1	+1
2	+1	-1	-1	-1	-1	-1	-1	-1	+1	+1	-1
3	-1	+1	-1	-1	-1	-1	-1	-1	+1	-1	+1
4	+1	+1	-1	-1	-1	-1	-1	+1	-1	-1	-1
5	-1	-1	+1	-1	-1	-1	1	-1	-1	+1	+1
5 6	+1	-1	+1	-1	-1	-1	1	+1	+1	+1	-1
7	-1	+1	+1	-1	-1	-1	1	+1	+1	-1	+1
8	+1	+1	+1	-1	-1	-1	1	-1	-1	-1	-1
9	-1	-1	-1	+1	-1	-1	1	-1	-1	-1	-1
10	+1	-1	-1	+1	-1	-1	1	+1	+1	-1	+1
11	-1	+1	-1	+1	-1	-1	1	+1	+1	+1	-1
12	+1	+1	-1	+1	-1	-1	1	-1	-1	+1	+1
13	-1	-1	+1	+1	-1	-1	-1	+1	-1	-1	-1
14	+1	-1	+1	+1	-1	-1	-1	-1	+1	-1	+1
15	-1	+1	+1	+1	-1	-1	-1	-1	+1	+1	-1
16	+1	+1	+1	+1	-1	-1	-1	+1	-1	+1	+1
17	-1	-1	-1	-1	+1	-1	1	+1	-1	-1	-1
18	+1	-1	-1	-1	+1	-1	1	-1	+1	-1	+1
19	-1	+1	-1	-1	+1	-1	1	-1	+1	+1	-1
20	+1	+1	-1	-1	+1	-1	1	+1	-1	+1	+1
21	-1	-1	+1	-1	+1	-1	-1	-1	-1	-1	-1
22	+1	-1	+1	-1	+1	-1	-1	+1	+1	-1	+1
23	-1	+1	+1	-1	+1	-1	-1	+1	+1	+1	-1
24	+1	+1	+1	-1	+1	-1	-1	-1	-1	+1	+1
25	-1	-1	-1	+1	+1	-1	-1	-1	-1	+1	+1
26	+1	-1	-1	+1	+1	-1	-1	+1	+1	+1	-1
27	-1	+1	-1	+1	+1	-1	-1	+1	+1	-1	+1
28	+1	+1	-1	+1	+1	-1	-1	-1	-1	-1	-1
29	-1	-1	+1	+1	+1	-1	1	+1	-1	+1	+1
30	+1	-1	+1	+1	+1	-1	1	-1	+1	+1	-1
31	-1	+1	+1	+1	+1	-1	1	-1	+1	-1	+1
32	+1	+1	+1	+1	+1	-1	1	+1	-1	-1	-1

2¹¹⁻⁵ Fractional Factorial Design (k=11,n=64) (2to11m5.xls)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_											_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33	-1	-1	-1	-1	-1	+1	-1	+1	+1	-1	-1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34	+1	-1	-1	-1	-1	+1	-1	-1	-1	-1	+1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	-1	+1	-1	-1	-1	+1	-1	-1	-1	+1	-1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	+1	+1	-1	-1	-1	+1	-1	+1	+1	+1	+1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	-1	-1	+1	-1	-1	+1	1	-1	+1	-1	-1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38	+1	-1	+1	-1	-1	+1	1	+1	-1	-1	+1
41-1-1-1+1-1+11-1+1+1+142+1-1-1+1-1+11+1-1+1+1+143-1+1-1+1-1+11+1+1+1+1+144+1+1-1+1-1+11+1+1+1+145-1-1+1+1+1+1+1+1+1+146+1-1+1+1+1-1+1+1+147-1+1+1+1+1-1+1+1+148+1+1+1+1+1+1+1+1+149-1-1-1+1+1+1+1+1+150+1-1-1+1+1+1+1+1+151-1+1-1+1+1+1+1+1+152+1+1-1+1+1+1+1+1+1+154+1-1+1+1+1+1+1+1+1+155-1+1+1+1+1+1+1+1+1+1+156+1+1+1+1+1+1+1+1+1+1+158+1-1+1+1+1 <td>39</td> <td>-1</td> <td>+1</td> <td>+1</td> <td>-1</td> <td>-1</td> <td>+1</td> <td>1</td> <td>+1</td> <td>-1</td> <td>+1</td> <td>-1</td>	39	-1	+1	+1	-1	-1	+1	1	+1	-1	+1	-1
42 $+1$ -1 -1 $+1$ -1 $+1$ 1 $+1$ -1 $+1$ -1 43 -1 $+1$ -1 $+1$ -1 $+1$ 1 $+1$ -1 $+1$ -1 44 $+1$ $+1$ -1 $+1$ -1 $+1$ 1 $+1$ -1 $+1$ -1 44 $+1$ $+1$ -1 $+1$ -1 $+1$ -1 $+1$ -1 $+1$ 45 -1 -1 $+1$ $+1$ -1 $+1$ -1 $+1$ $+1$ $+1$ 46 $+1$ -1 $+1$ $+1$ -1 $+1$ -1 $+1$ $+1$ -1 47 -1 $+1$ $+1$ -1 $+1$ -1 -1 $+1$ $+1$ -1 47 -1 $+1$ $+1$ -1 -1 $+1$ -1 -1 $+1$ $+1$ 48 $+1$ $+1$ $+1$ $+1$ -1 -1 $+1$ $+1$ -1 -1 49 -1 -1 -1 $+1$ $+1$ $+1$ $+1$ $+1$ $+1$ $+1$ $+1$ 50 $+1$ -1 -1 -1 $+1$ $+1$ $+1$ $+1$ $+1$ $+1$ 52 $+1$ $+1$ -1 -1 $+1$ $+1$ $+1$ $+1$ $+1$ $+1$ 53 -1 -1 $+1$ $+1$ $+1$ $+1$ $+1$ $+1$ $+1$ $+1$ 54	40	+1	+1	+1	-1	-1	+1	1	-1	+1	+1	+1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	41	-1	-1	-1	+1	-1	+1	1	-1	+1	+1	+1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42	+1	-1	-1	+1	-1	+1	1	+1	-1	+1	-1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	43	-1	+1	-1	+1	-1	+1	1	+1	-1	-1	+1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44	+1	+1	-1	+1	-1	+1	1	-1	+1	-1	-1
47 -1 $+11$ $+11$ $+1$ -1 <td< td=""><td>45</td><td>-1</td><td>-1</td><td>+1</td><td>+1</td><td>-1</td><td>+1</td><td>-1</td><td>+1</td><td>+1</td><td>+1</td><td>+1</td></td<>	45	-1	-1	+1	+1	-1	+1	-1	+1	+1	+1	+1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46	+1	-1	+1	+1	-1	+1	-1	-1	-1	+1	-1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	47	-1	+1	+1	+1	-1	+1	-1	-1	-1	-1	+1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	48	+1	+1	+1	+1	-1	+1	-1	+1	+1	-1	-1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	49	-1	-1	-1	-1	+1	+1	1	+1	+1	+1	+1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50	+1	-1	-1	-1	+1	+1	1	-1	-1	+1	-1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51	-1	+1	-1	-1	+1	+1	1	-1	-1	-1	+1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	52	+1	+1	-1	-1	+1	+1	1	+1	+1	-1	-1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	53	-1	-1	+1	-1	+1	+1	-1	-1	+1	+1	+1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	54	+1	-1	+1	-1	+1	+1	-1	+1	-1	+1	-1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	55	-1	+1	+1	-1	+1	+1	-1	+1	-1	-1	+1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	56	+1	+1	+1	-1	+1	+1	-1	-1	+1	-1	-1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	57	-1	-1	-1	+1	+1	+1	-1	-1	+1	-1	-1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	58	+1	-1	-1	+1	+1	+1	-1	+1	-1	-1	+1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	59	-1	+1	-1	+1	+1	+1	-1	+1	-1	+1	-1
62 +1 -1 +1 +1 +1 1 -1 -1 +1 63 -1 +1 +1 +1 +1 1 -1 -1 +1 +1 64 +1 +1 +1 +1 +1 +1 +1 +1 +1	60	+1	+1	-1	+1	+1	+1	-1	-1	+1	+1	+1
63 -1 +1 +1 +1 +1 -1 -1 +1 -1 64 +1 <t< td=""><td>61</td><td>-1</td><td>-1</td><td>+1</td><td>+1</td><td>+1</td><td>+1</td><td>1</td><td>+1</td><td>+1</td><td>-1</td><td>-1</td></t<>	61	-1	-1	+1	+1	+1	+1	1	+1	+1	-1	-1
64 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1	62	+1	-1	+1	+1	+1	+1	1	-1	-1	-1	+1
	63	-1	+1	+1	+1	+1	+1	1	-1	-1	+1	-1
345 1234 126 2456 1456	64	+1	+1	+1	+1	+1	+1	1	+1	+1	+1	+1
								345	1234	126	2456	1456

What does this design look like? Why use it? $(k=11, n=64) \rightarrow (k=7, n=8)$


(k=7,n=8) 2⁷⁻⁴Orthogonal Fractional Factorial Design

X4

What does this design <u>not</u> look like?

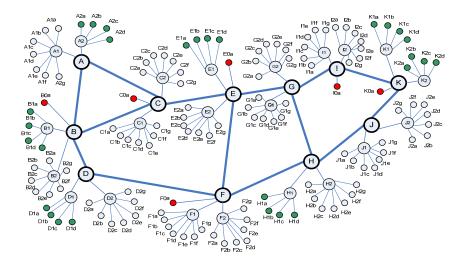
(k=7,n=8) 1FAT Fractional Factorial Design

X4

X4 +

Measures of System Behavior (Response Variables) $Y_i = f_i(X1, X2, ..., Xk)$

- 1. Characterizing Macroscopic Behavior
- 2. Characterizing Instantaneous Throughput for Active Flows by Flow Class (User)

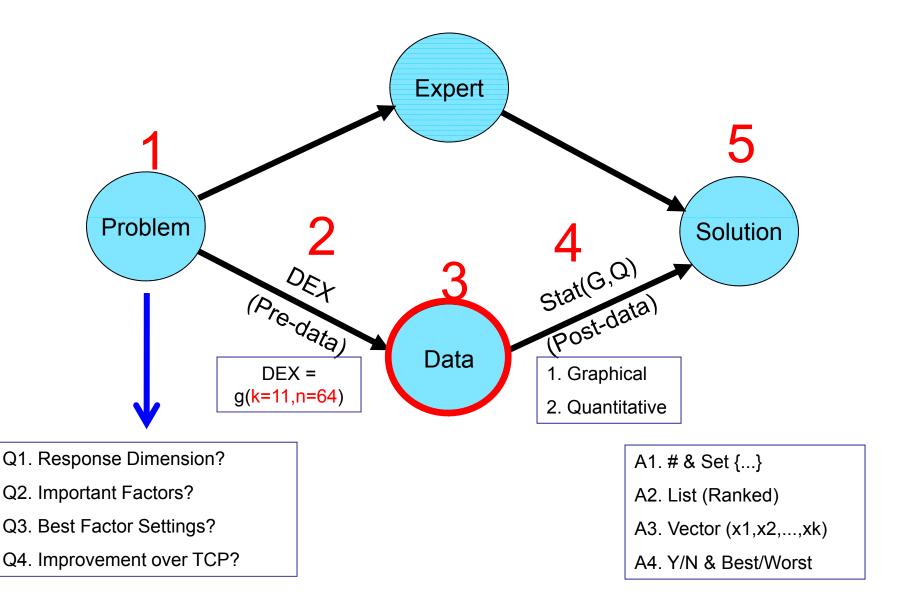

(k=11,n=64,m=?)

16 Responses Characterizing Macroscopic Behavior

Response	Definition
y1	Active Flows – flows attempting to transfer data
y2	Proportion of potential flows that were active: Active Flows/All Sources
у3	Data packets entering the network per measurement interval
y4	Data packets leaving the network per measurement interval
y5	Loss Rate: y4/(y3+y4)
у6	Flows Completed per measurement interval
у7	Flow-Completion Rate: y6/(y6+y1)
y8	Connection Failures per measurement interval
у9	Connection-Failure Rate: y8/(y8+y1)
y10	Retransmission Rate (ratio)
y11	Congestion Window per Flow (packets)
y12	Window Increases per Flow per measurement interval
y13	Negative Acknowledgments per Flow per measurement interval
y14	Timeouts per Flow per measurement interval
y15	Smoothed Round-Trip Time (ms)
y16	Relative queuing delay: y15/(x1x41)

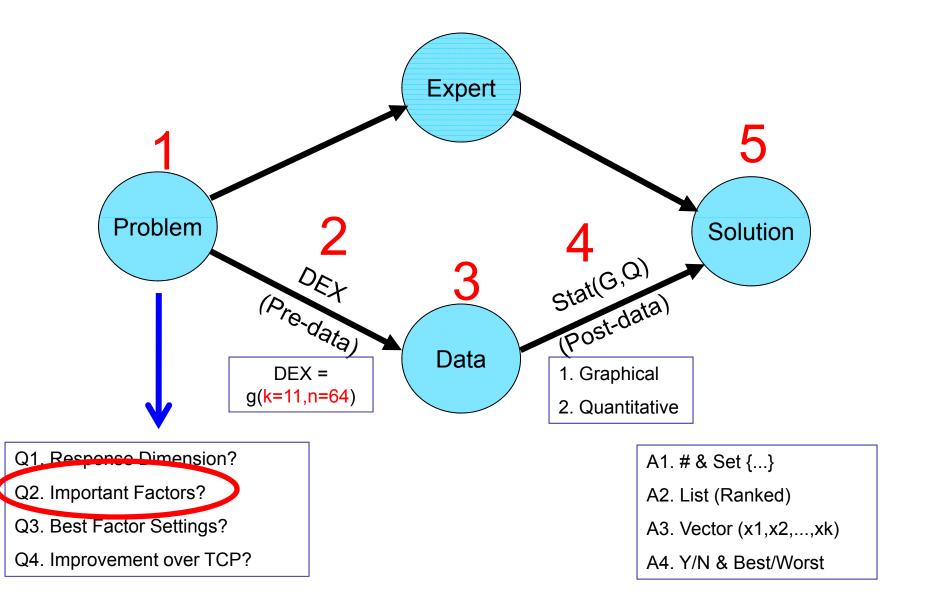
6 Responses Characterizing Instantaneous Throughput for Active Flows by Flow Class

Response	Definition (Throughput in packets/second)
y17	Average Throughput for Active DD Flows
y18	Average Throughput for Active DF Flows
y19	Average Throughput for Active DN Flows
y20	Average Throughput for Active FF Flows
y21	Average Throughput for Active FN Flows
y22	Average Throughput for Active NN Flows



Router Type	Speed
Backbone	2s
PoP	25 % of s
D-class Access	25 % of s
F-class Access	5 % of s
N-class Access	2.5 % of s

MesoNet 22 Responses: 16 Macro + 6 Throughput


Response	Definition
y1	Active Flows – flows attempting to transfer data
y2	Proportion of potential flows that were active: Active Flows/All Sources
y3	Data packets entering the network per measurement interval
y4	Data packets leaving the network per measurement interval
y5	Loss Rate: y4/(y3+y4)
y6	Flows Completed per measurement interval
у7	Flow-Completion Rate: y6/(y6+y1)
y8	Connection Failures per measurement interval
y9	Connection-Failure Rate: y8/(y8+y1)
y10	Retransmission Rate (ratio)
y11	Congestion Window per Flow (packets)
y12	Window Increases per Flow per measurement interval
y13	Negative Acknowledgments per Flow per measurement interval
y14	Timeouts per Flow per measurement interval
y15	Smoothed Round-Trip Time (ms)
y16	Relative queuing delay: y15/(x1x41)

y17	Average Throughput for Active DD Flows	
y18	Average Throughput for Active DF Flows	
y19	Average Throughput for Active DN Flows	
y20	Average Throughput for Active FF Flows	(k=11,n=64,m=22)
y21	Average Throughput for Active FN Flows	29
y22	Average Throughput for Active NN Flows	

Data: 64 x 22 Multivariate Data Set Resulting from a 2¹¹⁻⁵ Orthogonal Fractional Factorial Experiment Design

