

IEEE 802.21 MEDIA INDEPENDENT HANDOVER

- DCN: 21-05-0419-00-0000
- Title:Performance Measurements for Link Going Down Trigger
- Date Submitted: November 6, 2005
- Presented at IEEE 802.21 session #11 in Vancouver, CA
- Authors or Source(s):
- Nada Golmie and Steve Woon
- Abstract: The objectives of this contribution are to discuss what PHY and MAC layer performance metrics can be used in order to generate a Link Going Down event in anticipation of a Link Down event. We focus on two measurements, namely the signal level at layer 1 and the number of packet retransmissions at layer 2 in order to generate a Link Going Down event. We develop algorithms using these metrics. Simulation results are discussed for two different case scenarios: (1) moving out of range, (2) varying interference level.

IEEE 802.21 presentation release statements

- This document has been prepared to assist the IEEE 802.21 Working Group. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.
- This is a contribution by the National Institute of Standards and Technology and is not subject to copyright in the US. The contributors do not have the authority to override the NIST policy in favor of the IEEE 802.21 policy.
- The contributor is familiar with IEEE patent policy, as outlined in <u>Section 6.3 of the IEEE-SA Standards Board Operations Manual</u> <<u>http://standards.ieee.org/guides/opman/sect6.html#6.3</u>> and in <u>Understanding Patent Issues During IEEE Standards Development http://standards.ieee.org/board/pat/guide.html</u>>

Outline

- Objectives
 - Show what layer 1 and layer 2 performance metrics can be used in order to generate a *Link Going Down* event in anticipation of a handover.
- Performance measurements
 - Power level (at the receiver)
 - Number of MAC packet retransmissions (at the transmitter)
- *Link Going Down* trigger definition
- Simulation set-up
- Performance results for two handover anticipation scenarios
 - Moving out of range, varying mobile node speeds
 - Varying the level of interference, stationary node

Power level as a metric for Link Going Down trigger

Let P_t be the power level measured at the receiver at time t. P_t can be computed according to a weighted window average:

$$P_{t+1} = \alpha P_{t+1} + (1 - \alpha) P_t$$
 (3)

where $\alpha \in [0,1]$ is the averaging weight factor.

A Link Going Down trigger is generated when

$$\mathsf{P}_{t+1} = \beta \mathsf{P}_{\mathsf{Th}} (4)$$

where P_{Th} is the receiver power level threshold.

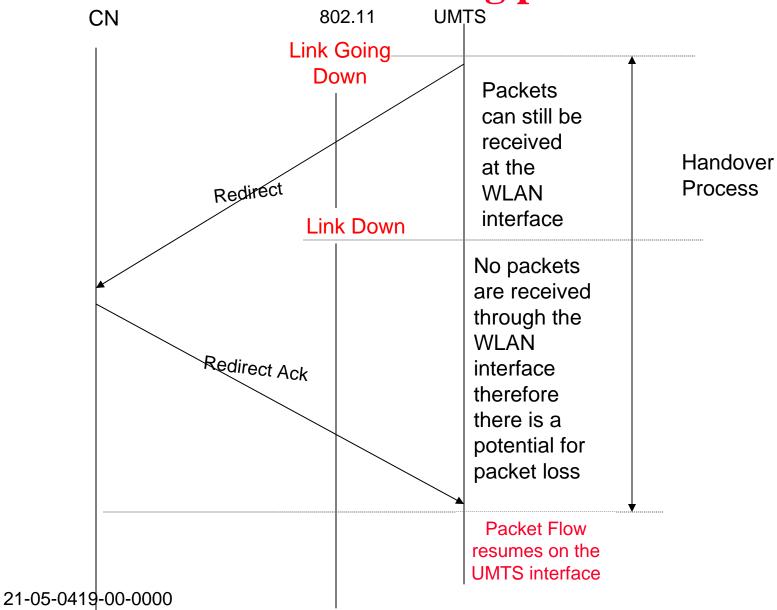
- P_{Th} depends on the coverage area and the receiver design
- 21 Buschependen on the propagation path loss, speed, data 4

Number of packet retransmissions as metric for Link Going Down trigger

- Let R_t be the number of packets retransmitted at the MAC layer.
- R_t can be computed according to a weighted window average:

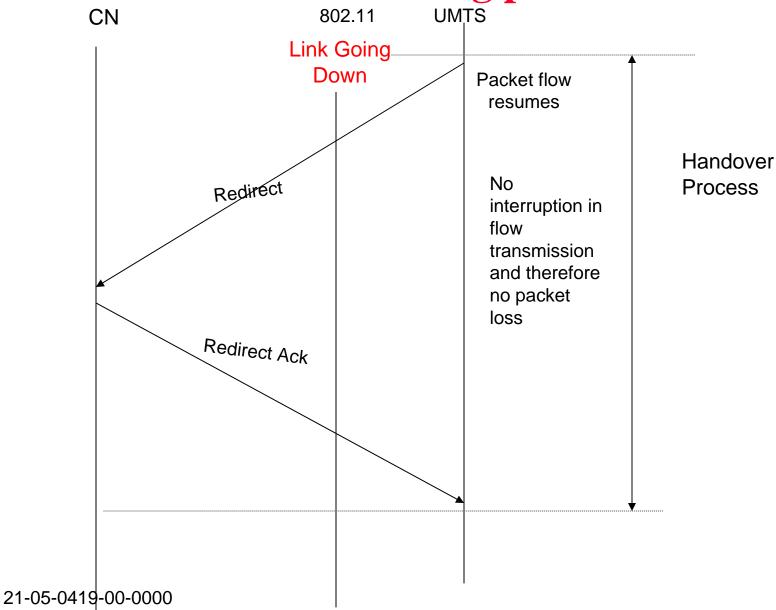
 $R_{t+1} = \alpha R_{t+1} + (1 - \alpha) R_t$ (3)

where $\alpha \in [0,1]$ is the averaging weight factor.

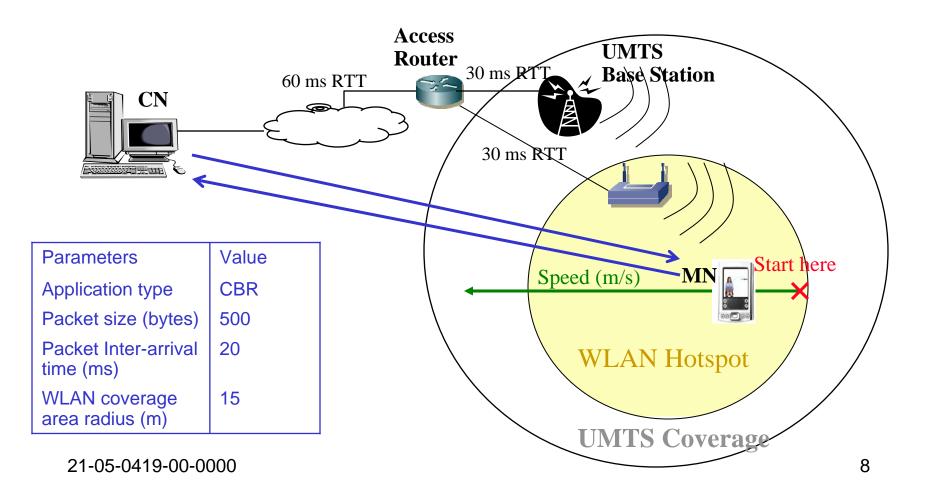

A Link Going Down trigger is generated when:

$$R_{t+1} = \theta R_{Th}$$
(4)

where R_{Th} is the retransmission threshold level.


- R_{Th} depends on the maximum retransmission threshold (eg. 7 in WLAN).
- $\theta_{21-05-0419-00-0000}$ on the propagation path loss, speed, data rate.

Link Going Down Flow Diagram Mobile is receiving packets


6

Link Going Down Flow Diagram Mobile is sending packets

Simulation Set-up

- Experiment 1: Moving out of range
- Experiment 2: Varying interference level

Path loss model

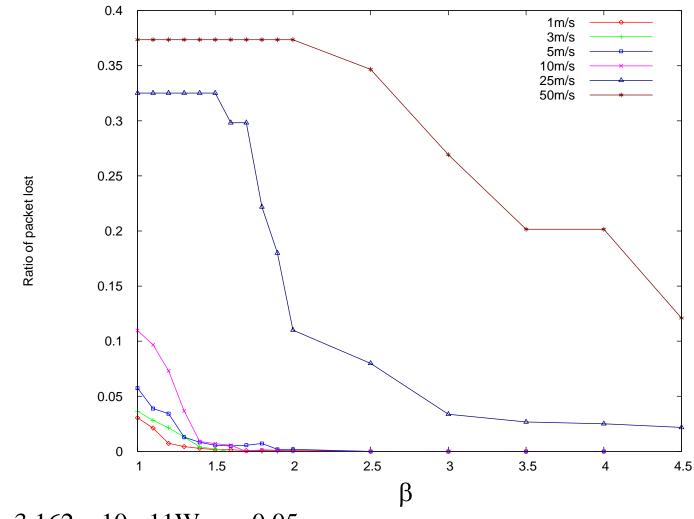
The path loss model includes a free space component and a shadowing component :

Path loss (dB) = -10 ε log (d) + X_{dB}

where $\boldsymbol{\epsilon}$ is the loss exponent, d is the distance traversed in meters.