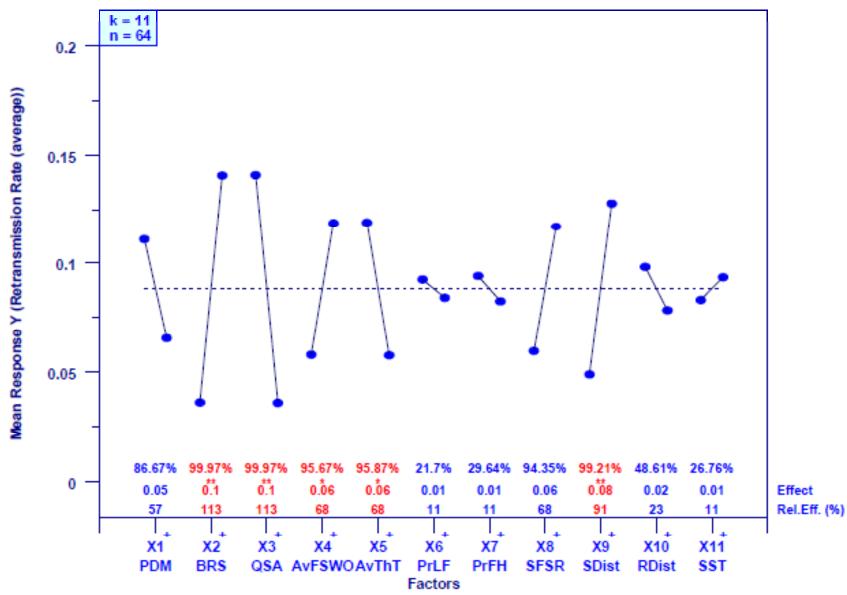
Run	y1	y2		y21	y22
1	4680.619	0.168126		92.034	89.785
2	6654.512	0.239371		72.596	57.738
3	9431.405	0.339259		29.569	13.963
4	11565.81	0.415439	•••	23.427	19.882
61	10319.55	0.247471	•••	87.969	41.573
62	1738.469	0.093668		159.298	161.602
63	1783.509	0.096094		148.395	161.36
64	21467.6	0.514811		26.159	9.981

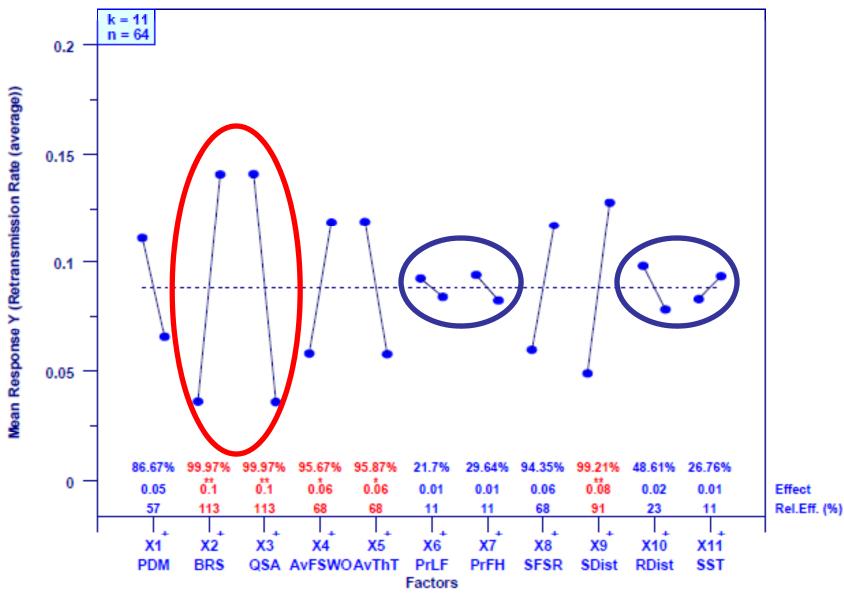
Sensitivity Analysis

Sensitivity Analysis

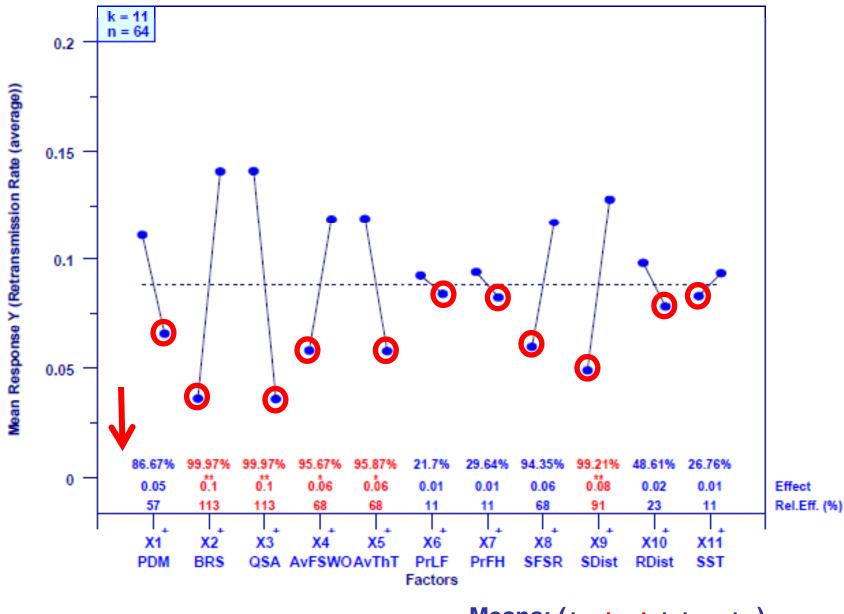
Q1. Of the 11 factors, what are most/least important (including interactions)?

Q2. Robust over the 22 responses?

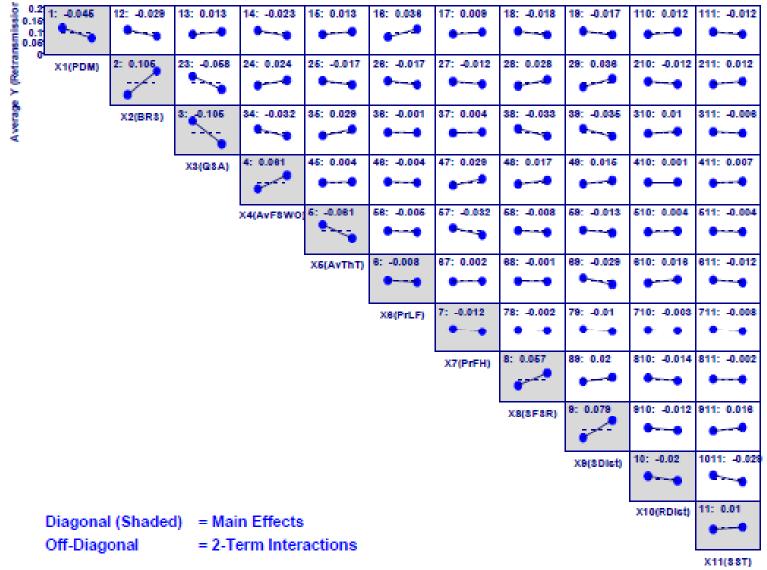

Analysis: For each of the 22 responses ... Example 1: Y10 = Retransmission Rate

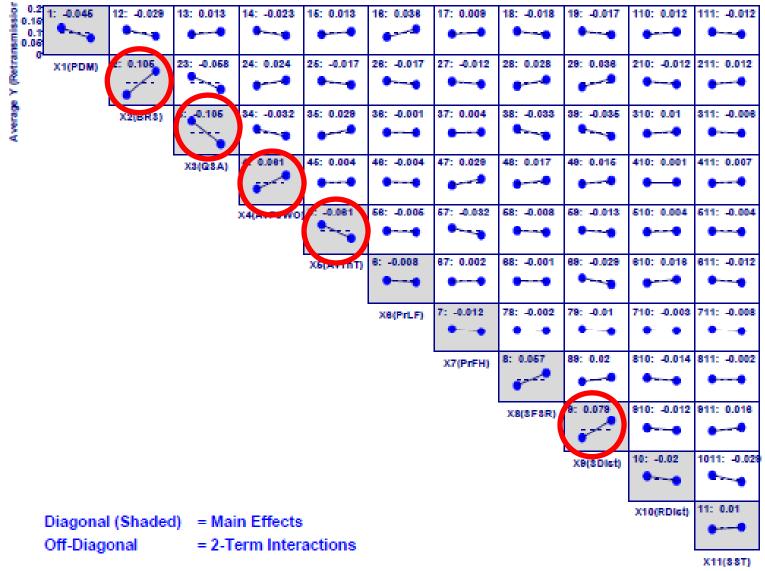

Response	Definition
y1	Active Flows – flows attempting to transfer data
у2	Proportion of potential flows that were active: Active Flows/All Sources
у3	Data packets entering the network per measurement interval
y4	Data packets leaving the network per measurement interval
у5	Loss Rate: y4/(y3+y4)
у6	Flows Completed per measurement interval
у7	Flow-Completion Rate: y6/(y6+y1)
у8	Connection Failures per measurement interval
у9	Connection-Eailure Rate: y8/(y8+y1)
v10	Retransmission Rate (ratio)
y11	Congestion Window per Flow (packets)
y12	Window Increases per Flow per measurement interval
y13	Negative Acknowledgments per Flow per measurement interval 🛛 🚽
y14	Timeouts per Flow per measurement interval
y15	Smoothed Round-Trip Time (ms)
y16	Relative queuing delay: y15/(x1x41)

y17	Average Throughput for Active DD Flows	
y18	Average Throughput for Active DF Flows	
y19	Average Throughput for Active DN Flows	
y20	Average Throughput for Active FF Flows	(k=11,n=64,m=22)
y21	Average Throughput for Active FN Flows	
y22	Average Throughput for Active NN Flows	

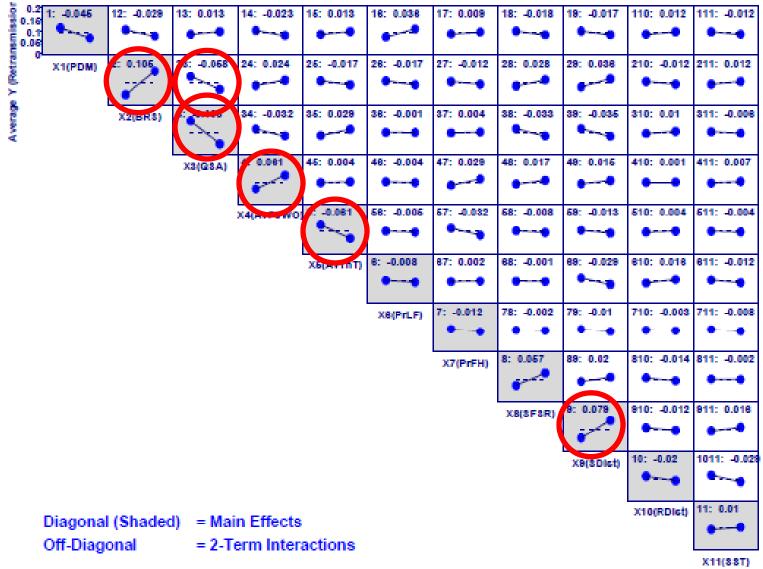

Main Effects Plot (Augmented)

Y10: Retransmission Rate

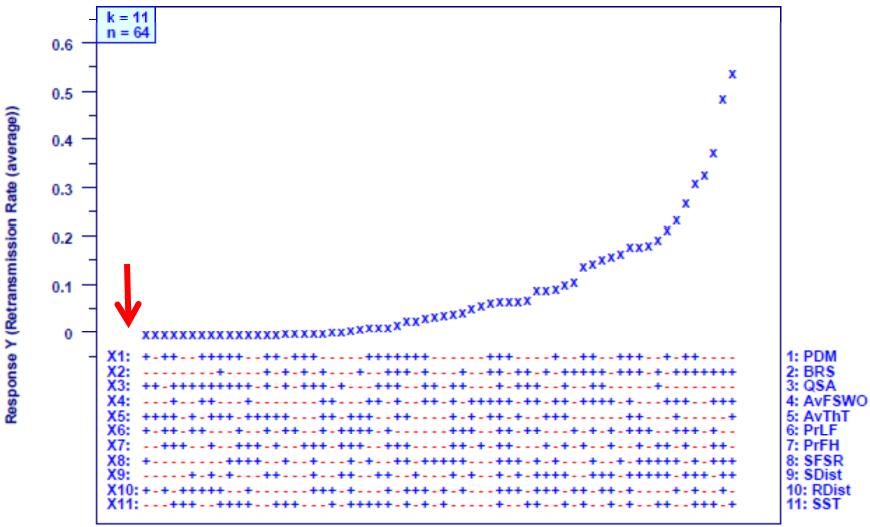


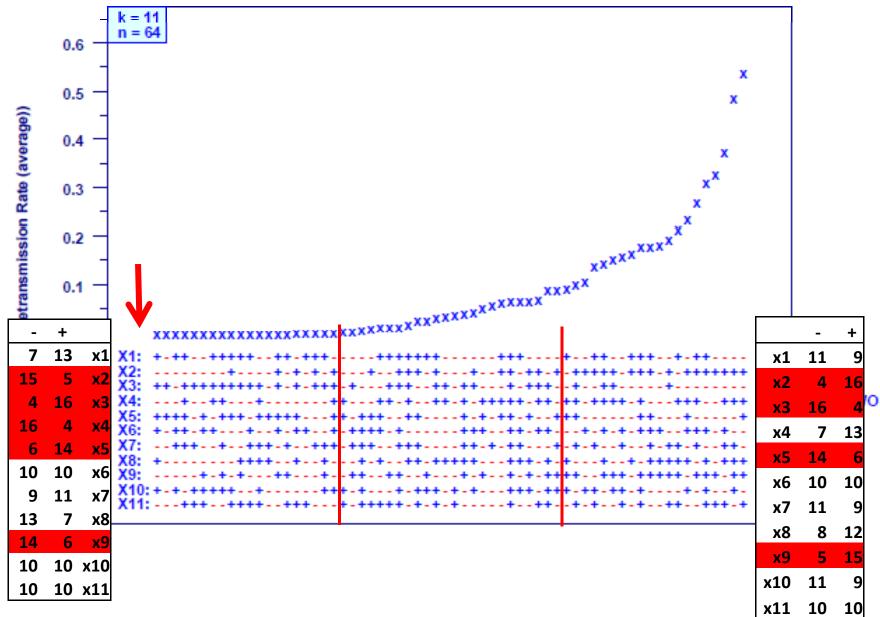


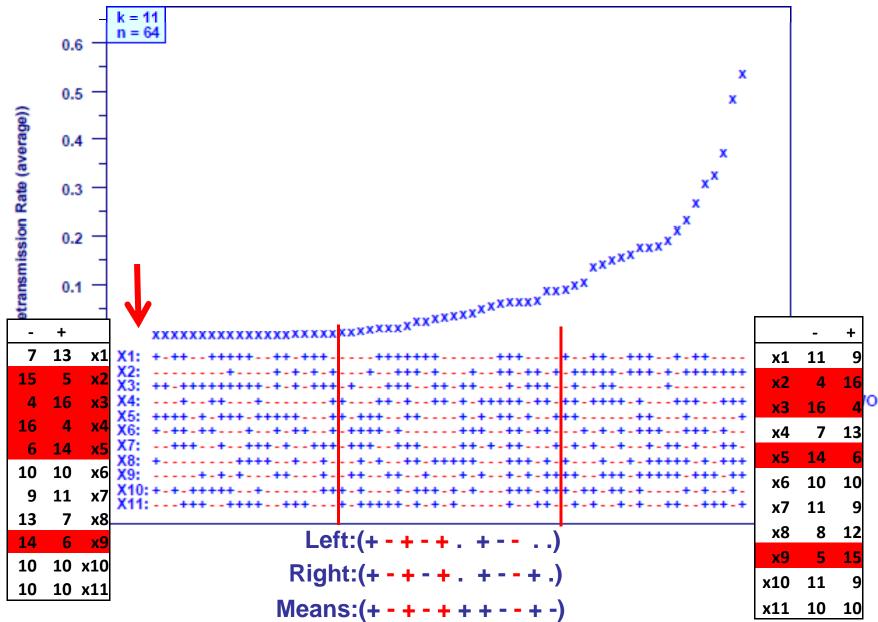
Y10: Retransmission Rate



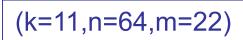
Means: (+ - + - + + + - - + -)

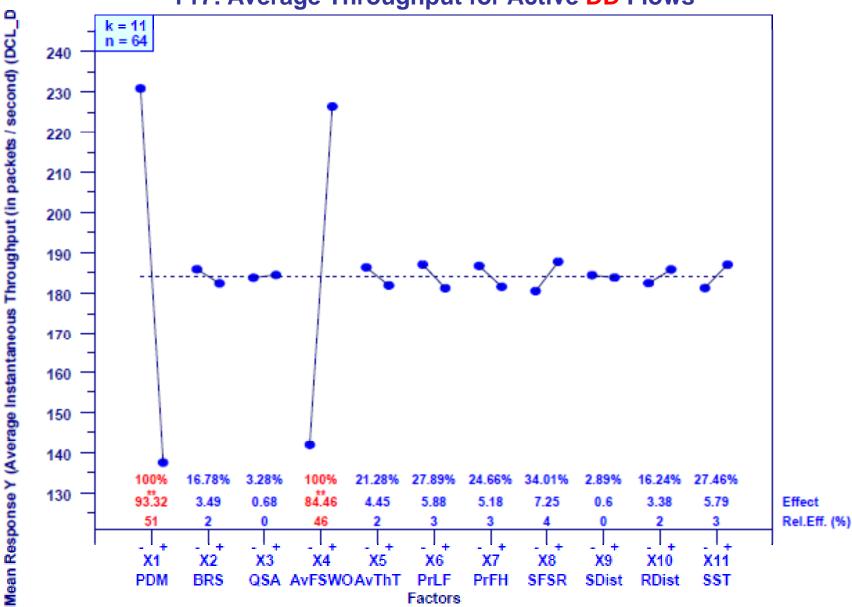


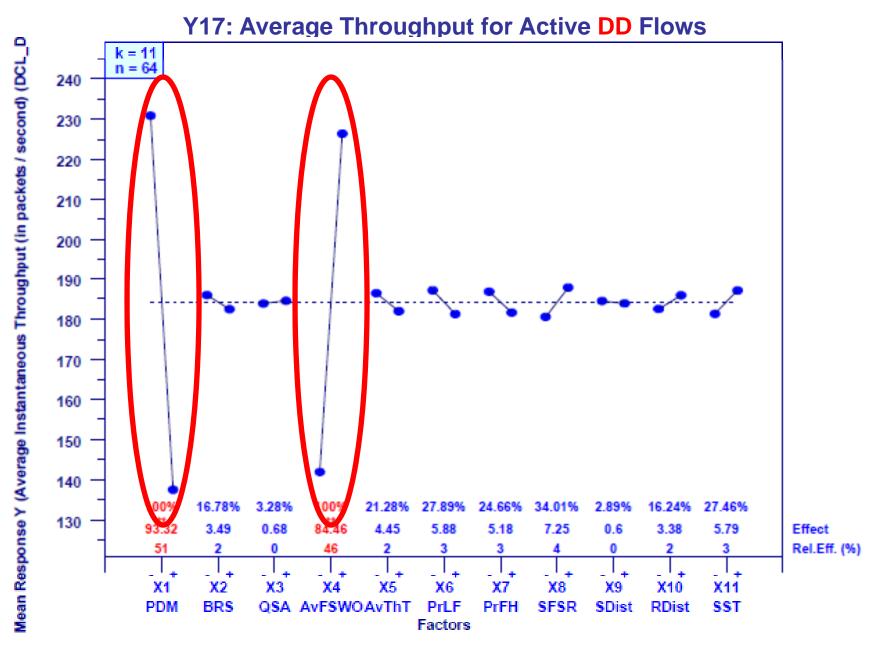


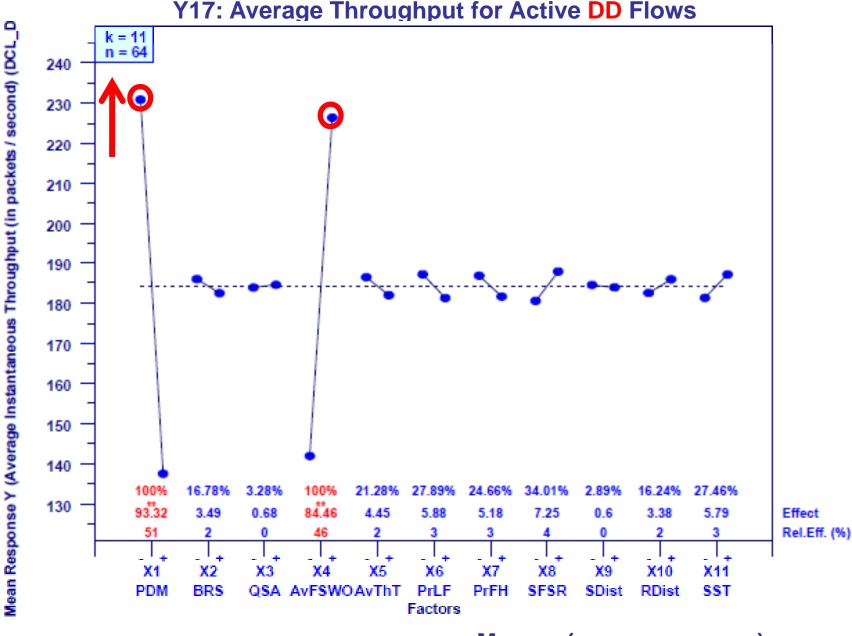

Y10: Retransmission Rate

http://www.itl.nist.gov/div898/handbook/pri/section5/pri59.htm

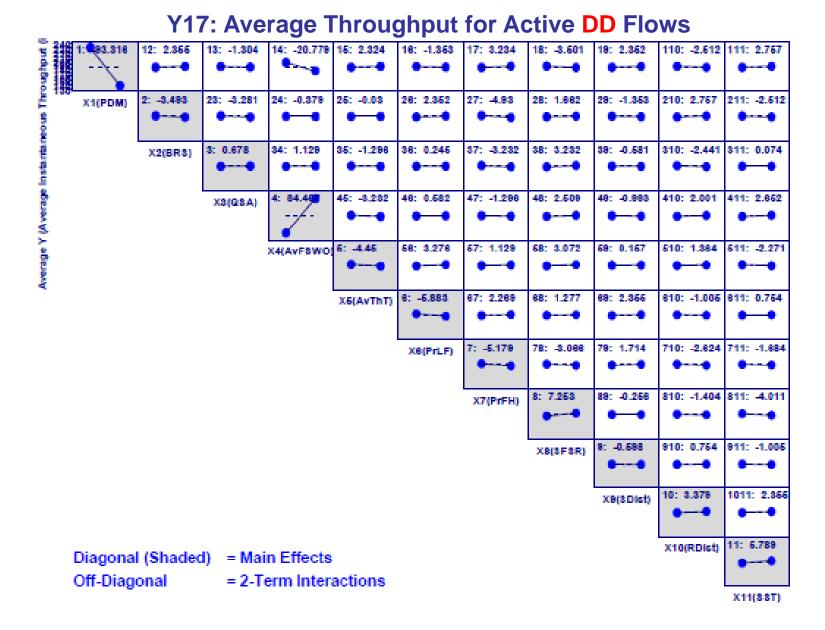


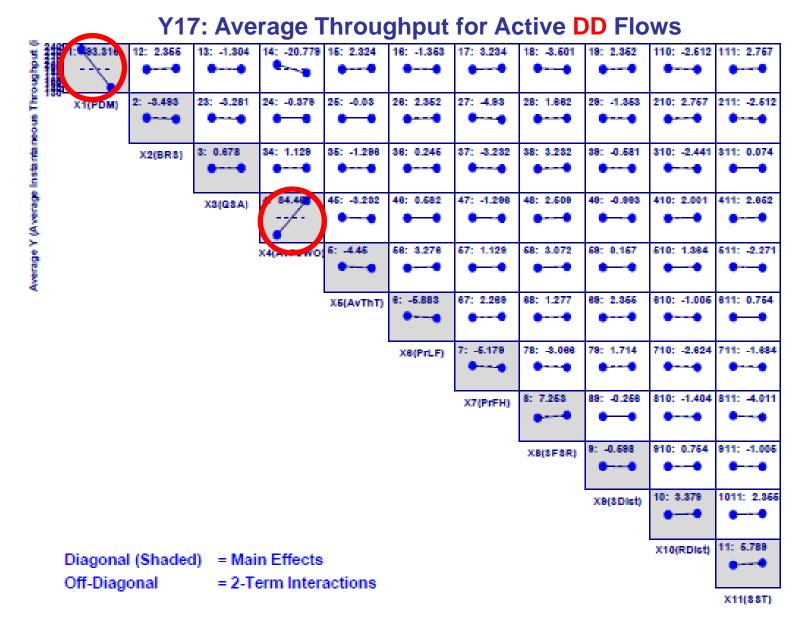

Example 2: Y17 = Ave. TP for Active DD Flows

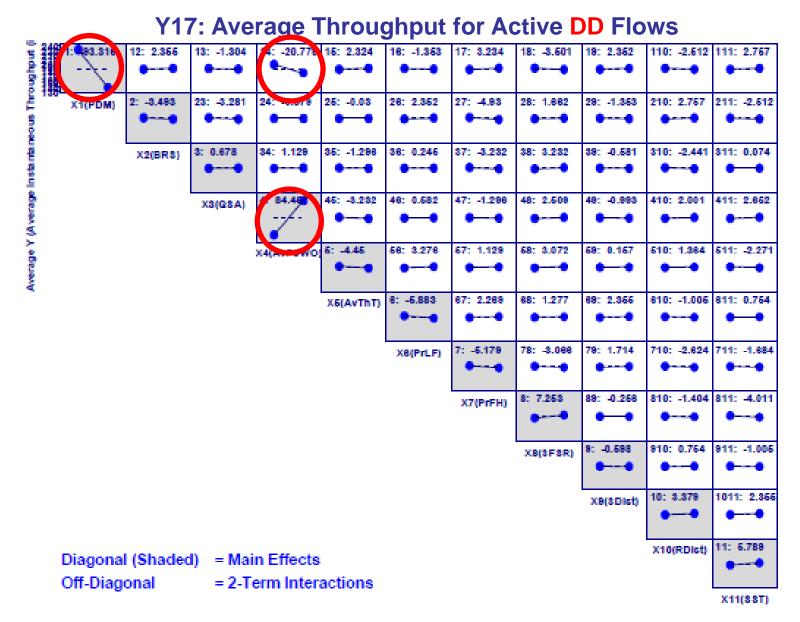

Response	Definition
y1	Active Flows – flows attempting to transfer data
y2	Proportion of potential flows that were active: Active Flows/All Sources
у3	Data packets entering the network per measurement interval
y4	Data packets leaving the network per measurement interval
y5	Loss Rate: y4/(y3+y4)
у6	Flows Completed per measurement interval
у7	Flow-Completion Rate: y6/(y6+y1)
y8	Connection Failures per measurement interval
у9	Connection-Failure Rate: y8/(y8+y1)
y10	Retransmission Rate (ratio)
y11	Congestion Window per Flow (packets)
y12	Window Increases per Flow per measurement interval
y13	Negative Acknowledgments per Flow per measurement interval 🛛 🚽
y14	Timeouts per Flow per measurement interval
y15	Smoothed Round-Trip Time (ms)
y16	Relative queuing delay: y15/(x1x41)

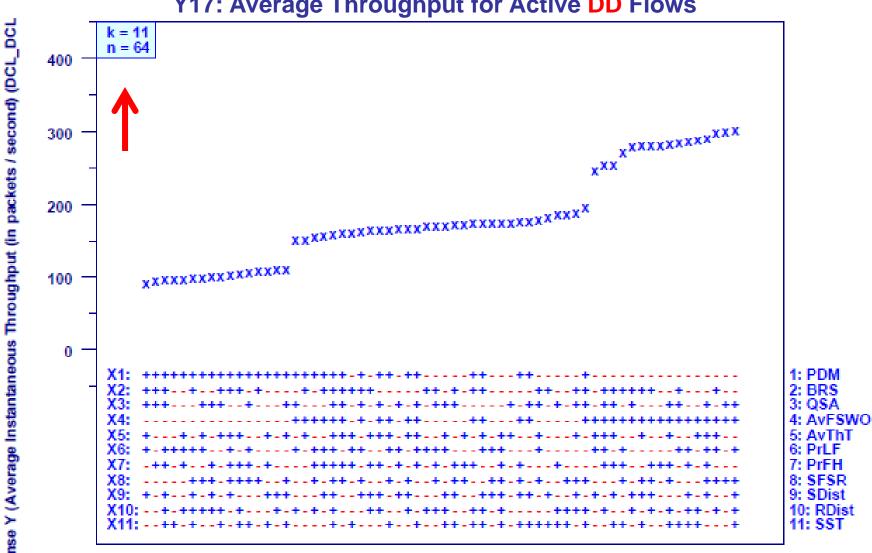

y17	Average Throughput for Active DD Flows	>
y18	Average Throughput for Active DF Flows	
y19	Average Throughput for Active DN Flows	
y20	Average Throughput for Active FF Flows	(K-
y21	Average Throughput for Active FN Flows	
y22	Average Throughput for Active NN Flows	

Y17: Average Throughput for Active DD Flows








Y17: Average Throughput for Active DD Flows

Means: (- - + + - - - + . + +)

Y17: Average Throughput for Active DD Flows

Y17: Average Throughput for Active DD Flows k = 11 n = 64 400 x^{xx}x^{xxxxxxxxx} 300 xxxxxxxxxxxxxxxxxxxxxxxxxx 200 xxxxxxxxxxxxxx 100 + 20 **x1** 0 **x1** X1: X2: X3: 10 10 x2 x2 X4: 9 х3 х3 X5: **x4** 16 4 **x4** X6: X7 x5 9 11 x5 X8 X9: x6 11 x6 X1(10 10 х7 x7 X11:

+

10

11

17

9

8

9

9

11

12

11

-

19

10

9

3

11

12

11

9

11

8

9

x8

x9

x10

x11

Throughput (in packets / second) (DCL_DCL

-

11

9

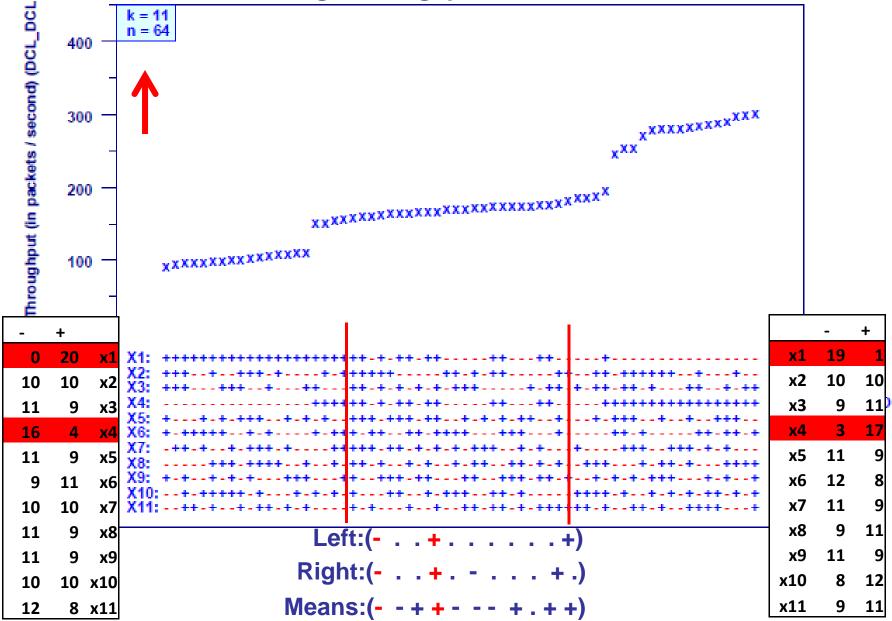
11

11

10

12

9


9

10 x10 8 x11

x8

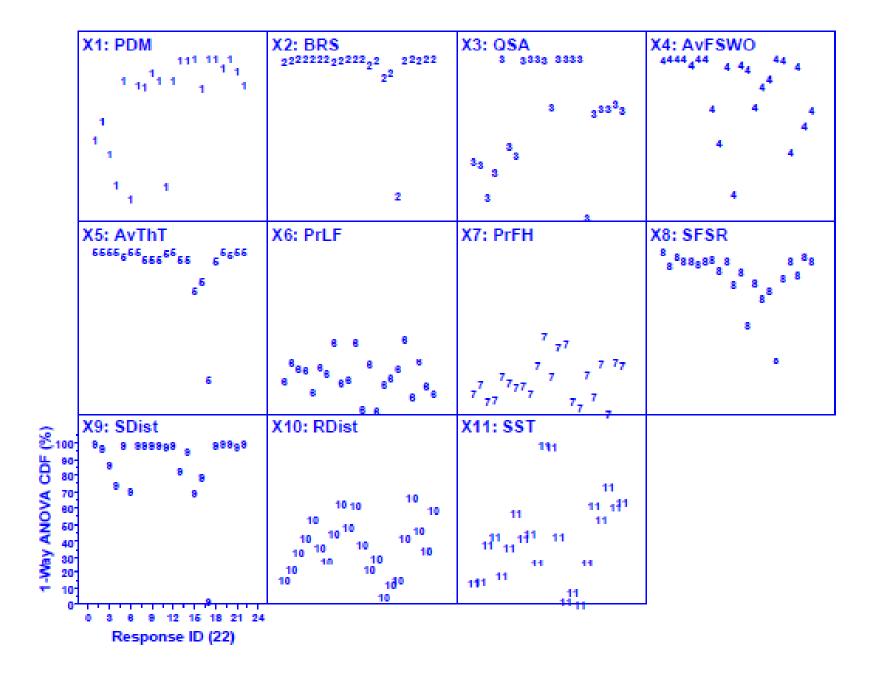
x9

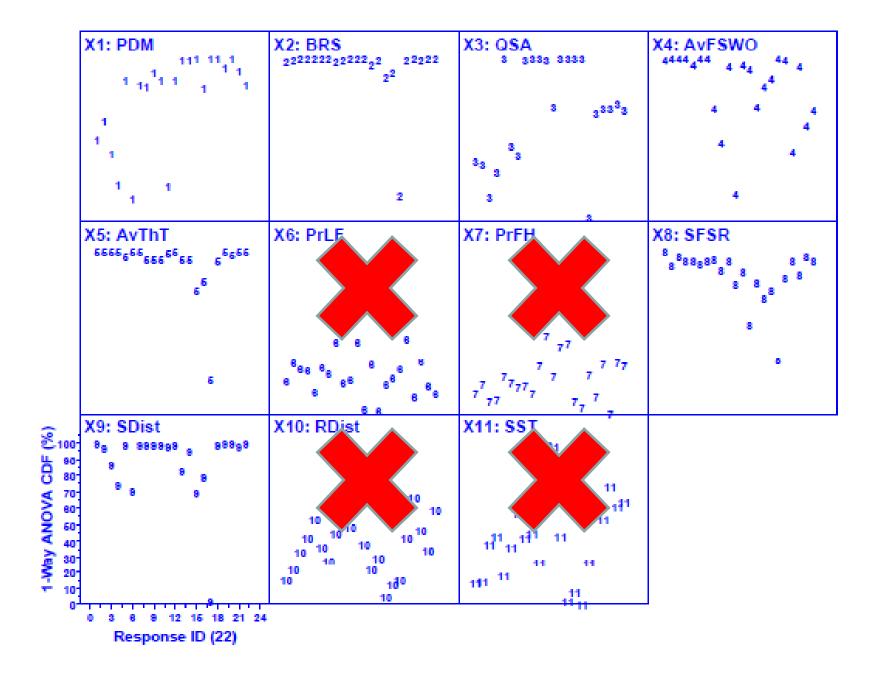
Y17: Average Throughput for Active DD Flows