- X_{dB} is a Gaussian random variable with zero mean and standard deviation σ_{dB} .
- ϵ = 4 for shadowed urban area

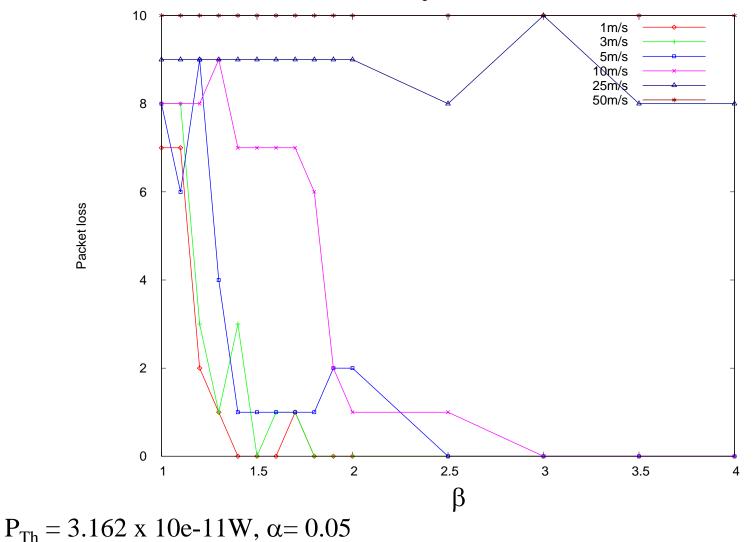
 $\sigma_{dB} = 4$


Evaluating *Link Going Down* **trigger performance**

The objective of the *Link Going Down* trigger is to improve the handover performance:

- reduce the handover latency
- reduce the handover packet loss
- Performance is measured in terms of packet loss as seen by the application in order to include losses (and retransmissions) at the lower layers.
- Packet Loss (PL) is defined as follows:
 - PL = <u>Number of packets lost during time T</u> Number of packets expected during time T

Experiment 1: Moving out of range relying on the signal level at the receiver


Packet lost before handover WLAN-UMTS

 $P_{Th} = 3.162 \text{ x } 10\text{e-}11\text{W}, \alpha = 0.05$

Experiment 1: Moving out of range relying on the signal level at the receiver

Packet lost during handover WLAN-UMTS

Experiment 1: Moving out of range using the number of MAC packets retransmissions

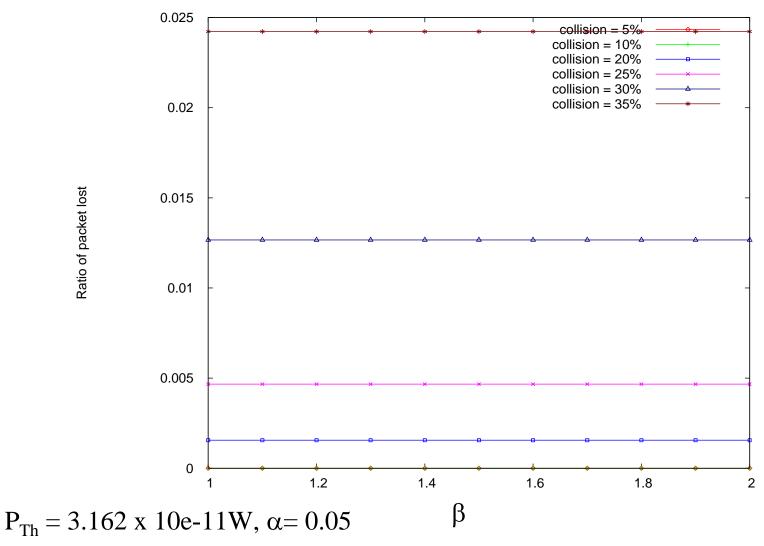
1 1m/s 3m/s 5m/s 0.9 10m/s 25m/s 50m/s 0.8 0.7 Ratio of packet lost 0.6 0.5 0.4 0.3 0.2 0.1 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 θ

Packet loss before handover

 $R_{Th} = 6, \alpha = 0.05$

21-05-0419-00-0000

13


Experiment 2: Varying the interference level using the number of MAC packet retransmissions

Packet loss before handover

0.03 collision = 5%collision = 10%collision = 20%collision = 25%collision = 30%0.025 collision = 35% 0.02 Ratio of packet lost 0.015 0.01 0.005 0 0.2 0.3 0.5 0.6 0.7 0.8 0.9 0.1 0.4 1 θ

 $R_{Th} = 6, \alpha = 0.05$

Experiment 2: Varying the interference level using the power level at the receiver

Packet loss before handover

Conclusions

- 1. Using the power level at the receiver is generally a good measure to trigger a Link Going Down for the case where the mobile node is moving out of range (signal level is degrading)
 - The power level threshold can be adjusted for different speeds:

a Link Going Down should be triggered earlier for faster speeds.

- The packet loss during the handover is not as significant as the packet loss incurred before a handover.
- 2. The packet retransmissions at the MAC layer transmitter could be used as an alternative (or in addition) to the power level.
 - Care in setting the retransmission level threshold: a lower retransmission threshold factor is needed for higher speeds.
- 3. Both metrics can be used interchangeably for moving out of range scenarios depending on the traffic directionality.
- 4. The packet retransmissions are mostly useful to trigger a ²Link Going Down for varying interference environments⁶.