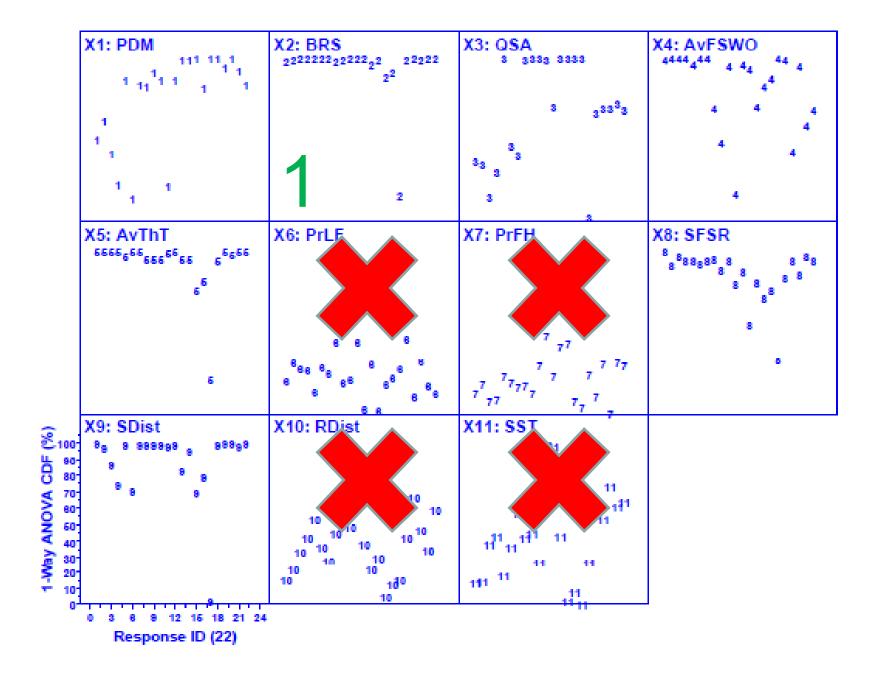
Robustness Assessment: Stacked Main Effects Plot

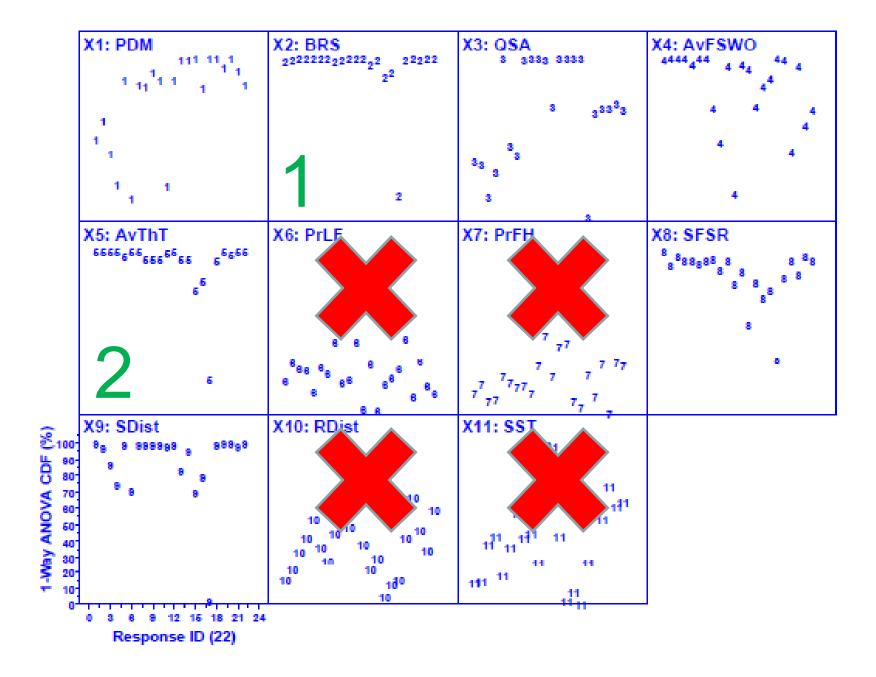
	X1 PDM	X2 BRS	X3 QSA	X4 AvFSWO	X5 AvThT	X6 PrLF	X7 PrFH	X8 SFSR	X9 SDist	X10 RDist	X11 SST
Y1	_	/	_	/	<			/	/		
Y2		_		/	~			_	_		
Y3				/				/	_		
¥4		\sim		/	\sim			/	_		-
Y5	<u> </u>	/	\sim	/			_	/	/		
Y6		\sim		\sim	\sim			_			
¥7	_		_	\sim	/			<u> </u>	_		-
Y8		/	\sim	_				/	/	_	-
Y9	_	/	\sim					/	/	_	-
Y10	_	/	_	_	<u> </u>			_	/		
Y11		\sim	/		/		_	<u> </u>		_	/
Y12	<u> </u>	\sim	_		/			<u> </u>			/
Y13	_	_	\sim	_	_				_		
Y14	_	_	_		_			_	_		
Y15	/	_	/	_	_			_	_		
Y16		_	/		_						_
Y17				/							
Y18	\sim	\sim	_	/	/			<u> </u>	/		-
Y19	<u> </u>	\sim	_		/			<u> </u>		_	-
Y20	\sim	\sim	_	/	/			<u> </u>	/		-
Y21	_	\sim	-		/			<u> </u>			-
Y22	~	\sim	-	_	/			~	\sim		

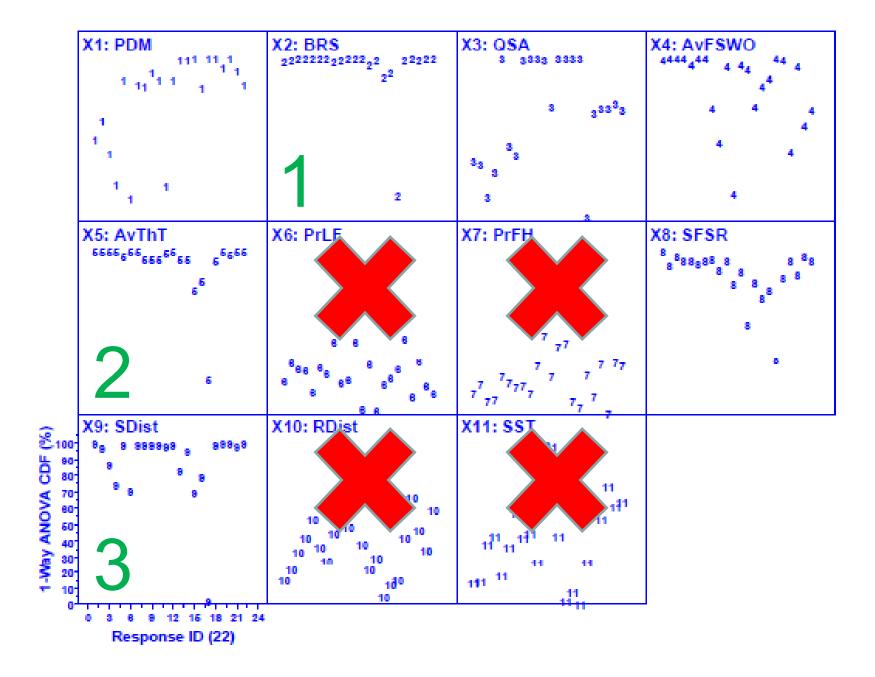
Robustness Assessment: (1-Way) ANOVA CDF Values (unordered)


	X1	X2	X3	X4	X5	X6	X7	X8	X9	X10	X11
	PDM	BRS	QSA	AvFSW	AVThT	PrLF	PrFH	SFSR	SDist	RDist	SST
Y1	51.16	98.66	37.27	99.83	100	20.6	13.47	99.93	99.98	15.78	14.39
Y2	62.1	99.84	35.47	99.99	100	31.51	18.87	91.42	96.85	22.06	14.69
Y3	42.48	100	15.96	99.97	100	28.33	7.84	97.49	87.44	33.63	38.25
Y4	23.87	100	30.78	99.88	99.99	27.37	9.48	94.56	74.98	42.21	42.83
Y5	86.91	99.99	99.98	96.28	97.66	13.56	23.51	94.83	98.87	54.01	18.52
Y6	14.99	100	47.49	99.99	99.99	29.52	19.27	92.44	71.04	36.43	36.74
Y7	84.55	99.99	41.43	100	<mark>99.82</mark>	24.79	16.99	94.31	99.37	27.9	57.22
Y8	83.44	98.98	99.06	70.34	95.79	45.54	18.13	95.79	99.25	44.83	42.18
Y9	91.8 4	99.57	99.89	49.3	95.69	20.05	13.19	88.83	99.21	62.88	45.21
Y10	86.67	99.97	99.97	95.67	95.87	21.7	29.64	94.35	99.21	48.61	26.76
Y11	22.45	99.94	99.09	17.5	98.91	45.27	48.81	80.41	98.37	62.46	98.93
Y12	87.12	99.99	71.44	96.85	99.91	3.49	23.44	87.87	99.4	38.95	98.02
Y13	99.47	96.76	100	93.93	95.28	31.3	42.08	55.53	83.6	22.11	43.18
Y14	99.68	99.32	100	70.85	95.1	2.42	44.48	81.68	95.31	30.49	2.75
Y15	100	88.52	100	83.64	76	18.17	8.34	71.77	69.49	5.28	8.59
Y16	81.89	91.56	100	87.83	82.66	22.07	4.41	76.31	79.34	13.34	0.82
Y17	100	16.78	3.28	100	21.28	27.89	24.66	34.01	2.89	16.24	27.46
Y18	100	99.09	67.06	99.45	94.98	47.51	11.33	84.16	99.41	42.36	62.51
Y19	95.05	100	70.38	43.16	99.94	10.71	30.51	95.02	99.94	66.59	53.33
Y20	99.98	99.71	70.05	95.48	98.11	33.15	0.96	85.65	99.85	47.06	73.11
Y21	93	100	73.21	59.53	99.98	17.79	32.17	97.03	98.34	34.56	61.62
Y22	83.79	100	69.13	69.1	99.96	12.49	30.32	95.01	99.95	59.86	63.94
Sum	7	19	9	13	18	0	0	11	15	0	2


56


Robustness Assessment: (1-Way) ANOVA CDF Values (ordered)


	X2	X5	X9	X4	X8	X3	X1	X11	X10	X7	X6
	BRS	AVThT	SDist	AvFSW	SFSR	QSA	PDM	SST	RDist	PrFH	PrLF
Y1	98.66	100	99.98	99.83	99.93	37.27	51.16	14.39	15.78	13.47	20.6
Y2	99.84	100	96.85	99.99	91.42	35.47	62.1	14.69	22.06	18.87	31.51
Y3	100	100	87.44	99.97	97.49	15.96	42.48	38.25	33.63	7.84	28.33
Y4	100	99.99	74.98	99.88	94.56	30.78	23.87	42.83	42.21	9.48	27.37
Y5	99.99	97.66	98.87	96.28	94.83	99.98	86.91	18.52	54.01	23.51	13.56
Y6	100	99.99	71.04	99.99	92.44	47.49	14.99	36.74	36.43	19.27	29.52
Y7	99.99	99.82	99.37	100	94.31	41.43	84.55	57.22	27.9	16.99	24.79
Y8	98.98	95.79	99.25	70.34	95.79	99.06	83.44	42.18	44.83	18.13	45.54
Y9	99.57	95.69	99.21	49.3	88.83	99.89	91.84	45.21	62.88	13.19	20.05
Y10	99.97	95.87	99.21	95.67	94.35	99.97	86.67	26.76	48.61	29.64	21.7
Y11	99.94	98.91	98.37	17.5	80.41	99.09	22.45	98.93	62.46	48.81	45.27
Y12	99.99	99.91	99.4	96.85	87.87	71.44	87.12	98.02	38.95	23.44	3.49
Y13	96.76	95.28	83.6	93.93	55.53	100	99.47	43.18	22.11	42.08	31.3
Y14	99.32	95.1	95.31	70.85	81.68	100	99.68	2.75	30.49	44.48	2.42
Y15	88.52	76	69.49	83.64	71.77	100	100	8.59	5.28	8.34	18.17
Y16	91.56	82.66	79.34	87.83	76.31	100	81.89	0.82	13.34	4.41	22.07
Y17	16.78	21.28	2.89	100	34.01	3.28	100	27.46	16.24	24.66	27.89
Y18	99.09	94.98	99.41	99.45	84.16	67.06	100	62.51	42.36	11.33	47.51
Y19	100	99.94	99.94	43.16	95.02	70.38	95.05	53.33	66.59	30.51	10.71
Y20	99.71	98.11	99.85	95.48	85.65	70.05	99.98	73.11	47.06	0.96	33.15
Y21	100	99.98	98.34	59.53	97.03	73.21	93	61.62	34.56	32.17	17.79
Y22	100	99.96	99.95	69.1	95.01	69.13	83.79	63.94	59.86	30.32	12.49
Sum	19	18	15	13	11	9	7	2	0	0	0


57

Robust Sensitivity Analysis Ranking (Criterion 1)

Major Factors (ordered) influencing MesoNet behavior: X2: Network Speed X5: Think Time X9: Distribution of Sources X4: File Size X8: Number of Sources

Minor Factor influencing MesoNet behavior:

X3: Buffer Size – small buffer sizes reduces delay variability & large buffer size has greater effect under high network speed

X1: Propagation Delay

Non-Factors

X11: Initial TCP Slow-Start Threshold

X10: Distribution of Receivers

X7: Probability a Source or Receiver is on a Fast Host

X6: Probability a User Opts to Transfer a Larger File

Robust Sensitivity Analysis Ranking (Criterion 2)

Major Factors (ordered) influencing MesoNet behavior:

- X2: Network Speed
- X4: File Size
- X5: Think Time
- X8: Number of Sources
- X1: Propagation Delay
- **X9: Distribution of Sources**

Minor Factor influencing MesoNet behavior:

X3: Buffer Size – small buffer sizes reduces delay variability & large buffer size has greater effect under high network speed

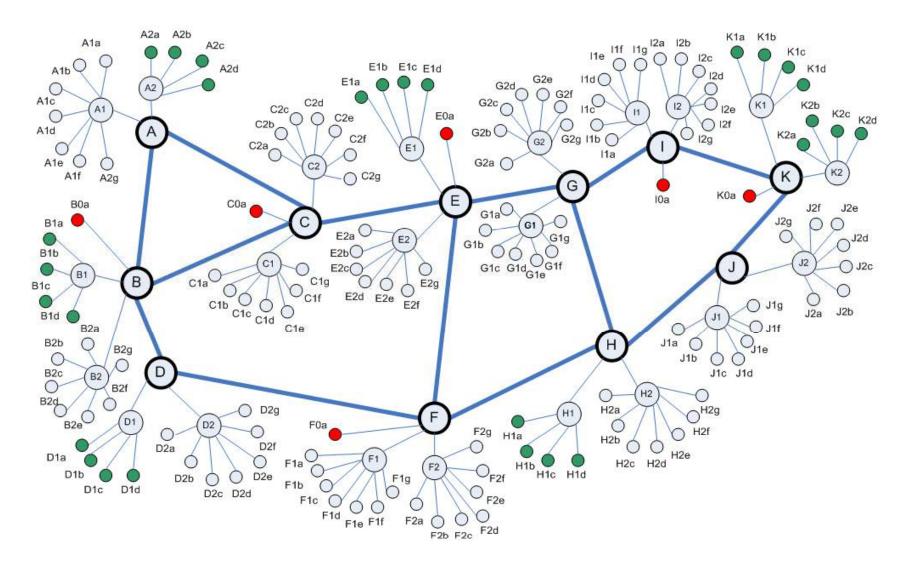
Non-Factors

X11: Initial TCP Slow-Start Threshold

X10: Distribution of Receivers

- X7: Probability a Source or Receiver is on a Fast Host
- X6: Probability a User Opts to Transfer a Larger File

Robust Sensitivity Analysis Ranking (Criterion 2)


Category	Factor	Code	Definition	Level 1: -	Level 2: +		
	x1	PDM	Propagation delay	1	2		
Networ	x2	BRS (s)	Network speed	800 p/ms	400 p/ms		
Factors	x3	QSA	Buffer sizing	RTTxC/SQRT(n)	RTTxC		
	x4	AvFSWO	Average file size for web pages	50 packets	100 packets		
User Factors	x5	AvThT	Average think time between web clicks	2000 ms	5000 ms		
	x6	PrLF	Probability a user opts to transfer a larger file	0.02	0.01		
	x7	PrFH	Probability a source or receiver is on a fast host	0.4	0.2		
Source &	x8	SFSR	Scaling factor for number of sources & receivers	2	3		
Factors	x9	SDist	Distribution of sources	WEB	P2P		
	x10	RDist	Distribution of receivers	WEB	P2P		
Protocol Factors	x11	SST	Initial TCP slow-start threshold	43 packets	1.07x10 ⁹ packets		

Dimension Reduction Analysis

We Applied Two Different Techniques

Abilene Network (3-Tier MesoNet Topology)

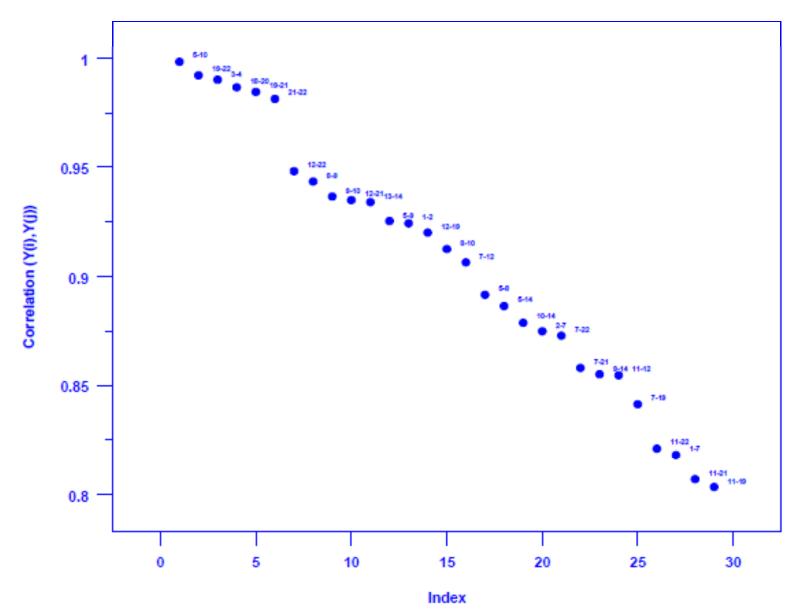
22 Responses: 16 Macro + 6 Throughput

Response	Definition
y1	Active Flows – flows attempting to transfer data
y2	Proportion of potential flows that were active: Active Flows/All Sources
у3	Data packets entering the network per measurement interval
y4	Data packets leaving the network per measurement interval
y5	Loss Rate: y4/(y3+y4)
у6	Flows Completed per measurement interval
у7	Flow-Completion Rate: y6/(y6+y1)
у8	Connection Failures per measurement interval
у9	Connection-Failure Rate: y8/(y8+y1)
y10	Retransmission Rate (ratio)
y11	Congestion Window per Flow (packets)
y12	Window Increases per Flow per measurement interval
y13	Negative Acknowledgments per Flow per measurement interval 🛛 🚽
y14	Timeouts per Flow per measurement interval
y15	Smoothed Round-Trip Time (ms)
y16	Relative queuing delay: y15/(x1x41)

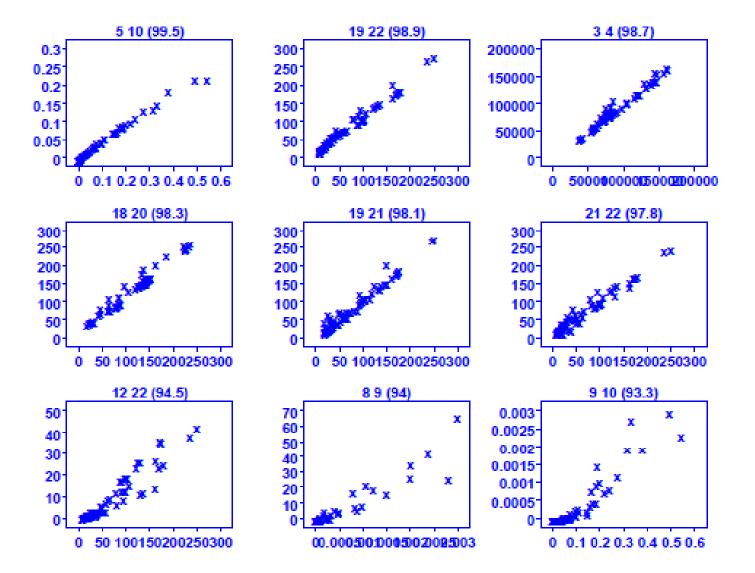
y17	Average Throughput for Active DD Flows	
y18	Average Throughput for Active DF Flows	
y19	Average Throughput for Active DN Flows	
y20	Average Throughput for Active FF Flows	(k=11,n=64, m=22)
y21	Average Throughput for Active FN Flows	69
y22	Average Throughput for Active NN Flows	

Data: 64 x 22 Multivariate Data Set Resulting from a 2¹¹⁻⁵ Orthogonal Fractional Factorial Experiment Design

Run	y1	y2	 y21	y22
1	4680.619	0.168126	 92.034	89.785
2	6654.512	0.239371	 72.596	57.738
3	9431.405	0.339259	 29.569	13.963
4	11565.81	0.415439	 23.427	19.882
61	10319.55	0.247471	 87.969	41.573
62	1738.469	0.093668	 159.298	161.602
63	1783.509	0.096094	 148.395	161.36
64	21467.6	0.514811	 26.159	9.981


Method 1: Correlation Analysis & Clustering

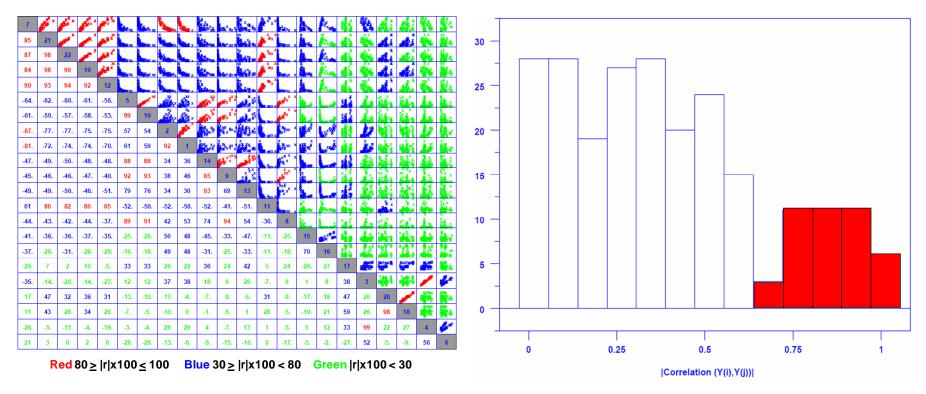
03/04/08


Abilene Network PCA Analysis (Standardized Responses) (Kevin Mills) Exp. 3 (2to(11-5)) Q. Are Any Pairs of the Raw Variables Correlated? Scatter Plot Matrix of Raw Responses

1	×.	1	jë	ġ,	i	-	<u>3</u>	2.02	ike *		L.,	àr.	19.4	1 de la	فسما	1Å å	٩Ì.	١.	٩Ì	١.	ι.
92	2	Ľ	V	14	la .,	-	ð= ×	1. n.	144 A			(t) é	10.3	Mai	M	13	1	ι.	h h	Ι.	L.,
38	37	3	/	9 2014	6	24	e da x	1.1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	e."		14	125	1.5	1	111	4	1 1	41	a i	a i
29	29	99	4	9 10.11	4	3	ę Mar X	1. 3 10	a and a	d'	Ni		12	1	P_{a}^{k}	114	41	:	44	1	a i
61	57	12	-3.	5	h.,	1	¢**	e ^{tt}	1		L.,	al a	đ,	4		14	Ű,	١.	Ń,	Ι.	L.
- 6 .	-13.	52	56	-26.	6	Ň	a Bara	1	1 13.	ih.					í.	ij.	ů,	.	aii.	Č.	i.
-81.	-87.	-35.	-26.	-64.	21	7	Sea x	14×5		1. a	1 × 1		S.Ca.sa	h-,	1	11s	di.	Þ	di.	F	F
53	42	9	-5.	89	-17.	-44.	8	a fi				12. 13.	A and				έc,	Ĺ.,	2	Ĺ.,	ί.
46	38	8	-1.	92	-15.	-45.	94	9	1 A 1			14	de la	is.			ii.	L.,		L.,	L.,
59	54	12	4	99	-26.	-61.	91	93	10			al a	de s	4		14	ίi,	L.,	14-1	ί.	
-50.	-52.	Ч.	1	-52.	0	61	-36.	-41.	-50.	11	1		z	i.	1		1		2.	1	1×.
-70.	-75.	-27.	-19.	-56.	6	90	-37.	-40.	-53.	85	12	1. mar	a.	1	h_	d i	d,	1	A.	1	J'
30	34	26	13	79	-10.	-49.	54	ອ	76	-51.	-51.	13	A.		6	14		k.,		Ε.	A.,
36	34	18	4	88	-8.	-47.	74	85	88	-52.	-48.	93	14		-	1		à.,	44	λ.	A.,
48	50	1	5	-25.	-5.	-41.	-25.	-33.	-26.	-11.	-35.	-47.	-45.	15		ų,		.	ě.	. .	.
48	49	8	12	-16.	-2.	-37.	-18.	-25.	-18.	-11.	-29.	-33.	-31.	70	16	07	Λ^*	Даг.	T_{i}	δ.,	
22	26	38	33	33	-27 .	-25.	24	24	33	5	-5.	42	36	-26 .	27	17	^{gal} ya	÷.,	10 A 1	1	11
0	-10.	26	27	-7,	-8.	11	-5.	-5.	-5.	28	26	1	-1.	-19.	21	59	18	"	1	*	į,
-74.	-75.	-14.	4	-61.	2	84	-44.	-47.	-58.	80	92	-46.	-48.	-37.	-26.	10	34	19	d,	1	1
4	-17.	20	22	-13.	-5.	17	-9.	-8.	-10.	31	31	-5.	ч.	-17.	18	47	98	36	20	٣	* *
-72.	-11.	-14,	-5.	-62.	3	85	-43.	46.	-59.	80	93	-49.	-49.	-36.	-26.	7	43	98	47	21	1
-74.	-11.	-20 .	-11.	-60.	0	87	-42.	-46.	-57.	82	94	-50.	-50.	-36.	-31.	2	28	99	32	98	22

Sorted Correlations

Sorted Correlations

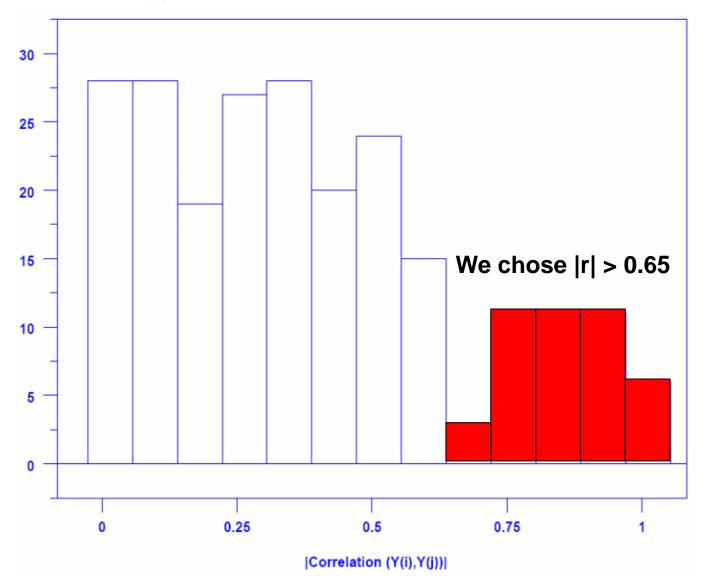


74

7	¢.	a the second sec	de."	* **	Alterna	Marina			· A	Sax xx3		₹ ^X x	žižx _a v		k.	ĸ		A i			
85	21		1	1. × ×			X No. 1	X X		X XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	an A Xa	****	a Mata y	×.	Разна	4		4		*	.
87	98	22	_ *	pet .					XX Alternation			* ^{\$} **		Å.,	Å.,	đÅ.	di.				Ма
84	98	99	19	ja ×	The second se	x Marina xx	× ×	×				* **	Markax x	Å.,	È.	4	÷.	4			.
90	93	94	92	12				ž.	Č.		X.X.Y. RA) ^{***}		Å.,	k_	d,	×.	Å.		×.	Ú.
-64.	-62.	-60.	-61.	-56.	5	**	, Max	×.	X	XXXX			*** ×				4			4	1. x
-61.	-59.	-57.	-58.	-53.	99	10	Å	Å.	1 the state	****	a).*	L	y x x				4			4	<u>к</u> .
-87.	-77.	-77.	-75.	-75.	57	54	2	¢.	1 00	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	ÂΩ4		a a a a a a a a a a a a a a a a a a a	V	1	Ũ	12	Ϋ́)		Į,	1
-81.	-72.	-74.	-74.	-70.	61	59	92	1	Alexandrication of the second s	×××××	Å.	×	× Xxx ×	X	Ļ	Ň.	Å	ŵ	цİ.	Ĵĕ	Ka
-47.	-49.	-50.	-48.	-48.	88	88	34	36	14	*****	a filler		××××××××××××××××××××××××××××××××××××××				1	14	×4		×.
-45.	-46.	-46.	-47.	-40.	92	93	38	46	85	9	x ^x x x¥, x	<u> </u>	y ^{xxx}	X			Ĩ.	xx x xx x	xx xx xx x x	Î.	XX X
-49.	-49.	-50.	-46.	-51.	79	76	34	30	93	69	13		xx# xx x x		L.,						
61	80	82	80	85	-52.	-50.	-52.	-50.	-52.	-41.	-51.	11		È.	Í.	Å.	Á.	ХŶх х		Á.	÷.
-44.	-43.	-42.	-44.	-37.	89	91	42	53	74	94	54	-36.	8	х Хх Хх	Î.	ЗŻ	Ĵ.	x ^x x ^x	хх,	Ĵ.	х Ж.х
-41.	-36.	-36.	-37.	-35.	-25.	-26.	50	48	-45.	-33.	-47.	-11.	-25.	15		41	4			4	
-37.	-26.	-31.	-26.	-29.	-16.	-18.	49	48	-31.	-25.	-33.	-11.	-18.	70	16		4		14		
-25.	7	2	10	-5.	33	33	26	22	36	24	42	5	24	-26.	27	17	**	* *	*** *		* *
-35.	-14.	-20.	-14.	-27.	12	12	37	38	18	8	26	-7.	9	1	8	38	3	4	4 4	/	¢*
17	47	32	36	31	-13.	-10.	-17.	-4.	-7,	-9.	-5.	31	-9.	-17.	18	47	20	20	/		* *
11	43	28	34	26	-7,	-5.	-10.	0	-1.	-5,	1	28	-5.	-19.	21	59	26	98	18		** *
-26.	-5.	-11.	-4.	-19.	-3.	-4.	29	29	4	-7.	13	1	-5.	5	12	33	99	22	27	4	* *
21	3	0	2	6	-26.	-26.	-13.	-6.	-9.	-15.	-10.	0	-17.	-5.	-2.	-27.	52	-5.	-9.	56	6

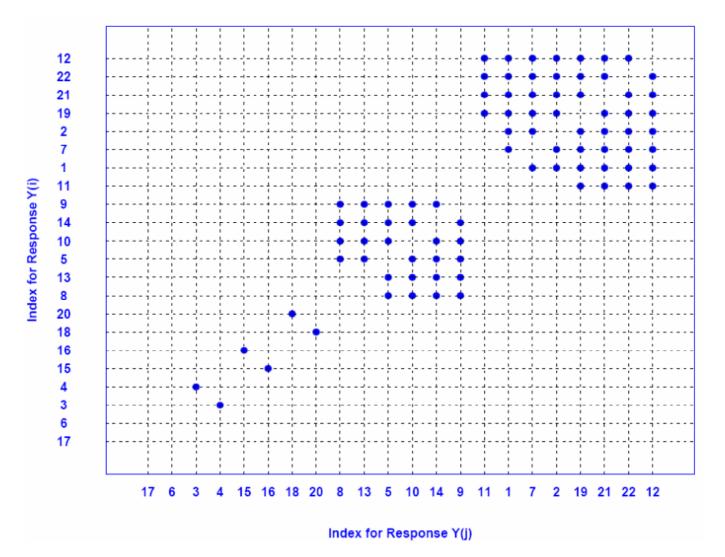
Matrix of Pair-wise Scatter Plots & Correlation Coefficients (Ordered)

Red $80 \ge |r|x100 \le 100$ **Blue** $30 \ge |r|x100 < 80$ **Green** |r|x100 < 30

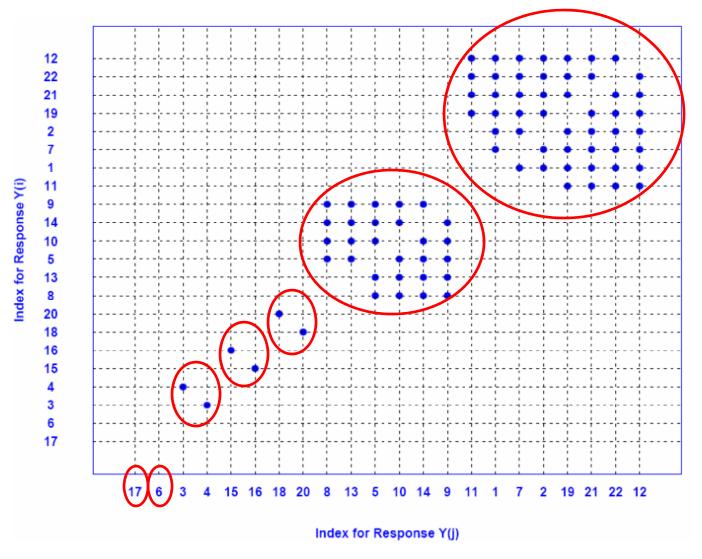


(a) Pair-wise Correlation Matrix

(b) Histogram: bins where |r| > 0.65 highlighted in red


Frequency Distribution of Absolute Value of Correlation Coefficients for All Response Pairs

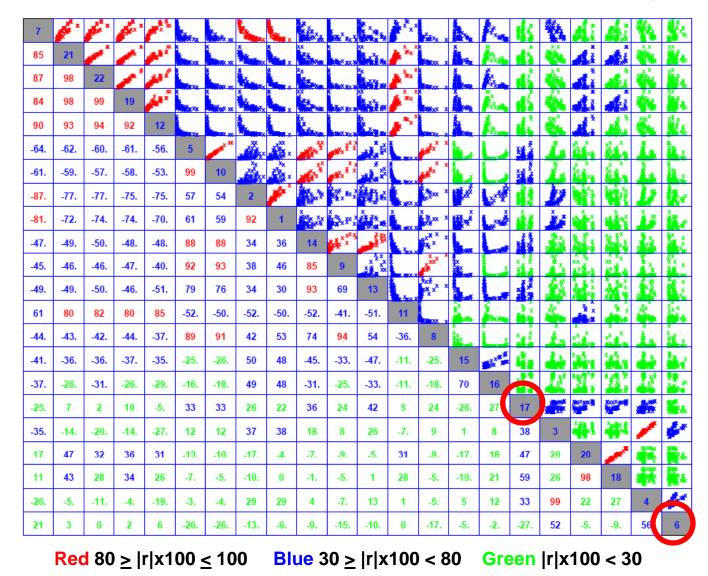
Select a threshold for |r| such that correlations above that threshold will be further considered



77

Response Index-Index Plot where $|r_{i,j}| > 0.65$ Clustered into Mutual Correlations

Response Index-Index Plot where $|r_{i,j}| > 0.65$ Clustered into Mutual Correlations

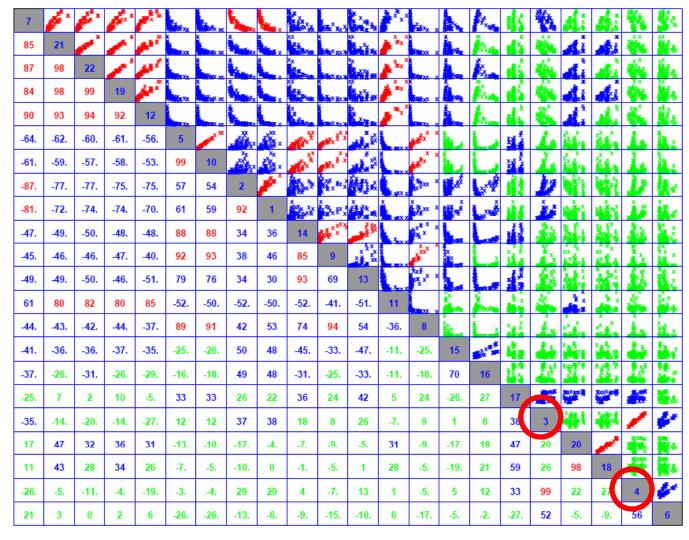

Plot suggests *MesoNet* exhibits 7 distinct behaviors

22 Responses: 16 Macro + 6 Throughput

Response	Definition							
y1	Active Flows – flows attempting to transfer data							
y2 Proportion of potential flows that were active: Active Flows/All								
у3	Data packets entering the network per measurement interval							
y4	Data packets leaving the network per measurement interval							
y5	Loss Rate: y4/(y3+y4)							
v 6	Flows Completed per measurement interval							
у7	Flow-Completion Rate: y6/(y6+y1)							
y8	Connection Failures per measurement interval							
у9	Connection-Failure Rate: y8/(y8+y1)							
y10	Retransmission Rate (ratio)							
y11	Congestion Window per Flow (packets)							
y12	Window Increases per Flow per measurement interval							
y13	Negative Acknowledgments per Flow per measurement interval							
y14	Timeouts per Flow per measurement interval							
y15	Smoothed Round-Trip Time (ms)							
y16	Relative queuing delay: y15/(x1x41)							

	y17	Average Throughput for Active DD Flows	
	y18	Average Througnput for Active DF Flows	
	y19	Average Throughput for Active DN Flows	
	y20	Average Throughput for Active FF Flows	(k=11,n=64,m=22)
Ī	y21	Average Throughput for Active FN Flows	80
	y22	Average Throughput for Active NN Flows	

Matrix of Pair-wise Scatter Plots & Correlation Coefficients (Ordered)

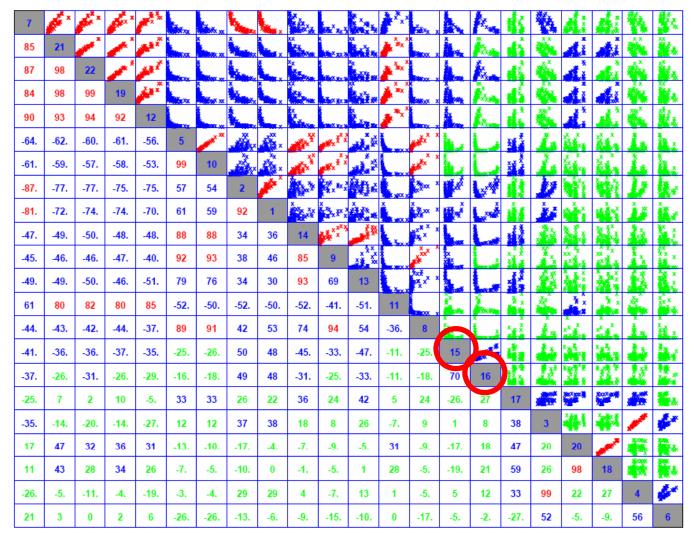


22 Responses: 16 Macro + 6 Throughput

Response	Definition
y1	Active Flows – flows attempting to transfer data
y2	Proportion of potential flows that were active: Active Flows/All Sources
v3	Data packets entering the network per measurement interval
y4	Data packets leaving the network per measurement interval
y5	Loss Rate: y4/(y3+y4)
y6	Flows Completed per measurement interval
у7	Flow-Completion Rate: y6/(y6+y1)
y8	Connection Failures per measurement interval
у9	Connection-Failure Rate: y8/(y8+y1)
y10	Retransmission Rate (ratio)
y11	Congestion Window per Flow (packets)
y12	Window Increases per Flow per measurement interval
y13	Negative Acknowledgments per Flow per measurement interval
y14	Timeouts per Flow per measurement interval
y15	Smoothed Round-Trip Time (ms)
y16	Relative queuing delay: y15/(x1x41)

	Average Throughput for Active DD Flows	y17
	Average Throughput for Active DF Flows	y18
	Average Throughput for Active DN Flows	y19
(k=11,n=64,m=22)	Average Throughput for Active FF Flows	y20
82	Average Throughput for Active FN Flows	y21
02	Average Throughput for Active NN Flows	y22

Matrix of Pair-wise Scatter Plots & Correlation Coefficients (Ordered)



Red $80 \ge |r|x100 \le 100$ **Blue** $30 \ge |r|x100 < 80$ **Green** |r|x100 < 30

22 Responses: 16 Macro + 6 Throughput

Definition						
Active Flows – flows attempting to transfer data						
y2Proportion of potential flows that were active: Activy3Data packets entering the network per measurement						
Loss Rate: y4/(y3+y4)						
Flows Completed per measurement interval						
Flow-Completion Rate: y6/(y6+y1)						
Connection Failures per measurement interval						
Connection-Failure Rate: y8/(y8+y1)						
Retransmission Rate (ratio)						
Congestion Window per Flow (packets)						
Window Increases per Flow per measurement inte	erval					
Negative Acknowledgments per Flow per measure	ement interval 🛛 🚽					
Timeouts per Flew per measurement interval						
Smoothed Round-Trip Time (ms)						
Relative queuing delay: y15/(x1x41)						
Average Three should fam A ative DD Flaves						
y19 Average Throughput for Active DN Flows						
Average Throughput for Active FF Flows	(k=11,n=64,m=22)					
Average Throughput for Active FN Flows						
Average Throughput for Active NN Flows						
	Active Flows – flows attempting to transfer dataProportion of potential flows that were active: ActData packets entering the network per measurementData packets leaving the network per measurementLoss Rate: y4/(y3+y4)Flows Completed per measurement intervalFlow-Completion Rate: y6/(y6+y1)Connection Failures per measurement intervalConnection-Failure Rate: y8/(y8+y1)Retransmission Rate (ratio)Congestion Window per Flow (packets)Window Increases per Flow per measurement intervalSmoothed Round-Trip Time (ms)Relative queuing delay: y15/(x1x41)Average Throughput for Active DF FlowsAverage Throughput for Active FF Flows					

Matrix of Pair-wise Scatter Plots & Correlation Coefficients (Ordered)

Red $80 \ge |r|x100 \le 100$ **Blue** $30 \ge |r|x100 < 80$ **Green** |r|x100 < 30

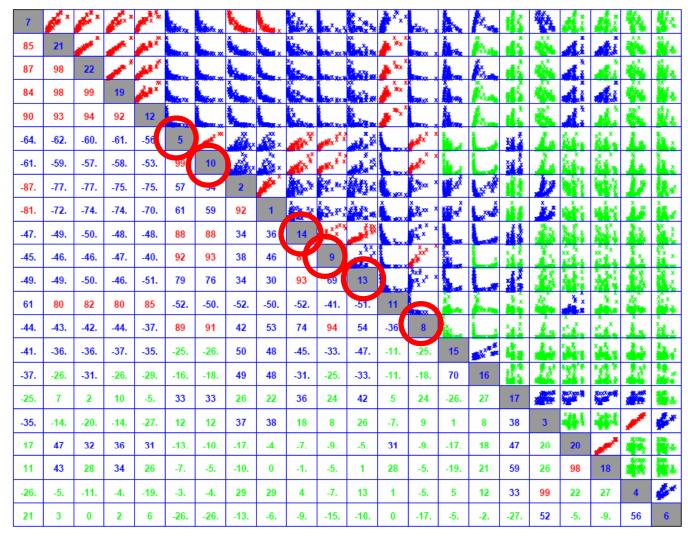
22 Responses: 16 Macro + 6 Throughput

Response	Definition
y1	Active Flows – flows attempting to transfer data
y2	Proportion of potential flows that were active: Active Flows/All Sources
у3	Data packets entering the network per measurement interval
y4	Data packets leaving the network per measurement interval
y5	Loss Rate: y4/(y3+y4)
у6	Flows Completed per measurement interval
y7	Flow-Completion Rate: y6/(y6+y1)
y8	Connection Failures per measurement interval
y9	Connection-Failure Rate: y8/(y8+y1)
y10	Retransmission Rate (ratio)
y11	Congestion Window per Flow (packets)
y12	Window Increases per Flow per measurement interval
y13	Negative Acknowledgments per Flow per measurement interval
y14	Timeouts per Flow per measurement interval
y15	Smoothed Round-Trip Time (ms)
y16	Relative queuing delay: y15/(x1x41)

y17	Average Throughput for Active DD Flows	
v18	Average Throughput for Active DF Flows	
y19	Average Throughput for Active DN Flows	
y20	Average Throughput for Active FF Flows	(k=11,n=64,m=22)
y21	Average Inrougnput for Active FN Flows	86
y22	Average Throughput for Active NN Flows	

Matrix of Pair-wise Scatter Plots & Correlation Coefficients (Ordered)

7	¢.	f.	de "	× ×	Mary	Military		x	a la constante da la constante	a x x x x x		X xX	žžx x		K.,	ĸ	-	A i	4		
85	21	*	ľ	1. × ×		x Max x		X XXXXX		x X xx X	Maria	*x*	X XXXX X	X.	Фал	đ	÷.				Ž.
87	98	22	<u>_</u>	Jut .					XX Northern			* [*] **		<u>k</u> _	k.	đÅ.	Č.	A ž		м ^х .	
84	98	99	19	ja x	Max		Š.					× × ×			È.	4	÷.	4		÷.	Ě.
90	93	94	92	12				ž.	X.		X.X.W. AN	•***		Å.	k_	d.×	×.	Å.	,	×.	Ú.
-64.	-62.	-60.	-61.	-56.	5	×**		×.	×¥	a frage			a k x x			-	L	X X	άć,	L	1.
-61.	-59.	-57.	-58.	-53.	99	10	Å.	Å.	A.S.	×××××			× ×	Ι,			1.	X X X X	ž,	1.	1. x
-87.	-77.	-77.	-75.	-75.	57	54	2	* *	14.1	A MAX HA X			xxx ×	W	1	<i>ii</i>	b			D	
-81.	-72.	-74.	-74.	-70.	61	59	92	1	Å.	X XX XX X	åe.	ř.	× Xxx ×	R	Ĺ	ġ,	ž	аÅХ.	а. Х	Ì.	i.
-47.	-49.	-50.	-48.	-48.	88	88	34	36	14	x x x x x x	¥¥		wx ^{x x} x	Ĺ	Ĩ.	42	4	14	Х.ľ	1	XX X XX
-45.	-46.	-46.	-47.	-40.	92	93	38	46	85	9	x * x x * x x * x		xxx *	x	x		×.	xx * x×*	xx *x x* *		27 1 х 1 х 1 х
-49.	-49.	-50.	-46.	-51.	79	76	34	30	93	69	13		xu x xx x x x			4		A A X X			
61	80	82	80	85	-52.	-50.	-52.	-50.	-52.	-41.	-51.	11		2	2	Å.	×.	× ×	Хх Х		Ś.
-44.	-43.	-42.	-44.	-37.	89	91	42	53	74	94	54	-36.	8	X X.v. Yax	X X X	4	ź.	x x ^x x ^x	έx.	i.	X X X X X X
-41.	-36.	-36.	-37.	-35.	-25.	-26.	50	48	-45.	-33.	-47.	-11.	-25.	15	a la caracteria	ċ.	1	X y Ž		14	
-37.	-26.	-31.	-26.	-29.	-16.	-18.	49	48	-31.	-25.	-33.	-11.	-18.	70	16		12		12.	12	
-25.	7	2	10	-5.	33	33	26	22	36	24	42	5	24	-26.	27	17					1
-35.	-14.	-20.	-14.	-27.	12	12	37	38	18	8	26	-7.	9	1	8	38	3	X	44	/	4
17	47	32	36	31	-13.	-10.	-17.	-4.	-7.	-9.	-5.	31	-9.	-17.	18	47	20	20			
11	43	28	34	26	-7.	-5.	-10.	0	-1.	-5.	1	28	-5.	-19.	21	59	26	98	18		
-26.	-5.	-11.	-4.	-19.	-3.	-4.	29	29	4	-7.	13	1	-5.	5	12	33	99	22	7	4	6
21	3	0	2	6	-26.	-26.	-13.	-6.	-9.	-15.	-10.	0	-17.	-5.	-2.	-27.	52	-5.	-9.	56	6

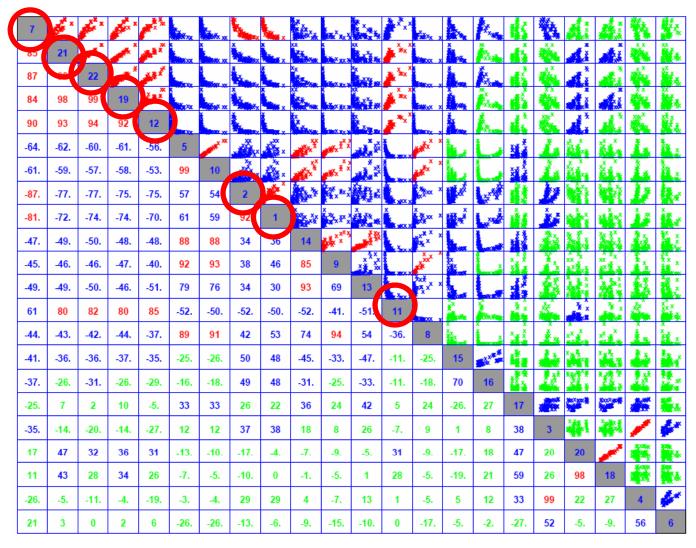

Red $80 \ge |r|x100 \le 100$ **Blue** $30 \ge |r|x100 < 80$ **Green** |r|x100 < 30

22 Responses: 16 Macro + 6 Throughput

	Response	Definition
	y1	Active Flows – flows attempting to transfer data
	y2	Proportion of potential flows that were active: Active Flows/All Sources
	у3	Data packets entering the network per measurement interval
	y4	Data packets leaving the network per measurement interval
<	v5	Loss Rate: y4/(y3+y4)
	у6	Flows Completed per measurement interval
	у7	Flow-Completion Rate: v6/(v6+v1)
<	v8	Connection Failures per measurement interval
<	y9	Connection-Failure Rate: y8/(y8+y1)
<	y10	Retransmission Rate (ratio)
	y11	Congestion Window per Flow (packets)
	y12	Window Increases per Flow per measurement interval
<	y13	Negative Acknowledgments per Flow per measurement interval
<	y14	Timeouts per Flow per measurement interval
	y15	Smoothed Round-Trip Time (ms)
	y16	Relative queuing delay: y15/(x1x41)

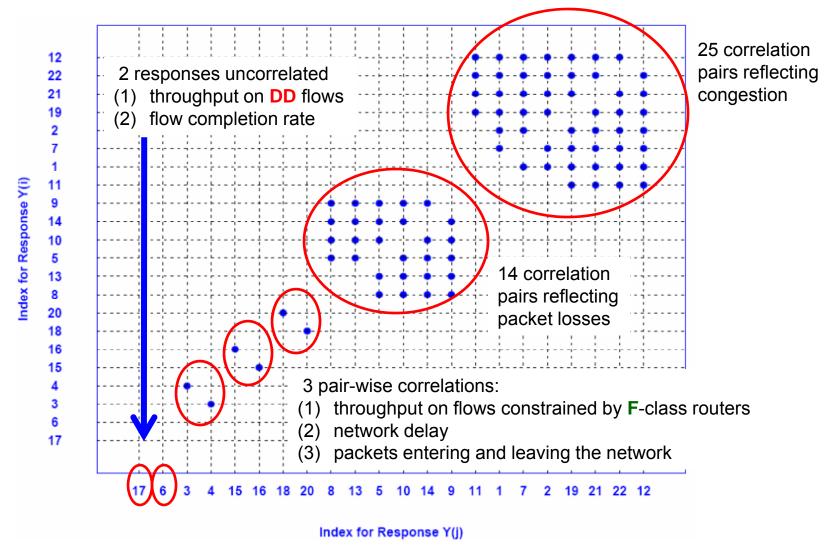
y17	Average Throughput for Active DD Flows	
y18	Average Throughput for Active DF Flows	
y19	Average Throughput for Active DN Flows	
y20	Average Throughput for Active FF Flows	(k=11,n=64,m=22)
y21	Average Throughput for Active FN Flows	88
y22	Average Throughput for Active NN Flows	

Matrix of Pair-wise Scatter Plots & Correlation Coefficients (Ordered)


Red 80 ≥ |r|x100 ≤ 100 **Blue** 30 ≥ |r|x100 < 80 **Green** |r|x100 < 30

22 Responses: 16 Macro + 6 Throughput

Response	Definition
v1	Active Flows – flows attempting to transfer data
yz	Proportion of potential flows that were active: Active Flows/All Sources
у3	Data packets entering the network per measurement interval
y4	Data packets leaving the network per measurement interval
y5	Loss Rate: y4/(y3+y4)
y6	Flows Completed per measurement interval
v7	Flow-Completion Rate: y6/(y6+y1)
y8	Connection Failures per measurement interval
у9	Connection-Failure Rate: y8/(y8+y1)
y10	Retransmission Rate (ratio)
v 11	Congestion Window per Flow (packets)
V12	Window Increases per Flow per measurement Interval
y13	Negative Acknowledgments per Flow per measurement interval
y14	Timeouts per Flow per measurement interval
y15	Smoothed Round-Trip Time (ms)
y16	Relative queuing delay: y15/(x1x41)


	y17	Average Throughput for Active DD Flows	
	y18	Average Throughput for Active DF Flows	
<	v19	Average Throughput for Active DN Flows	
	y20	Average Throughput for Active FF Flows	(k=11,n=64,m=22)
<	y21	Average Throughput for Active FN Flows	90
<	v22	Average Throughput for Active NN Flows	

Matrix of Pair-wise Scatter Plots & Correlation Coefficients (Ordered)

Red 80 ≥ |r|x100 ≤ 100 **Blue** 30 ≥ |r|x100 < 80 **Green** |r|x100 < 30

Summary: Response Index-Index Plot where $|r_{i,j}| > 0.65$ Clustered into Mutual Correlations

Plot suggests MesoNet exhibits 7 distinct behaviors

Summary of Correlation Results

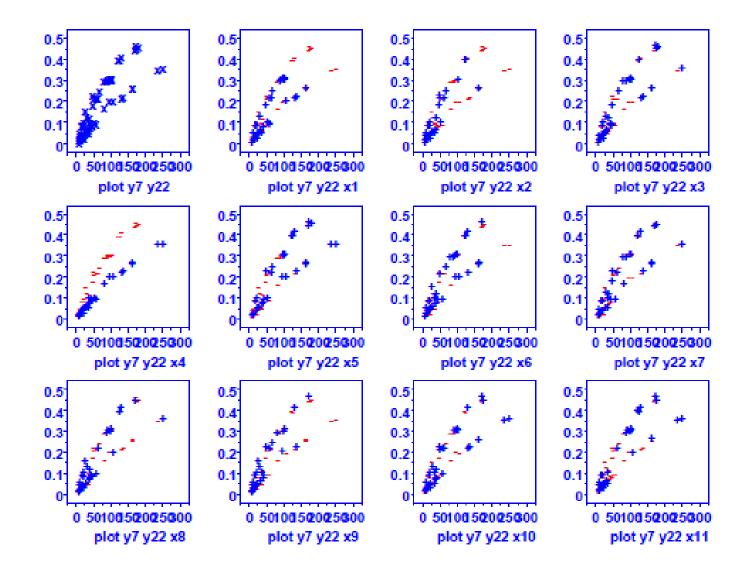
Correlation Analysis

Dimension	Responses
Congestion	y1, y2, y7, y11, y12, y19, y21, y22
Losses	y5, y8, y9, y10, y13, y14
Delay	y15, y16
F-class TP	y18, y20
D-class TP	y17
Packet TP	y3, y4
Flow TP	у6

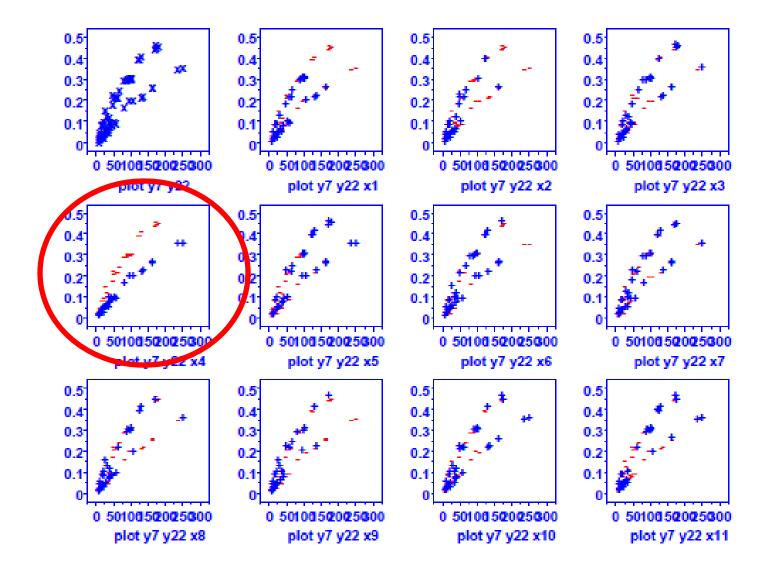
Summary of Correlation Results

Correlation Analysis Dimension Responses Congestion y1, y2, y7, y11, y12, y19, y21, y22 y5, y8, y9, **v10** y13, Losses y14 (15) y16 Delay y18, **y**20 **F-class TP** <u>(17</u> **D-class TP** y3(y4) Packet TP **y6** Flow TP

22 Responses: 16 Macro + 6 Throughput

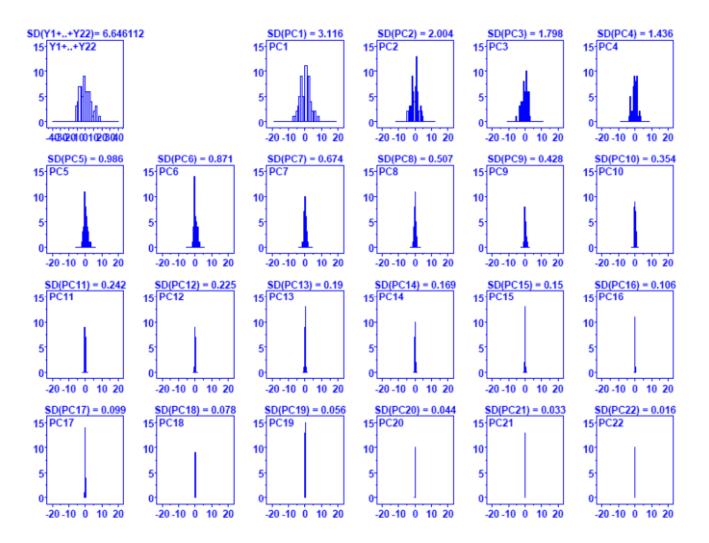

Response	Definition
y1	Active Flows – flows attempting to transfer data
y2	Proportion of potential flows that were active: Active Flows/All Sources
y3	Data packets entering the network per measurement interval
v4	Data packets leaving the network per measurement interval
y5	Loss Rate: v4/(v3+v4)
y6	Flows Completed per measurement interval
у7	Flow-Completion Rate: y6/(y6+y1)
y8	Connection Failures per measurement interval
y9	Connection-Failure Rate: y8/(y8+y1)
y10	Retransmission Rate (ratio)
y11	Congestion Window per Flow (packets)
y12	Window Increases per Flow per measurement interval
y13	Negative Acknowledgments per Flow per measurement interval
y14	Timeouts per Flow per measurement interval
y15	Smoothed Round-Trip Time (ms)
y16	Relative queuing delay: y15/(x1x41)

<	v17	Average Throughput for Active DD Flows	
	y18	Average Throughput for Active DF Flows	
	y19	Average Throughput for Active DN Flows	
<	v20	Average Throughput for Active FF Flows	(k=11,n=64,
	y21	Average Throughput for Active FN Flows	m=22→7)
<	v22	Average Throughput for Active NN Flows	

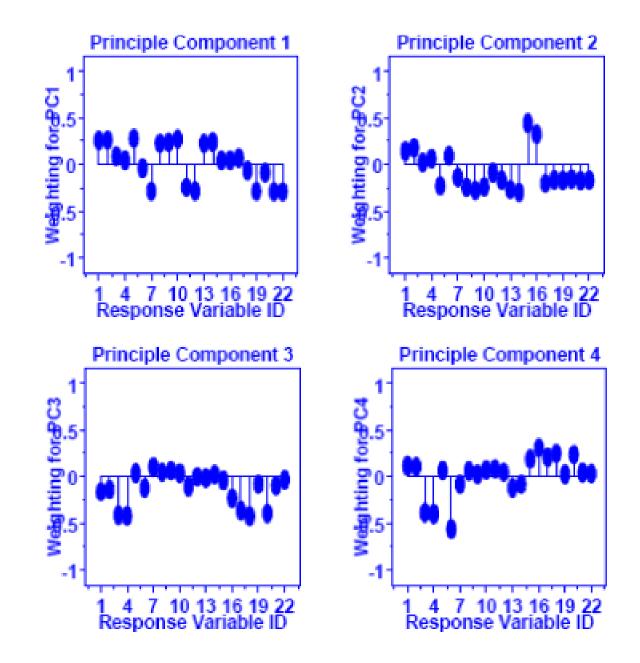

Correlation Analysis & Clustering Suggests *MesoNet* Behavior Reflected in Only 7 Responses

Response	Definition
y4	Average number of packet output per measurement interval (network throughput in packets/sec)
у6	Average number of flows completed per measurement interval (network throughput in flows/sec)
y10	Average retransmission rate (packet loss)
y15	Average smoothed round-trip time (network delay)
y17	Average instantaneous throughput for DD flows (throughput in packets/sec for the most advantaged users)
y20	Average instantaneous throughput for FF flows (throughput in packets/sec for 2 nd most advantaged users)
y22	Average instantaneous throughput for NN flows (network congestion)

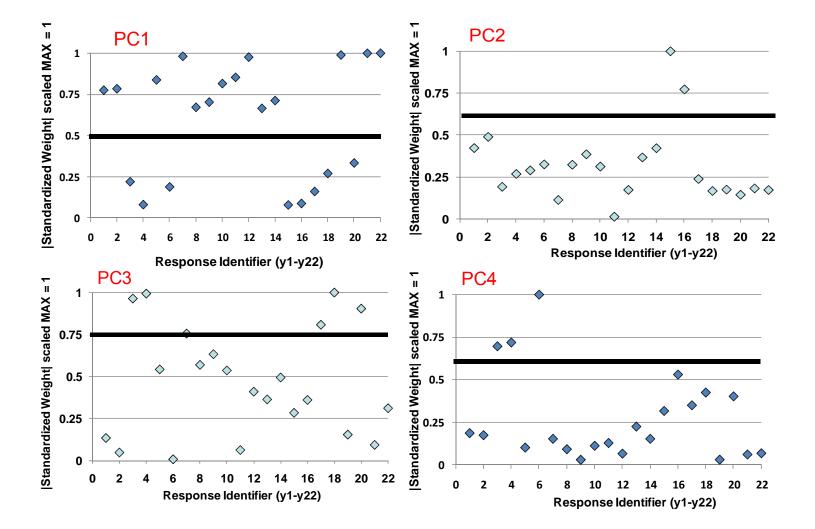
Q. Why is the Scatter Plot of Y7 vs Y22 Bifurcated?



Q. Why is the Scatter Plot of Y7 vs Y22 Bifurcated?


Method 2: Principal Components Analysis

Principal Components Analysis of 22 MesoNet Responses



Most response variance appears to be accounted for by the first 4 components

Weight Vectors for the first 4 Components

Weight Vectors for the first 4 Components

Significant Responses in PC1 (congestion)

Response	Definition	
y1	Average number of active flows	
y2	Proportion of possible flows that are active	
y5	Loss rate	
у7	Flow-completion rate	
у8	Connection failures	
у9	Connection-failure rate	
y10	Retransmission rate	
y11	Average congestion window	
y12	Window-increase rate	
y13	Negative-acknowledgment rate	
y14	Timeout rate	
y19	Average instantaneous throughput for DN flows	
y21	Average instantaneous throughput for FN flows	
y22	Average instantaneous throughput for NN flows	

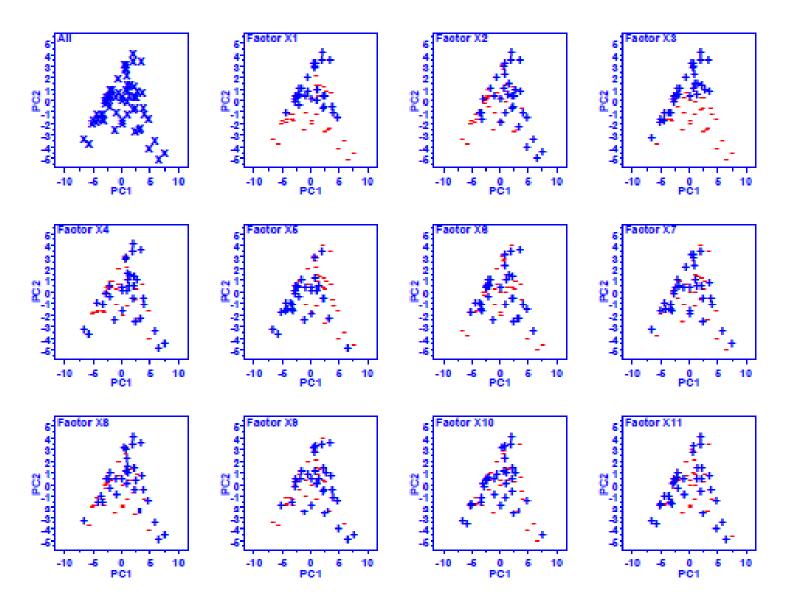
Significant Responses in PC2 (delay)

Response	Definition
y15	Smoothed round-trip time
y16	Relative queuing delay

Significant Responses in PC3 (throughput for advantaged users)

Response	Definition
у3	Packets input
y4	Packets output
y17	Average instantaneous throughput for DD flows
y18	Average instantaneous throughput for DF flows
y20	Average instantaneous throughput for FF flows

Significant Responses in PC4 (network throughput in flows/second)


Response Definition

	2 0	
у3	Packets input	
у4	Packets output	
у6	Flows completed per measurement interval	

Summary of PCA Results

Dimension	Responses	
PC1: Congestion	y1, y2, y5, y7, y8, y9, y10, y11, y12, y13, y14, y19, y21, y22	
PC2: Delay	y15, y16	
PC3: D-class & F-class TP	y3, y4, y17, 18, y20	
PC4: Flow TP	y3, y4, y6	

PCA Analysis

Abilene Network PCA Analysis (Standardized Responses) (Kevin Mills) Exp. 3 (2to(11-5)) Q. Dominant Factors (Out of the 11)? PC1 & PC2 Character Plot

105

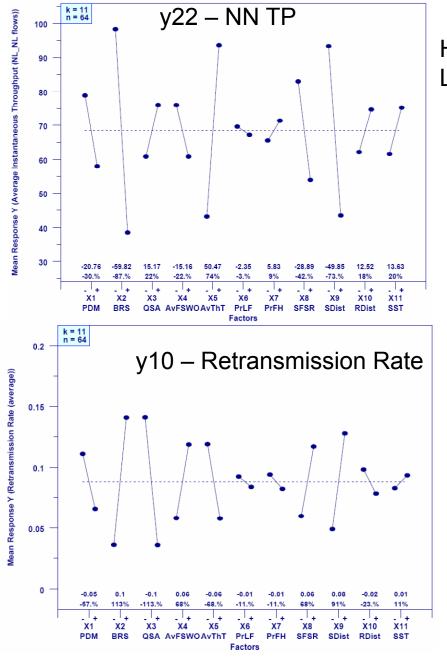
Comparing Correlation & PCA Results

Correlation Analysis

PCA

Dimension	Responses	Dimension	Responses
Congestion	y1, y2, y7, y11, y12, y19, y21, y22	PC1: Congestion	y1, y2, y5, y7, y8, y9, y10, y11, y12, y13, y14, y19, y21, y22
Losses	y5, y8, y9, y10, y13, y14		
Delay	y15, y16	PC2: Delay	y15, y16
F-class TP	y18, y20	PC3: D-class & F-class TP	y3, y4, y17, 18, y20
D-class TP	y17		
Packet TP	y3, y4		
Flow TP	у6	PC4: Flow TP	y3, y4, y6

The results show good alignment:


PCA1 merges congestion + losses;

PCA2 & Correlation identical for delay;

PCA3 merges D-class & F-class Throughput;

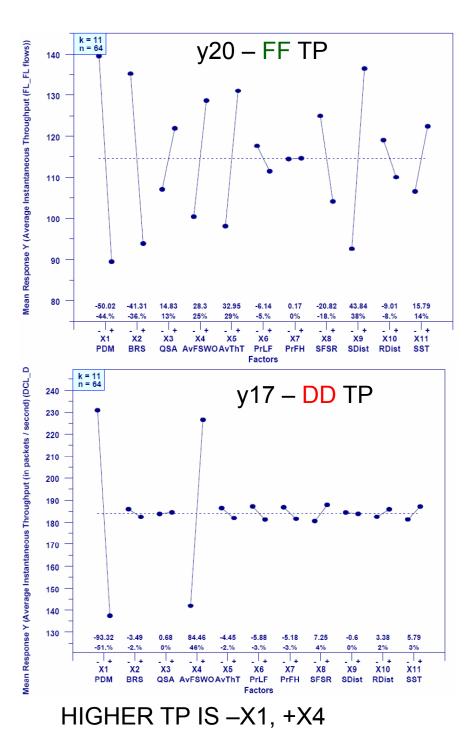
PCA4 splits Packet TP acrosstwo dimensions (D- & F-class TP and Flow TP)

Identifying Significant Response Dimensions for *MesoNet*: 4 or 7 or something between?

Mean Response Y (Principle Component 1)

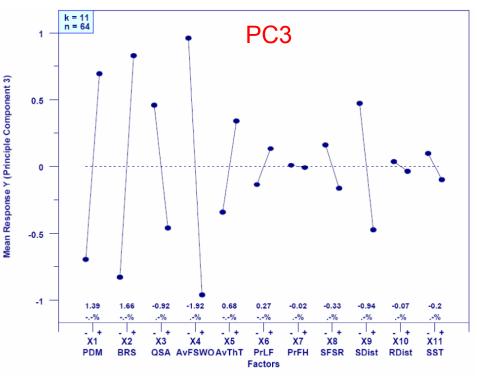
Note X2 is miscoded so I reverse +/- for X2

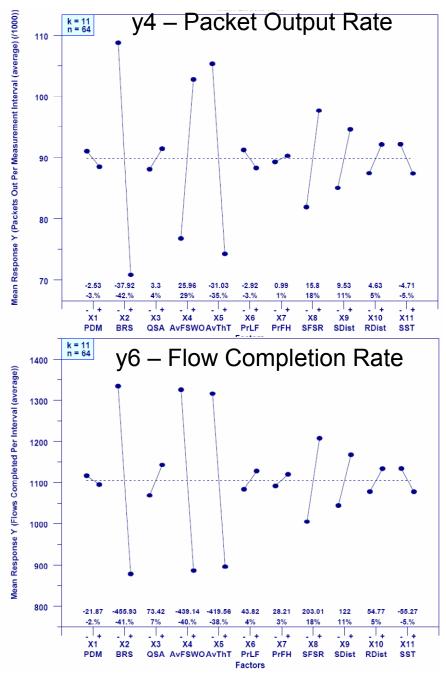
HIGHER CONGESTION IS LOWER TP: -X2, -X5, +X9, +X8, +X1


Note that PC interpretation is possible only by resorting to cross-mapping with response variables PC+ IS: -X2, -X5, +X9, +X8, +X4, -X3

I THINK LOSS & CONGESTION SHOULD BE SEPARATE – SIMILAR CAUSES BUT SUBTLE DIFFERENCES

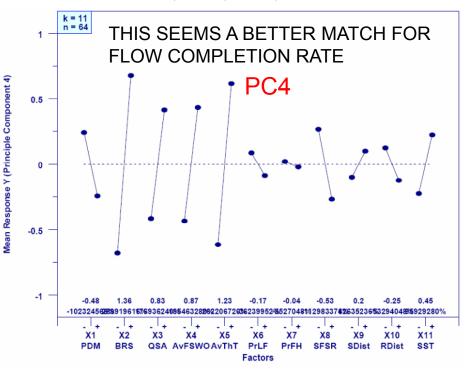
HIGHER IS -X2, -X3, +X9, +X4, -X5, +X8, -X1


108


PC3

HIGHER TP: -X1, +X9, +X2, +X5, +X4

PC- IS: +X4, +X2, -X1, +X9, +X3



I THINK **D**-class & **F**-class THROUGHPUT SHOULD BE SEPARATE – ONLY TWO INPUT FACTORS INFLUENCE **D**-class THROUGHPUT

HIGHER PO: +X2, -X5, +X4

PC- IS: +X2, -X5, -X4, -X3

I THINK FLOW COMPLETE RATE & PACKET THROUGHPUT RATE SHOULD BE KEPT SEPARATE BECAUSE FLOW COMPLETE IS HIGHER WITH SMALL FILE SIZE & PACKET OUTPUT IS HIGHER WITH LARGE FILE SIZE

HIGHER FC IS +X2, -X4, -X5

PC4

Note: The Domain Analyst Sides With the Correlation Analysis Results

Dimension	Definition
1	Congestion
2	Loss
3	Delay
4	Throughput for the most advantaged users
5	Throughput for the somewhat advantaged users
6	Network-wide Packet Throughput
7	Network-wide Flow Throughput

Pros & Cons of the 2 Dimension Reduction Techniques

Pros/Cons of Correlation Analysis & Clustering

<u>Pros</u>

- Provided <u>effective dimension reduction (22 \rightarrow 7) through</u> correlations that could be vetted by a domain expert
- Examining response correlations helped to <u>validate</u> <u>MesoNet</u>
- <u>Uncovered nuanced differences</u> between flow and packet throughput rates in a network

Cons

 A second 2¹¹⁻⁵ OFF experiment with <u>different level settings</u> revealed some (valid) <u>differences in correlations</u> – thus separate correlation analyses must be conducted for different level settings

Pros/Cons of Principal Components Analysis

Provided <u>greater dimension reduction (22 → 4)</u> than correlation analysis & clustering

<u>Cons</u>

- There is <u>no specific domain interpretation</u> of even the top 2 or 3 principal components in the case shown here we were able to arrive at a reasonable interpretation; in other cases, we were not
- Principal components take on + and values, which present domain analysts with <u>difficulty assigning meaning</u> – we had to infer meaning of components by comparing them with meaning derived from analyzing individual responses
- Principal components proved <u>coarser</u> than corresponding groupings generated by clustering mutual correlations
- A second 2¹¹⁻⁵ OFF experiment with <u>different level settings</u> revealed some <u>differences in principal components</u> – such differences are difficult to understand without assistance from other analyses

Summary: Correlation Analysis or PCA?

- If limited to one technique, <u>correlation analysis</u> provides results easier for a domain analyst to comprehend
- Principal components take on + and values, which present domain analysts with <u>difficulty assigning meaning</u> – we had to infer meaning by comparing main effects plots of principal components with main effects plots from responses chosen from groupings established by correlation analysis
- Principal components proved <u>coarser</u> than corresponding groupings generated by clustering mutual correlations
- PCA provides a reasonable <u>complement</u> to correlation analysis by giving a separate view of the data, which should be consistent with correlation results, thus helping to validate a model

MesoNet Conclusions

- We investigated correlation and PC analyses as two techniques to reduce the dimension of responses from *MesoNet*, a network simulator
- We demonstrated that <u>both</u> techniques can significantly reduce the dimension of response data
- We also showed that <u>both</u> techniques could be used to <u>validate</u> a model, but that PCA is more suited as a <u>complement</u> to correlation analysis
- We found that PCA results are <u>difficult</u> for a domain analyst to <u>interpret</u> without comparison to analyses of individual responses
- We also found that results from correlation and PC analyses with one set of parameter values can<u>not</u> necessarily be <u>extrapolated</u> to a different set of values

Stat Conclusions

- 1. Stat Framework/Approach & Methodology: Demo beginning-to-"end"
- 2. Critical importance of domain expert
- 3. Dimension Reduction dependency on DEX & Sensitivity Analysis
- 4. Internet Modeling Conclusions & Insight

Methodology Applications

 MesoNet Analysis #1 (k=11,n = 64,m=22 → 7) Sensitivity & Dimension-Reduction Analysis <today's talk>

2. MesoNet Analysis #2 (k=20,n=256,m=22) Sensitivity Analysis

3. MesoNet TCP Congestion/Control Alg. Comparison (k=6,n=32)(5)

4. Cloud Computing Analysis (k=11,n=64,m=42 => 8) (Koala) Sensitivity & Dimension-Reduction Analysis

5. Cloud Computing VM Placement Alg. Comparison (k=6,n=32) (Koala)

Graphical Methods

- 1. Main Effects Plots
- 2. Interaction Effects Matrix
- 3. Ordered Data Plots
- 4. Pairwide Scatter Plot Matrix (Unordered)
- 5. Pairwise Scatter Plot Matrix (Ordered)
- 6. Stacked Main Effects Plot
- 7. Multiplot of (1-Way) ANOVA CDF Values
- 8. Index-Index Cluster Plot
- 9. Character Plots
- 10. PCA Weights Plot

Presentations

J. Filliben, "Sensitivity Analysis Methodology for a Complex System Computational Model", 39th Symposium on the Interface: Computing Science and Statistics, Philadelphia, PA, May 26, 2007.

K. Mills and J. Filliben, "An Efficient Sensitivity Analysis Method for Mesoscopic Network Models", Complex Systems Study Group, NIST, February 2, 2010.

K. Mills and J. Filliben, "Comparing Two Dimension-Reduction Methods for Network Simulation Models", Winter Simulation Conference (WSC 2010), Baltimore, Maryland, Dec. 6, 2010.

K. Mills and J. Filliben, "Using Sensitivity Analysis to Identify Significant Parameters in a Network Simulation", Winter Simulation Conference (WSC 2010), Baltimore, Maryland, Dec. 6, 2010.

K. Mills, J. Filliben, D.-Y. Cho and E. Schwartz, "Predicting Macroscopic Dynamics in Large Distributed Systems", LSN Seminar on Complex Networks and Information Systems, Gaithersburg, Maryland, June 30, 2011.

K. Mills, J. Filliben and C. Dabrowski, "An Efficient Sensitivity Analysis Method for Large Cloud Simulations", IEEE Cloud 2011, Washington, D.C., July 8, 2011.

K. Mills, J. Filliben, D.-Y. Cho and E. Schwartz, "Predicting Macroscopic Dynamics in Large Distributed Systems", American Society of Mechanical Engineers 2011 Conference on Pressure Vessels & Piping, Baltimore, MD, July 21, 2011.

References

K. Mills, "Measurement Science for Complex Information Systems", NIST/ITL Web Page for the Complex Systems Project: http://www.nist.gov/itl/antd/emergent_behavior.cfm

K. Mills, J. Filliben, D. Cho, E. Schwartz and D. Genin, "Study of Proposed Internet Congestion Control Mechanisms", NIST Special Publication 500-282, May 2010, 534 pages. <u>http://www.nist.gov/itl/antd/Congestion_Control_Study.cfm</u>

K. Mills, J. Filliben and C. Dabrowski, "An Efficient Sensitivity Analysis Method for Large Cloud Simulations", Proceedings of the 4th International Cloud Computing Conference, IEEE, Washington, D.C., July 5-9, 2011.

K. Mills, J. Filliben, D-Y. Cho and E. Schwartz, "Predicting Macroscopic Dynamics in Large Distributed Systems", Proceedings of ASME 2011 Conference on Pressure Vessels & Piping, Baltimore, MD, July 17-22, 2011.

K. Mills and J. Filliben, "Comparison of Two Dimension-Reduction Methods for Network Simulation Models", Journal of Research of the National Institute of Standards and Technology, 116-5, September-October 2011, in press.

K. Mills, J. Filliben and C. Dabrowski, "Comparing VM-Placement Algorithms for On-Demand Clouds", (submitted to IEEE CloudCom 2011, under review.

Web References

Complex Systems Project http://www.nist.gov/itl/antd/emergent_behavior.cfm

NIST SP 500-282 (534 pages) http://www.nist.gov/itl/antd/Congestion_Control_Study.cfm

NIST/SEMATECH Engineering Statistics Handbook http://www.itl.nist.gov/div898/handbook/

Dataplot http://www.itl.nist.gov/div898/software/dataplot/

This Talk http://stat.nist.gov/~filliben/fillibenmillsnistsedtalk092211.pdf http://www.nist.gov/itl/antd/upload/millsjjfsedtalk092211.pdf